【典型题】初一数学下期末第一次模拟试题及答案(1)

合集下载

初一数学下期末第一次模拟试卷附答案

初一数学下期末第一次模拟试卷附答案

一、选择题1.下列事件为必然事件的是( )A .打开电视,正在播放新闻B .买一张电影票,座位号是奇数号C .任意画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上 2.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( ) A .大量反复抛掷每100次出现正面朝上50次 B .连续抛掷10次不可能都正面朝上 C .抛掷硬币确定谁先发球的规则是公平的D .连续抛掷2次必有1次正面朝上3.下列事件中,属于不可能事件的是( )A .明天会下雨B .从只装有8个白球的袋子中摸出红球C .抛一枚硬币正面朝上D .在一个标准大气压下,加热到100C 水会沸腾4.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .19 5.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE ,则∠GFH 的度数是( )A .110°B .100°C .90°D .80°6.下列图形中是轴对称图形的有( )A .1个B .2个C .3个D .4个7.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD =D .CAB DAB ∠=∠ 8.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 9.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 10.某人先以v 1的速度由A 地出发去B 地,途中在超市购买了一瓶水之后,又以v 2的速度继续进行至B 地,已知v 1<v 2 , 下面图象中能表示他从A 地到B 地的时间t (分钟)与路程s (千米)之间关系的是( )A .B .C .D .11.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒12.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题13.如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是______.14.在一个不透明的口袋中装有4个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为___________.15.如图,△ABC 中,∠ACB =90°,AC <BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB 、AC 边分别交于点E 、F ,如果折叠后△CDF 与△BDE 均为等腰三角形,那么∠B =_____.16.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)17.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.18.某种树木的分枝生长规律如下表所示,则预计到第6年时,树木的分枝数为__.年份分枝数第1年1第2年1第3年2第4年3第5年519.如图,360∠+∠+∠=︒,直线FG分别交AB、DE于点F、G.若ABC C CDE∠=___________.1110∠=︒,则220.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.三、解答题21.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活___________万棵.②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?22.如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别是()()()2,1,1,3,4,4A B C . (1)在图中画出ABC ∆关于y 轴对称的图形111A B C ∆,并写出点C 的对应点1C 的坐标; (2)在图中x 轴上作出一点P ,使得1PB PC +的值最小(保留作图痕迹,不写作法)23.如图,在△ABC 中,AB =BC ,∠B =90°,AD 是∠BAC 的平分线,CE ⊥AD 于点E .求证:AD =2CE .24.观察图形,回答问题:(1)设图形的周长为L ,梯形的个数为n ,试写出L 与n 的关系式;(2)当n =11时,图形的周长是多少?25.已知,//BC OA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________(2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.26.(1)23235ab a b ab (2)23233x x x x【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A 、打开电视,正在播放新闻,是随机事件,故A 错误;B 、买一张电影票,座位号是奇数号,是随机事件,故B 错误;C 、任意画一个三角形,其内角和是180°,是必然事件,故C 正确;D 、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D 错误;故选:C .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 2.C解析:C【分析】根据概率的意义逐一判断即可得.【详解】A. 大量反复抛掷每100次出现正面朝上接近50次,此选项错误;B. 连续抛掷10次可能都正面朝上,但可能性较小,此选项错误;C. 通过抛掷硬币确定两人谁先发球的比赛规则是公平的,此选项正确;D. 连续抛掷2次可能有1次正面朝上,此选项错误.【点睛】本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.3.B解析:B【解析】【分析】根据不可能事件就是一定不发生的事件,即发生的概率是0的事件即可解答.【详解】解:明天会下雨是可能事件,错误.B, 从只装有8个白球的袋子中摸出红球是不可能事件,正确.C, 抛一枚硬币正面朝上是可能事件,错误.D, 在一个标准大气压下,加热到100C 水会沸腾是必然事件,错误.故选B.【点睛】本题主要考查了不可能事件是一定不发生的事件,难度较小.4.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.C【分析】根据折叠求出∠CFG =∠EFG =12∠CFE ,根据角平分线定义求出∠HFE =12∠BFE ,即可求出∠GFH =∠GFE+∠HFE =12∠CFB .根据平角的定义即可得答案. 【详解】∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =12∠CFE , ∵FH 平分∠BFE ,∴∠HFE =12∠BFE , ∴∠GFH =∠GFE+∠HFE =12(∠CFE+∠BFE )=12×180°=90°, 故选:C .【点睛】本题考查折叠的性质及角平分线的定义,根据翻折的性质得到∠CFG=∠EFG 是解题关键. 6.C解析:C【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【详解】解:根据对称轴的定义可知,是轴对称图形的有第2个、第3个和第4个.故选C .【点睛】本题考查了利用轴对称图形的定义,注意对基础知识的理解.7.B解析:B【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断.【详解】解:∵AB CD ⊥,∴∠ABC=∠ABD=90°,∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意;若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意;若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.8.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.9.A解析:A【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.10.C解析:C【解析】∵V 1<V 2,∴题中图象上表示为开始时图象斜率小,后来斜率大,又∵途中买了一瓶水,∴图象有一段平行于x 轴,故选C .11.A解析:A【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.12.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x2•x3=x5,∴选项A不符合题意;∵(x3)2=x6,∴选项B符合题意;∵(−3x)3=−27x3,∴选项C不符合题意;∵x4+x5≠x9,∴选项D不符合题意.故选:B.【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值【详解】共有25个小正方形其中阴影部分的有7个∴其概率为故答案为【点睛】此题考查几何概率解题关键在于掌握计算公式解析:7 25【分析】根据几何概率的求法:这个点取在阴影部分的概率就是阴影部分的面积与总面面积的比值.【详解】共有25个小正方形,其中阴影部分的有7个∴其概率为725故答案为7 25.【点睛】此题考查几何概率,解题关键在于掌握计算公式.14.【解析】【分析】先求出球的总个数再根据概率公式即可得出摸到红球的概率【详解】解:∵袋中装有4个红球2个绿球∴共有6个球∴摸到红球的概率为故答案为:【点睛】本题考查了概率公式用到的知识点为:概率=所求解析:2 3【解析】【分析】先求出球的总个数,再根据概率公式即可得出摸到红球的概率.【详解】解:∵袋中装有4个红球,2个绿球,∴共有6个球,∴摸到红球的概率为4263故答案为:2 3【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.30°【分析】先确定△CDF是等腰三角形得出∠CFD=∠CDF=45°因为不确定△BDE是以那两条边为腰的等腰三角形故需讨论①DE=DB②BD=BE③DE=BE然后分别利用角的关系得出答案即可【详解解析:30°【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【详解】解:∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=12∠CFD=22.5°,∠DEB=2x°,分类如下:①当DE=DB时,如图1所示:∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°,∵AC<BC,∴∠B=45°不成立;②当BD =BE 时,如图2所示:则∠B =(180°﹣4x )°,∠CAD =22.5°.由∠CDE =∠DEB +∠B 得:45°+22.5°+x =2x +180°﹣4x ,解得x =37.5°,此时∠B =(180﹣4x )°=30°.③DE =BE 时,则∠B =12(180﹣2x )°, 由∠CDE =∠DEB +∠B 得,45°+22.5°+x =2x +12(180﹣2x )°, 此方程无解.∴DE =BE 不成立.综上所述,∠B =30°.故答案为:30°.【点睛】本题考查翻折变换的性质、等腰三角形的判定与性质、三角形内角和定理等知识,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.16.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称∴∠MAD =∠NAD ∠EAD =∠FAD ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD 即:∠1=∠2故正解析:①②【分析】首先利用轴对称的性质分别判断正误即可.【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠MAD =∠NAD ,∠EAD =∠FAD ,∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD ,即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠B =∠C ,AC =AB ,在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ANC ≌△AMB ,故正确;③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD ,故错误.故答案为:①②.【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.17.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD 在一条直线上∵∴△ABD 是等边三角形∴△ABD 的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 18.8【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和【详解】根据所给的具体数据发现:从第三个数据开始每一个数据是前面两个数据的和则第6年的时候是3+5=8个故答案为8【点睛】本题考查 解析:8通过所给数据应当发现:后边的每一个数据总是前面两个数据的和.【详解】根据所给的具体数据发现:从第三个数据开始,每一个数据是前面两个数据的和,则第6年的时候是3+5=8个.故答案为8.【点睛】本题考查了图形的变化类问题,仔细观察树枝的分叉的个数后找到规律是解题的关键.19.70°【分析】如图作CH∥AB证明CH∥DEAB∥DE利用平行线的性质即可解决问题【详解】解:如图作CH∥AB∵AB∥CH∴∠B+∠BCH=180°∵∠ABC+∠BCD+∠CDE=360°∴∠D+∠解析:70°.【分析】如图,作CH∥AB,证明CH∥DE,AB∥DE,利用平行线的性质即可解决问题.【详解】解:如图,作CH∥AB,∵AB∥CH,∴∠B+∠BCH=180°,∵∠ABC+∠BCD+∠CDE=360°,∴∠D+∠DCH=180°,∴CH∥DE,∴AB∥DE,∴∠1=∠3=110°,∴∠2=180°-∠3=70°故答案为70°.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,属于中考常考题型.20.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a小正方形的边长为b故阴影部分的面积是:AE•BC+AE•BD=AE(BC+BD)=(AB﹣解析:30直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a,小正方形的边长为b,故阴影部分的面积是:12AE•BC+12AE•BD=12AE(BC+BD)=12(AB﹣BE)(BC+BD)=12(a﹣b)(a+b)=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.三、解答题21.(1)0.9附近,0.9;(2)①4.5,15万棵.【分析】(1)由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9;(2)①5×成活率即为所求的成活的树苗棵树;②利用成活率求得需要树苗棵树,减去已移植树苗数即为所求的树苗的棵树.【详解】(1)0.9 0.9(2)①4.5估计该地区已经移植的这种树苗能成活5×0.9=4.5(万棵).②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.22.(1)见解析;(2)见解析【分析】(1)利用轴对称的性质找出A1、B1、C1关于y轴对称点,再依次连接即可;(2)作点C关于x轴的对称点C2,连接B1C2,与x轴交点即为P.【详解】解:(1)如图,△A1B1C1即为所作图形,其中C1的坐标为(-4,4);(2)如图点P 即为所作点.【点睛】本题考查了作图—轴对称,最短路径问题,解题的关键在于利用轴对称的性质作出最短路径.23.见解析【分析】延长AB 、CE 交于点F ,证明△ABD ≌△CBF ,根据全等三角形的性质得到AD =CF ,证明△CAE ≌△FAE ,得到CE =EF ,进而证明结论.【详解】证明:延长AB 、CE 交于点F ,∵∠ABC =90°,CE ⊥AD ,∠ADB =∠CDE ,∴∠BAD =∠ECD ,在△ABD 和△CBF 中,BAD BCF AB CB ABD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△CBF (SAS ),∴AD =CF ,∵AD 是∠BAC 的平分线,∴∠CAE =∠FAE ,在△CAE 和△FAE 中,CAE FAE AE AEAEC AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CAE ≌△FAE (ASA ),∴CE =EF ,∴AD =CF =2CE .【点睛】本题考查了全等三角形的判定及性质定理,熟练掌握定理是解题的关键.24.(1)L=3n+2;(2)35.【解析】试题分析:(1)由图可知,每增加一个梯形,就增加一个上下底的和,据此可得规律; (2)将数值代入解析式即可.试题(1)根据图,分析可得梯形的个数增加1,周长L 增加3.故L 与n 的关系式L =5+(n -1)×3=3n +2;(2)当n =11时,L =3×11+2=35.点睛:主要考查了函数的解析式的求法,首先审清题意,发现变量间的关系,再列出关系式或通过计算得到关系式,需注意结合实际意义,关注自变量的取值范围.25.(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°. 【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=72°,求出∠O+∠A=180°,根据平行线的判定得出即可; (2)根据角平分线定义求出1362EOC BOA ︒∠=∠=,即可得出答案; (3)①不变,求出∠OFB=2∠OCB ,即可得出答案; ②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=2α+β,α=β=18°,即可得出答案.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE ∠=∠,∠BOA=72°, ∴11136222EOC EOF FOC BOF FOA BOA ︒∠=∠+∠=∠+∠=∠=, 故答案为:36°;(3)①不变,∵BC ∥OA ,∴∠OCB=∠AOC ,又∵∠FOC=∠AOC ,∴∠FOC=∠OCB ,又∵BC ∥OA ,∴∠OFB=∠FOA=2∠FOC ,∴∠OFB=2∠OCB ,即∠OCB :∠OFB=1:2.即∠OCB=12∠OFB ; ②由(1)知:OB ∥AC ,∴∠OCA=∠BOC ,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC ∥OA ,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.【点睛】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.26.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x x x x23233x x x x22x x x x2236922x x x221292x x.3221【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.。

初一数学下期末第一次模拟试题含答案

初一数学下期末第一次模拟试题含答案

一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥ 2.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .13.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 4.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩5.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .485210x y y x -=⎧⎨=-⎩B .485210x y y x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩ 6.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩ C .440x y y x -=⎧⎨-=⎩ D .440x x y y x y -=-⎧⎨-=-⎩ 7.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-8.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-, 9.下列各式中,正确的是( )A B .C 3=- D 4=- 10.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定 11.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 12.已知关于x 的方程:24263a x x x --=-的解是非正整数,则符合条件的所有整数a 的值有( )种.A .3B .2C .1D .0二、填空题13.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.14.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④,x y 之间的数量关系是23,x y -=其中正确的是__________ (填序号).15.如果28a b --与()21a b ++互为相反数,那么a b =________.16.写一个第三象限的点坐标,这个点坐标是_______________.17.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.18.若已知()21230a b c -++-=,则a b c -+=_____.19.如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55︒,若同时开工,则在乙地公路按南偏西___度的走向施工,才能使公路准确接通.20.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________. 三、解答题21.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.22.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 23.解方程组:(1)524365y x x y -⎧=⎪⎨⎪+=⎩①②(2)35198367x y x y ①②+=⎧⎨-=⎩24.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标;(2)在图中画出111AO B ;(3)AOB 的面积=______.25.计算:201()( 3.14)20|25|.2π---+--26.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.2.A解析:A【分析】两个方程相加即可求出a+b 的值.【详解】解:a 2b 43a 2b 8+=⎧⎨+=⎩①② ①+②得,4a+4b=12∴a+b=3故选:A .【点睛】此题主要考查了解二元一次方程组,熟练、灵活运用解题方法是解答此题的关键. 3.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.4.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.5.A解析:A【分析】设小明、小颖平均每天分别阅读x 页、y 页,根据“小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页”得到两个等量关系,即可求解.【详解】解:设小明、小颖平均每天分别阅读x页、y页,根据题意可得:485210 x yy x-=⎧⎨=-⎩,故选:A.【点睛】本题考查列二元一次方程组,根据题意找出等量关系是解题的关键.6.A解析:A【分析】根据题设小亮和老师的岁数分别为x岁和y岁,根据题意列出方程组解答即可.【详解】解:设小亮和老师的岁数分别为x岁和y岁可得440x y x y x y-=-⎧⎨-=-⎩故选A【点睛】此题考查二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列出方程组求解.7.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P对应点的坐标即可得解.【详解】解:点P(-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.8.C解析:C【分析】应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.【详解】解:根据题意,则∵点A位于x轴上方,且位于y轴的左边,∴点A在第二象限,∵点A距x轴5个单位长,距y轴10个单位长,-,;∴点A的坐标为(105)故选:C.【点睛】本题主要考查了点在第二象限时坐标的特点,注意到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.10.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.11.C解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,π-,2中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a .【详解】 解:24263a x x x --=- ()264212--=-x a x x264+212-=-x a x x ()24+8=-a x 284+=-x a∵方程的解是非正整数, ∴2804+-≤a ∴2804+≥a ∴24+=1a 或2或4或8∴a=0或2或-2,共3个故选:A【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.14.①②③【分析】①将x=5y=-1代入检验即可做出判断;②将a=-2代入方程组求出方程组的解即可做出判断;③将a=1代入方程组求出方程组的解代入方程中检验即可;④消去a 得到关于x 与y 的方程即可做出判断解析:①②③【分析】①将x=5,y=-1代入检验即可做出判断;②将a=-2代入方程组求出方程组的解即可做出判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④消去a 得到关于x 与y 的方程,即可做出判断.【详解】解:①将x=5,y=-1代入方程组得:5345(1)3a a -=-⎧⎨--=⎩解得:a=2,所以51x y =⎧⎨=-⎩,是方程组的一个解,本选项正确; ②将a=-2代入方程组得:36?6?x y x y +=⎧⎨-=-⎩ 得:4y=12,即y=3,将y=3代入得:x=-3,则x 与y 互为相反数,本选项正确;③将a=1代入方程组得:33?3?x y x y +=⎧⎨-=⎩ 解得:30x y =⎧⎨=⎩ 将x=3,y=0代入方程43x y a +=-=的左边得:3+0=3,所以当1a =时,方程组的解也是方程4x y a +=-的解,本选项正确;④34?3?x y a x y a +=-⎧⎨-=⎩ 由第一个方程得:a=4-x-3y ,代入第二个方程得:x-y=3(4-x-3y ),整理得:x+2y=3,本选项错误,故答案是:①②③.【点睛】此题考查了二元一次方程组的解及解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值.15.9【分析】由题意可知得到二元一次方程组并求解即可【详解】解:∵与互为相反数∴∴解得∴故答案为:9【点睛】本题考查相反数之和为0绝对值的非负性二元一次方程组等根据题意列出二元一次方程组是解题的关键解析:9【分析】 由题意可知()20281a b a b --+++=,得到二元一次方程组并求解即可.【详解】解:∵28a b --与()21a b ++互为相反数, ∴()20281a b a b --+++=, ∴28010a b a b --=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩, ∴()239a b =-=,故答案为:9.【点睛】本题考查相反数之和为0,绝对值的非负性,二元一次方程组等,根据题意列出二元一次方程组是解题的关键.16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202 解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.18.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和 解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】 解:因为()21230a b c -+++-=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 19.55【分析】先求出∠COD 然后根据方向角的知识即可得出答案【详解】解:如图:即在乙地公路应按南偏西55度的走向施工才能使公路准确接通故答案为:55【点睛】此题考查了方向角平行线的知识解答本题的关键是 解析:55【分析】先求出∠COD ,然后根据方向角的知识即可得出答案.【详解】解:如图://AD OC ,55COD ADO ∴∠=∠=︒,即在乙地公路应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.【点睛】此题考查了方向角、平行线的知识,解答本题的关键是求出∠COD 的度数,另外要熟练方向角的表示方法.20.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.三、解答题21.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】 解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)515x y =⎧⎨=⎩;(2)81x y =⎧⎨=-⎩ 【分析】(1)由4⨯①-②消去x ,求出y 的值,再把y 的值代入①求出x 的值即可; (2)由3⨯①+5⨯②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可.【详解】解:(1)4⨯①-②,得44321065x x y y --=--,解得15y =,把15y =代入①,得15552x -==, ∴515x y =⎧⎨=⎩; (2)3⨯①+5⨯②,得915401557335x y x y ++-=+,解得8x =,把8x =代入①,得24519y +=,解得1y =-,∴81x y =⎧⎨=-⎩. 【点睛】本题考查二元一次方程组,解题的关键是掌握二元一次方程组的解法.24.(1)()12,3O ;()11,5A ;()15,2B;(2)见解析;(3)2.5. 【分析】(1)直接根据平移的坐标变化规律即可求解;(2)先描点,再连线即可;(3)利用网格图中,根据割补法即可求解.【详解】(1)()12,3O ;()11,5A ;()15,2B; (2)(3)111433141 2.5222AOB S =⨯⨯-⨯⨯-⨯⨯= 【点睛】此题主要考查图形的平移、再网格图中求三角形的面积,熟练掌握平移的性质和割补法是解题关键.255.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+2555.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.26.见解析【分析】先利用角平分线的定义得到∠BAD =∠DAC ,结合已知条件∠BFE =∠DAC ,可得∠BFE =∠BAD ,根据平行线的判定可证EG ∥AD ,再由平行线的性质得∠G =∠DAC ,∠AFG =∠BAD ,则利用等量代换即可证得结论.【详解】证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFE =∠DAC ,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.。

【人教版】七年级数学下期末第一次模拟试卷(带答案)

【人教版】七年级数学下期末第一次模拟试卷(带答案)

一、选择题1.关于x、y的方程组53x ayx y+=⎧⎨-=⎩的解是1•xy=⎧⎨=⎩,其中y的值被盖住了,不过仍能求出a,则a的值是()A.2 B.-2 C.1 D.-12.若x m﹣n﹣2y m+n﹣2=2007,是关于x,y的二元一次方程,则m,n的值分别是()A.m=1,n=0 B.m=0,n=1 C.m=2,n=1 D.m=2,n=33.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.221000 2.5%0.5%xyx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩4.若二元一次方程3x﹣y=﹣7,x+3y=1,y=kx+9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.45.如图,在一单位长度为1cm的方格纸上,依如所示的规律,设定点1A、2A、3A、4A、5A、6A、7A、nA,连接点O、1A、2A组成三角形,记为1∆,连接O、2A、3A组成三角形,记为2∆,连O、n A、1n A+组成三角形,记为n∆(n为正整数),请你推断,当n为50时,n∆的面积=()2cmA.1275B.2500C.1225D.12506.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .167.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S8.下列语句中,是命题的是( ) A .两个相等的角是对顶角 B .在直线AB 上任取一点C C .用量角器量角的度数 D .直角都相等吗?9.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .10.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-11.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米 B .101厘米 C .102厘米 D .103厘米 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题13.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.14.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .底面积(2cm ) 甲杯 40 乙杯 60 丙杯8015.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.16.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______.17.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.18.满足﹣3<x <6的所有整数x 的和是_____.19.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.20.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题21.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天?22.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?23.解方程组:321121x yx y-=⎧⎨+=⎩.24.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D (6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.25.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b=;(2)若a b,那么a b b a(填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.26.(感知)如图①,//AB CD ,130PAB ∠=︒ ,120PCD ∠=︒.求APC ∠的度数.(提示:过点P 作直线//PQ AB )(探究)如图②,//AD BC ,点P 在射线OM 上运动,ADP a ∠=∠ ,BCP β∠=∠. (1)当点P 在线段AB 上运动时,CPD ∠,α∠,β∠之间的数量关系为_______________.(2)当点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),直接写出CPD ∠,a ∠,β∠ 之间的数量关系为____________________________________________________________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解. 【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-,把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-,故选:B . 【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.2.C解析:C根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可. 【详解】解:根据题意,得121m n m n -=⎧⎨+-=⎩,解得21m n =⎧⎨=⎩.故选:C . 3.A解析:A 【分析】根据在“吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”即可解答. 【详解】 解:由题意可得,22+10002.5%0.5%x y xy -=⎧⎪⎨=⎪⎩, 故选:A . 【点睛】本题主要考查是二元一次方程的应用,正确的理解题意,列出方程是解题的关键.4.D解析:D 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y=kx+9中,即可求得k 的值. 【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得:21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =. 故选:D . 【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.5.A解析:A根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()15050112752=⨯⨯+=.故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.6.D解析:D 【解析】 试题 如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y=2x-6上, ∵C (1,4), ∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5, ∵A (1,0),即OA=1, ∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16. 故选D .7.B【分析】估算出5的近似值,再确定在数轴上的位置.【详解】∵253<<,∴数轴上表示实数5的点可能是点Q.故选:B.【点睛】本题考查了数轴表示数的意义,无理数的估算,估算5的近似值是正确判断的前提.8.A解析:A【分析】根据命题的定义逐一判断即可.【详解】解:A.“两个相等的角是对顶角”做出了判断,是命题;B.“在直线AB上任取一点C”没有做出判断,不是命题;C.“用量角器量角的度数”没有做出判断,不是命题;D.“直角都相等吗?”没有做出判断,不是命题;故选:A.【点睛】此题主要考查了命题的含义和应用,解答此题的关键是要明确:判断一件事情的语句叫命题,许多命题都是由题设和结论两部分组成.9.A解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】x,解:由题意可得:不等式组的解集为:21在数轴上表示为:故答案为A.【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.10.D解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.解:()2x 13x -≥, 去括号,得2x 23x -≥, 移项,得23x 2x -≥-, 解得x 2≤-. 故选:D . 【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.D解析:D 【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可. 【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x⨯≥ 解得:103x ≥ 故选:D 【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米.12.B解析:B 【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案. 【详解】解:∵x (x +a )=x 2﹣x , ∴x 2+ax =x 2﹣x , ∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3. 故选:B . 【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.【分析】首先写出连续3小于6的整数然后即可判断m 的取值范围【详解】由题意得:符合题意的整数解为543∴m 不能取值3可以取值2∴故答案为【点睛】本题考查了解不等式难度较低主要考查学生对不等式组知识点的 解析:23m ≤<【分析】首先写出连续3小于6的整数,然后即可判断m 的取值范围. 【详解】由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴23m ≤< 故答案为23m ≤<. 【点睛】本题考查了解不等式,难度较低,主要考查学生对不等式组知识点的掌握.整理出x 的取值范围分析整数解情况为解题关键.14.180【分析】设后来甲乙丙三杯内水的高度分别为:xyx+y 利用水的总体积不变分别从甲乙两杯中取出相同体积的水倒入丙杯得出二元一次方程组进而即可求解【详解】解:设后来甲乙丙三杯内水的高度分别为:xyx解析:180 【分析】设后来甲、乙、丙三杯内水的高度分别为:x ,y ,x+y ,利用水的总体积不变,分别从甲、乙两杯中取出相同体积的水倒入丙杯,得出二元一次方程组,进而即可求解. 【详解】解:设后来甲、乙、丙三杯内水的高度分别为:x ,y ,x+y ,根据题意可得:()()()40126012801240608040126012x y x y x y ⎧⨯+⨯+⨯+++⎪⎨-=-⎪⎩=,解得:7.59x y =⎧⎨=⎩, ∴从甲杯中倒出的水的体积为:40× (12-7.5)=180(3cm ), 故答案是:180. 【点睛】此题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题关键.15.【分析】(1)根据使方程成立的一对数xy 为相伴数对记为(xy )将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b 代入计算即可用含a 的代数式表示b 【详解】(1)∵(6y )是相伴数对∴解得:;故解析:272- 94a - 【分析】 (1)根据使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(x .y ),将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b ,代入计算即可用含a 的代数式表示b .【详解】(1)∵(6,y )是“相伴数对”, ∴662323y y ++=+, 解得:272y =-; 故答案为:272-; (2)∵(a ,b )是“相伴数对”, ∴2323a b a b ++=+, 解得:94b a =-; 故答案为:94a -. 【点睛】本题考查了一元一次方程和二元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义,并运用.16.【分析】根据平行于轴的直线上的点的纵坐标相同列出方程求解即可【详解】∵点A ()B (4)直线AB ∥x 轴∴解得故答案为:【点睛】本题考查了坐标与图形性质熟记平行于轴的直线上的点的纵坐标相同是解题的关键 解析:2-【分析】根据平行于x 轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】∵点A (2m +,3-),B (4,1m -),直线AB ∥x 轴,∴13m -=-,解得2m =-.故答案为:2-.【点睛】本题考查了坐标与图形性质,熟记平行于x 轴的直线上的点的纵坐标相同是解题的关键. 17.【分析】作三角形的高线根据坐标求出BEOAOF 的长利用面积法可以得出BC•AD=32【详解】解:过B作BE⊥x轴于E过C作CF⊥y轴于F∵B(m3)∴BE=3∵A(40)∴AO=4∵C(n-5)∴O解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.18.2【分析】首先通过对和大小的估算可得满足﹣<x<的所有整数进而对其求和可得答案【详解】解:∵﹣2<﹣<﹣12<<3∴满足﹣<x<的所有整数有﹣1012∴﹣1+0+1+2=2故答案为:2【点睛】本题主解析:2【分析】x的所有整数,进而对其求和可得答案.【详解】解:∵﹣21,2<3,∴<x的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【点睛】本题主要考查无理数大小的估算,比较简单,正确理解是解题的关键.19.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB=90°+50°=140°,∴∠AOD=140°,∵OF平分∠AOD,∠AOD=70°,∴∠FOD=12故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.20.6【分析】分别解出两不等式的解集再求其公共解然后求得整数解进行相乘即可【详解】解:由①得;由②得∴不等式组的解集为∴不等式组的解集中所有整数解有:23∴故答案为:6【点睛】此题考查了一元一次不等式组解析:6【分析】分别解出两不等式的解集,再求其公共解,然后求得整数解进行相乘即可.【详解】解:460930->⎧⎨-≥⎩①②x x 由①得32x >; 由②得3x ≤ ∴不等式组的解集为332x <≤, ∴不等式组的解集中所有整数解有:2,3,∴23=6⨯ ,故答案为:6.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、解答题21.(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.22.(1)购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)该商店共有6种进货方案【分析】(1)设购进甲种纪念品每件需x 元,购进乙种纪念品每件需y 元,根据“若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进乙种纪念品m 件,则购进甲种纪念品(70−m )件,根据“购进乙种纪念品的数量不少于40件,且用于购买这70件纪念品的资金不能超过5750元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出结论.【详解】解:(1)设购进甲种纪念品每件需x 元,购进乙种纪念品每件需y 元,依题意,得:2340035650x y x y +=⎧⎨+=⎩, 解得:50100x y =⎧⎨=⎩. 答:购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)设购进乙种纪念品m 件,则购进甲种纪念品(70﹣m )件,依题意,得:4050(70)1005750m m m ≥⎧⎨-+≤⎩, 解得:40≤m ≤45,又∵m 为正整数,∴m 可以为40,41,42,43,44,45,∴该商店共有6种进货方案.【点睛】本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.31x y =⎧⎨=-⎩【分析】利用加减消元法求解即可.【详解】3211(1)21(2)x y x y -=⎧⎨+=⎩, (1)+(2),得4x =12,解得:x =3.将x =3代入(2),得9﹣2y =11,解得y =﹣1.所以方程组的解是:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S △BCD =12×4×4+12×4×4=16. 【点睛】 此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.25.(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.26.【感知】110︒;【探究】(1)CPD αβ∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.【分析】根据平行线性质知两直线平行同旁内角互补可以求出,∠APQ 和∠CPQ ,探究(1)作//PQ BC ,根据两直线平行内错角相等结合等量代换即可得出结论;(2)分类讨论当P 在AM 上或OB 上时两种情况,分别作平行线结合两直线平行内错角相等进行求证即可.【详解】解:过点P 作直线//PQ AB ,∵//AB CD ,∴//PQ CD .∴180PAB APQ ∠+∠=︒,180QPC PCD ∠+∠=︒,∵130PAB ∠=︒,120PCD ∠=︒,∴50APQ ∠=︒,60CPQ ∠=︒,∴5060110APC ∠=︒+︒=︒.∴APC ∠的度数为110︒.探究(1)CPD αβ∠=∠+∠.如图②:作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴DP C Q PD CPQ αβ∠+∠=∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.如图③:当P 在AM 上时,作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴CP C Q PD DPQ βα∠-∠=∠=∠-∠;当P 在OB 上时,同理:CPD αβ∠=∠-∠.综上所述,CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等,同旁内角互补等结合等量代换进行证明,做辅助线进行转化是关键.。

【浙教版】初一数学下期末第一次模拟试卷(带答案)(1)

【浙教版】初一数学下期末第一次模拟试卷(带答案)(1)

一、选择题1.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%2.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5183.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是()A.七年(2)班肯定会输掉这场比赛B.七年(1)班肯定会赢得这场比赛C.若比赛10次,则七年(1)班会赢得8次D.七年(2)班也有可能会赢得这场比赛4.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称5.“最美佳木斯”五个字中,是轴对称图形的有()A.1个B.2个C.3个D.4个6.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是()A.①B.②C.③D.④的高的是()7.下面四个图形中,线段AD是ABCA .B .C .D .8.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF = 9.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 10.下列说法不正确的是( )A .表格可以准确的表示两个变量的数值关系B .图象能直观的反应两个变量之间的数量关系C .关系式是表示两个变量之间关系的唯一方法D .当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应11.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°12.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a二、填空题13.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是_________.14.香洲区某所中学下午安排三节课,分别是数学、体育、物理,把数学课安排在第一节课的概率为____.15.如图,将一张长方形的纸片沿折痕EF 翻折,使点B 、C 分别落在点M 、N 的位置,且∠AFM =12∠EFM ,则∠AFM =_____°.16.如图所示,AOB ∠内一点P ,1P ,2P 分别是P 关于OA ,OB 的对称点,12PP 交OA于点M ,交OB 于点N ,若125cm PP =,则PMN 的周长是__________.17.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.18.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.19.如图,这是购物车的侧面示意图,扶手AB 与车底CD 平行,1100,250∠=︒∠=︒,则3∠的度数是_________.20.已知:2m a =,3n a =,则2n m a -=______.三、解答题21.(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:根据图表中提供的信息解答下列问题:(1)统计表中的a = _ ,b= _ ,c= _ ;(2)在扇形统计图中,A 类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO )设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22.如图,正方形网格中每个小正方形的边长为1,网格中有一个△AB C .(1)请直接写出△ABC 的面积为__________;(2)利用方格找出点A 、B 、C 关于直线MN 的对称点D 、E 、F ,并顺次连接D 、E 、F 三点;(3)若点P 是直线MN 上的一个动点,则PC +PA 的最小值为_________.23.(1)如图1,已知OAB 中,OA OB =,90AOB ∠=︒,直线l 经过点O ,BC ⊥直线l ,AD ⊥ 直线l ,垂足分别为点C ,D .依题意补全图l ,并写出线段BC ,AD ,CD 之间的数量关系为______;(2)如图2,将(1)中的条件改为:在OAB 中,OA OB =,C ,O ,D 三点都在直线l 上,并且有BCO ODA BOA ∠=∠=∠,请问(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,在ABC 中,AB AC =,90CAB ∠=︒,点A 的坐标为(0,1),点C 的坐标为()3,2,请直接写出点B 的坐标.24.某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?25.如图,∠AGF =∠ABC ,∠1+∠2=180°,(1)求证;BF ∥DE(2)如果DE 垂直于AC ,∠2=150°,求∠AFG 的度数.26.计算(1)342442··()(2)a a a a a ++- (2)22(2)(2)(2)8a b a b a b b -+--+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A 、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;B 、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;C 、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D 、正确.故选:D .【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.2.A解析:A【解析】【分析】根据概率的定义对各选项进行逐一分析即可.【详解】解:A 、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确; B 、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点睛】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.3.D解析:D【分析】根据概率的意义和题意分析“获胜的机会是80%”的意义,逐项作出判断即可求解.【详解】解:80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.七年(1)获胜的机会是80%,七年级(1)班有可能会赢得比赛,也有可能输掉比赛,只不过获胜的可能性大,而七年(2)班有可能会赢得比赛,也有可能输掉比赛,,只不过获胜的可能性小,故A、B、C选项均不正确,只有D选项符合题意.故选:D.【点睛】本题考查了对概率的理解,正确理解概率的意义是解题关键.4.C解析:C【分析】根据轴对称的性质和定义,对选项进行一一分析,选择正确答案.【详解】A、成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,符合轴对称的定义,故正确;B、关于某条直线对称的两个图形全等,符合轴对称的定义,故正确;C、全等的三角形一定关于某条直线对称,由于位置关系不确定,不一定关于某条直线对称,故错误;D、若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称,符合轴对称的定义,故正确.故选:C.【点睛】本题考查了轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.5.B解析:B【分析】根据轴对称图形的概念解答即可.【详解】解:“最美佳木斯”五个字中,是轴对称图形的是“美”、“木”,共2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格,剩下的一个即为所求.【详解】如图所示:从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,使黑色部分成为轴对称图形,这样的白色小方格有:①,②,③,方格④不可以.故选:D.【点睛】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.7.D解析:D【分析】根据三角形高的定义进行判断.【详解】解:线段AD是△ABC的高,则过点A作对边BC的垂线,则垂线段AD为△ABC的高.选项A、B、C错误,故选:D.【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.C解析:C【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A、∵AB∥DE,∴∠ABC=∠DEC,∴根据ASA即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意; C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意;故选:C .【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键; 9.A解析:A【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.10.C解析:C【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确,故选C.11.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//∵直线m//n,//l m,∴//l n,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.12.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.二、填空题13.【分析】让白球的个数除以球的总数即为摸到白球的概率【详解】解:共有球3+2=5个白球有2个因此摸出的球是白球的概率为:故答案为:【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的 解析:25 【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:共有球3+2=5个,白球有2个,因此摸出的球是白球的概率为:25. 故答案为:25. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 14.【解析】试题分析:根据随机事件概率大小的求法找准两点:①符合条件的情况数目②全部情况的总数二者的比值就是其发生的概率的大小解:把数学课安排在第一节课的概率为故答案为考点:概率公式解析:【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解:把数学课安排在第一节课的概率为,故答案为考点:概率公式.15.36【分析】由折叠的性质可得∠EFM =∠EFB 设∠AMF =x°由∠AFM =∠EFM 可得∠EFM =∠BFE =2x°然后根据平角的定义列方程求出x 的值即可得答案【详解】∵将一张长方形的纸片沿折痕EF 翻折解析:36【分析】由折叠的性质可得∠EFM =∠EFB ,设∠AMF =x°,由∠AFM =12∠EFM 可得∠EFM =∠BFE =2x°,然后根据平角的定义列方程求出x 的值即可得答案.【详解】∵将一张长方形的纸片沿折痕EF 翻折,使点B 、C 分别落在点M 、N 的位置, ∴∠EFM =∠EFB ,设∠AFM =x°,∵∠AFM =12∠EFM , ∴∠EFM =∠BFE =2x°,∴x°+2x°+2x°=180°,解得:x =36,∴∠AFM =36°.故答案为:36【点睛】此题考查了折叠的性质与平角的定义.解题的关键是注意方程思想与数形结合思想的应用.16.5cm 【分析】根据轴对称的性质可得MP1=MPNP2=NP 可得MP1+NP2+MN=MP+MN+NP=P1P2即可得答案【详解】∵分别是P 关于OAOB 的对称点∴MP1=MPNP2=NP ∵P1P2=5解析:5cm【分析】根据轴对称的性质可得MP 1=MP ,NP 2=NP ,可得MP 1+NP 2+MN=MP+MN+NP=P 1P 2,即可得答案.【详解】∵1P ,2P 分别是P 关于OA ,OB 的对称点,∴MP 1=MP ,NP 2=NP ,∵P 1P 2=5cm ,∴MP 1+NP 2+MN=MP+MN+NP=P 1P 2=5,∴△PMN 的周长为5cm ,故答案为:5cm【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.17.1或7【分析】分两种情况进行讨论根据题意得出BP=2t=2或AP=16-2t=2即可求得结果【详解】因为AB =CD 若∠ABP =∠DCE =90°BP =CE =2根据SAS 证得△ABP ≌△DCE 由题意得:解析:1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB =CD ,若∠ABP =∠DCE =90°,BP =CE =2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP =2t =2,所以t =1,因为AB =CD ,若∠BAP =∠DCE =90°,AP =CE =2,根据SAS 证得△BAP ≌△DCE , 由题意得:AP =16﹣2t =2,解得t =7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.18.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中 解析:时间 温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.19.【分析】先根据平行线的性质可得再根据角的和差即可得【详解】扶手与车底平行又解得故答案为:【点睛】本题考查了平行线的性质角的和差熟练掌握平行线的性质是解题关键解析:50︒【分析】先根据平行线的性质可得1100ADC ∠=∠=︒,再根据角的和差即可得.扶手AB 与车底CD 平行,1100∠=︒,1100ADC ∴∠=∠=︒,又,02253ADC ∠+∠∠∠==︒,350010∴+∠=︒︒,解得350∠=︒,故答案为:50︒.【点睛】本题考查了平行线的性质、角的和差,熟练掌握平行线的性质是解题关键.20.5【分析】先把原式变形为再把已知的式子代入计算即可【详解】解:故答案为:45【点睛】本题考查了幂的运算性质属于常考题型熟练掌握幂的运算法则是解题的关键解析:5【分析】先把原式变形为()2nm a a ÷,再把已知的式子代入计算即可. 【详解】解:()222232 4.5n m n m nm a a a a a -=÷=÷=÷=.故答案为:4.5.【点睛】本题考查了幂的运算性质,属于常考题型,熟练掌握幂的运算法则是解题的关键. 三、解答题21.(1)5,0.20,0.24;(2)72°;(3)60.【解析】试题分析:(1)根据总的监测点个数为25,即可求出第5个组别的频率;已知各个组别的频数,即可求出a 的值,继而求出该组别的频数;(2)A 类所对应的圆心角=A 类的频率×360°;(3)PM2.5日平均浓度值符合安全值的城市的个数=100×PM2.5日平均浓度值符合安全值的城市的频率.试题(1)a=25﹣(2+3+5+6+4)=5,b=525=0.20,c=625=0.24;故答案为:5,0.20,0.24; (2)A 类所对应的圆心角=(0.08+0.12)×360°=72°;故答案为:72°; (3)∵100×(0.08+0.12+0.20+0.20)=60个,∴PM2.5日平均浓度值符合安全值的城市的个数约为60个.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.22.(1)4;(2)见解析;(3)6.(1)直接利用直角三角形面积求法进而得出答案;(2)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(3)利用轴对称求最短路线的方法得出答案.【详解】解:(1)△ABC 的面积为:12×2×4=4; 故答案为:4;(2)如图所示:△EDF 即为所求;(3)PC+PA 的最小值为:PA+PC=DC=6.故答案为:6.【点睛】此题主要考查了应用设计与作图,正确得出对应点位置是解题关键.23.(1)补全如图所示见解析;CD BC AD =+;(2)成立,证明见解析;(3)点B 的坐标为()1,2-.【分析】(1)依题意补全图,易证△AOD ≌△OBC ,则有AD =CO ,OD =BC ,从而可得CD BC AD =+;(2)利用三角形内角和易证23∠∠=,再证明BCO ODA ≌,同(1)即可证明结论;(3)过B 、C 两点作y 轴垂线,构造如(1)图形,即可得三角形全等,再将线段关系即可求出点B 坐标.【详解】(1)补全图1如图所示,CD BC AD =+;证明:∵90AOB ∠=︒,BC ⊥直线l ,AD ⊥ 直线l ,∴∠BCO =∠ODA =90°,∴∠BOC +∠OBC =90°,又∵90AOB ∠=︒,∴∠BOC +∠AOD =90°,∴∠OBC =∠AOD ,在△AOD 和△OBC 中BCO ODA OBC AOD BO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△OBC (AAS )∴AD =CO ,OD =BC ,∵CD OD CO =+,∴CD BC AD =+.(2)成立.证明:如图,∵12180BOA ∠+∠=︒-∠,13180BOA ∠+∠=︒-∠,BOA BCO ∠=∠∴23∠∠=在BCO 和ODA 中32BCO ODA BO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BCO ODA ≌(AAS )∴BC OD =,CO AD =∴CD CO OD AD BC =+=+(3)点B 的坐标为()1,2-.过程如下:过B 、C 两点作y 轴垂线,垂足分别为M 、N ,同理(1)可得,CN =AM ,AN =MB ,∵点A 的坐标为(0,1),点C 的坐标为()3,2,∴CN =AM =3,ON =2,OA =1,∴MB =AN =ON -OA =1,OM =AM -OA =2,∵点B 在第四象限,∴点B 坐标为:()1,2-.【点睛】主要考查了等腰直角三角形的性质,全等三角形的判定和性质、图形与坐标变换,构造出全等三角形是解本题的关键.24.(1)水不足5吨时,每吨收费2(元);超过5吨部分每吨收费3.5(元).(2)每月用水3.5吨应交水费7(元);交17元水费,则用水7(吨).【分析】(1)因为此统计图是两条直线;从图中看出每户使用不足5吨时,每吨收费10÷5=2元,超过5吨时,每吨收费(20.5-10)÷(8-5)=3.5元;(2)居民每月用水3.5吨,应按照每吨2元的标准交水费;若某月交水费17元,说明此用户的用水量超过5吨,由此先减去5吨的钱数,再用剩下的钱数除以3.5即可.【详解】(1)每户使用不足5吨时,每吨收费:10÷5=2(元),超过5吨时,每吨收费:(20.5-10)÷(8-5)=3.5(元)(2)3.5×2=7(元)(17-10)÷3.5=2(吨)5+2=7(吨)答:某户居民每月用水3.5吨,应交水费7元;若某月交水费17元,该户居民用水7吨.【点睛】关键是分析统计图,得出两个不同的直线表示的意义,再结合问题进行解答.25.(1)证明见解析;(2)∠AFG=60°.【分析】(1)根据平行线的判定定理,由∠AGF =∠ABC ,可判断GF ∥BC ,由平行线的性质可得∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°,即可判断出BF ∥DE ;(2)由BF ∥DE ,BF ⊥AC 得到DE ⊥AC ,由∠2=150°得出∠1=30°,从而得出结论.【详解】(1)BF ∥DE ,理由如下:∵∠AGF =∠ABC ,∴GF ∥BC ,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF ∥DE ;(2)∵BF ∥DE ,BF ⊥AC ,∴DE ⊥AC ,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG =90°﹣30°=60°.【点睛】本题考查了平行线的判定与性质.解题的关键是熟练掌握平行线的判定与性质. 26.(1)86a ;(2)4ab【分析】(1)计算同底数幂的乘法,幂的乘方,积的乘方,再合并同类项即可;(2)利用乘法公式展开、去括号变号,再合并同类项即可.【详解】解:(1)342442··()(2)a a a a a ++- , =8884a a a ++ ,= 86a ;(2)22(2)(2)(2)8a b a b a b b -+--+,=()2222244+48a b a ab b b ---+, =222224448a b a ab b b --+-+,=4ab .【点睛】本题考查整式加减乘混合运算,掌握同底数幂的乘法法则,幂的乘方法则,积的乘方法则,平方差公式,完全平方公式,同类项以及合并同类项法则是解题关键.。

【北师大版】初一数学下期末第一次模拟试题及答案(1)

【北师大版】初一数学下期末第一次模拟试题及答案(1)

一、选择题1.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )A .x <1B .x >1C .x <0D .x >02.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩ B .253x y x y -=⎧⎨+=⎩ C .32x y x y +=⎧⎨-=⎩ D .2536x y x y -=⎧⎨+=⎩3.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①②B .①③C .②③D .①②③ 4.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .43x y =⎧⎨=-⎩ D .23x y =-⎧⎨=⎩5.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23- B .23 C .16- D .16 6.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )C .E7,D6D .E6,D77.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 8.在 1.4144-,2-,227,3π,23-,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4 9.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 10.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m 11.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2 12.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 二、填空题13.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________. 14.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ . 15.如果方程组25x bx ay =⎧⎨+=⎩的解与方程组41y by ax =⎧⎨+=⎩的解相同,则+a b 的值为______.16.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.17.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________18.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.19.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 三、解答题21.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩. 23.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.计算:31 891224-++-+.26.如图,AD平分∠BAC,点E,F分别在边BC,AB上,且∠BFE=∠DAC,延长EF,CA 交于点G,求证:∠G=∠AFG.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.2.D解析:D【解析】把31xy=⎧⎨=⎩代入选项A第2个方程24x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项B第2个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项C第1个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项D两个方程均成立,故正确;故选D. 3.B解析:B 【分析】把a=0代入方程组,可求得方程组的解,把2xy=⎧⎨=⎩代入方程组,可得a=1,可判断②;把a=﹣1代入方程可求得a的值为2,可判断③;可得出答案.【详解】解:①当a=0时,原方程组为23x yx y-=⎧⎨+=⎩,解得11xy=-⎧⎨=⎩,②把2xy=⎧⎨=⎩代入方程组得到a=1,不符合题意.③当a=﹣1时,原方程组为242x yx y-=⎧⎨+=-⎩,解得2xy=⎧⎨=-⎩,当2xy=⎧⎨=-⎩时,代入方程组可求得a=﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.4.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125 x yx y+=⎧⎨+=⎩①②②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43 xy=⎧⎨=-⎩,故选:C.【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.5.A解析:A【分析】根据方程的解满足方程,课的关于k的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-2 3 ,故选A.【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.6.C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C.【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.7.B解析:B【分析】根据横坐标为负,纵坐标为正的点在第二象限解答即可.【详解】解:∵点A(-π,4)横坐标为负,纵坐标为正,∴应在第二象限.故选:B .【点睛】本题主要考查了坐标的特点,解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.D解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;, 3π,2-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【分析】根据平移的性质可得DF=AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm ,∴50px=2cm ,400px=16cm ,∵△ABE 向右平移2cm 得到△DCF ,∴DF=AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.D解析:D【分析】根据点P(m,1m-)在第四象限列出关于m的不等式组,解之可得.【详解】∵点P(m,1m-)在第四象限,∴10mm>⎧⎨-<⎩,解得m>1,故选:D.【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.11.C解析:C【解析】试题分析:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选C.考点:解一元一次不等式;一元一次方程的解.12.C解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B、在实数7.5-,π-,2中,有3个有理数,2个无理数,是真命题;C、在平面直角坐标系中,点P(2a-1,a+7)在x轴上,a+7=0,a=-7,则点P的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.14.【分析】根据加减消元法解二元一次方程组即可【详解】②+①得∴把代入①得:∴原方程组的解为故答案为:【点睛】本题考查了解二元一次方程组解决本题的关键是掌握二元一次方程组的解法解析:12x y =⎧⎨=⎩【分析】根据加减消元法解二元一次方程组即可.【详解】31x y x y +=⎧⎨-=-⎩①②, ②+①得,22x =,∴1x =,把1x =代入①,得:2y =,∴原方程组的解为12x y =⎧⎨=⎩. 故答案为:12x y =⎧⎨=⎩. 【点睛】 本题考查了解二元一次方程组,解决本题的关键是掌握二元一次方程组的解法. 15.1【分析】把代入方程组即可得到一个关于ab 的方程组即可求解【详解】解:由题意可知:为的解将代入得①×2-②得将代入①得故答案为:1【点睛】本题考查了二元一次方程组的解的定义理解定义是关键解析:1【分析】把24x y =⎧⎨=⎩ 代入方程组51bx ay by ax +=⎧⎨+=⎩,即可得到一个关于a ,b 的方程组,即可求解. 【详解】解:由题意可知:24x y =⎧⎨=⎩为51bx ay by ax +=⎧⎨+=⎩的解, ∴将2x =,4y =代入得,245421b a b a +=⎧⎨+=⎩①②, ①×2-②,得69a =,32a =, 将32a =代入①得,32452b +⨯=,12b =, 31122a b ⎛⎫+=+-= ⎪⎝⎭,故答案为:1.【点睛】本题考查了二元一次方程组的解的定义,理解定义是关键.16.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.17.1或;【分析】点坐标到x 轴的距离是纵坐标的绝对值到y 轴的距离是横坐标的绝对值根据它们相等列式求出a 的值【详解】解:点到x 轴的距离是到y 轴的距离是列式:解得符合题意解得符合题意故答案是:1或【点睛】本 解析:1或79-; 【分析】点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +, 列式:6235a a --=+, 6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79-. 【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法. 18.【分析】根据求出a 的值根据3a+b-1的平方根是±4求出b 的值根据c 是的整数部分求出c 的值把求得的值代入a+b+3c 然后求出入a+b+3c 的平方根即可【详解】∵∴解得:∵的平方根是∴解得:∵是的整数解析:5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键. 19.60°【分析】设∠OCA=a ∠AOC=x 利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a ∠AOC=x 已知CB ∥OA ∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB ∥OA ,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA ,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.20.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.三、解答题21.(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 22.(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②,解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 23.(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱.【分析】(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可.【详解】解:(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人.根据题意,得 45x =60(x−4)−30,解得:x =18.答:只租45座的客车,需要18辆车;(2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆.根据题意得:45x +60y =810.∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3.2500×2+3000×12=41000(元)2500×6+3000×9=42000(元)2500×10+3000×6=43000(元)2500×14+3000×3=44000(元)∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱.【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.24.下一步“象”可能走到的位置的坐标为()0,2-、()4,2--【分析】由于中国象棋中的“象”,在图中的坐标为(−2,−4),而根据中国象棋中的“象”的走法可以确定下一步它可能走到的位置的坐标.【详解】解:建立坐标系,如图:∵中国象棋中的“象”,在图中的坐标为()2,4--,且象走田字,∴下一步它可能走到的位置的坐标为()0,2-、()4,2--.【点睛】此题把数学问题和实际生活结合起来,既考查了生活中的知识,也考查了利用数学知识解决实际问题的能力,要求学生生活经验比较丰富才能很好完成这些题目.25.12+【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】 本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 26.见解析【分析】先利用角平分线的定义得到∠BAD =∠DAC ,结合已知条件∠BFE =∠DAC ,可得∠BFE =∠BAD ,根据平行线的判定可证EG ∥AD ,再由平行线的性质得∠G =∠DAC ,∠AFG =∠BAD ,则利用等量代换即可证得结论.【详解】证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFE =∠DAC ,∴∠BFE =∠BAD ,∴EG ∥AD ,∴∠G =∠DAC ,∠AFG =∠BAD ,∴∠G =∠AFG .【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.。

2021-2022年七年级数学下期末第一次模拟试卷(含答案)(1)

2021-2022年七年级数学下期末第一次模拟试卷(含答案)(1)

一、选择题1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.12B.13C.23D.162.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面()A.一定是正面B.是正面的可能性较大C.一定是反面D.是正面或反面的可能性一样大4.下列四个图案中,不是轴对称图形的是()A.B.C.D.5.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A.1.5cm B.2cm C.2.5cm D.3cm6.下列图形中是轴对称图形的个数为()A.2个B.3个C.4个D.5个7.已知如图,AB=AE,只需再加一个条件就能证明△ABC≌△AED,下列选项是所加条件,请判断哪一个不能判断△ABC≌△AED()A.∠B=∠E B.AC=AD C.∠ADE=∠ACB D.BC=DE8.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 9.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS10.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h (里面吗)与燃烧时间t (时) 之间的变化情况的图象是( )A .B .C .D . 11.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角12.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个二、填空题13.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币 1000 次,第 1000 次正面向上,其中为随机事件的有_____个.14.下列说法:①一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点.②可能性很小的事件在一次实验中也有可能发生.③天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨.④抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等.正确的是________(填序号)15.如图,三角形纸片中,7cm AB =,5cm =BC ,4cm AC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边的点E 处,折痕为BD ,则AED 的周长为______.16.如图,∠AOB =30°,C 是BO 上的一点,CO =4,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC +PD 的最小值为_____,当PC +PD 的值取最小值时,则△OPC 的面积为_____.17.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.18.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:数量(千克) 0.5 1 1.5 2 2.5 3 3.5… 售价(元) 1.5 3 4.5 6 7.5 9 10.5 …上表反映了________个变量之间的关系,其中,自变量是________;因变量是________. 19.如图,AB//CD , 15,25A C ︒︒∠=∠=则M ∠=______20.如果2(1)(2)x x mx m --+的乘积中不含2x 项,则m 的值为____.三、解答题21.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是310. (1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22.如图,在平面直角坐标系中()3,2A -、()4,3B --、()1,1C --.(1)在图中作出ABC ∆关于y 轴对称的图形111A B C ∆;(2)写出1A 、1B 、1C 的坐标,分别是1A (____,_____)、1B (____,_____)、1C (____,_____);(3)ABC ∆的面积是______________.23.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .24.已知x 为实数.y 、z 与x 的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x 为何值时,y=430?(2)当x 为何值时,y=z ?x y z… … …3 30×3+70 2×1×84 30×4+70 2×2×95 30×5+70 2×3×106 30×6+70 2×4×11… … …25.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,2AOD BOD =∠∠.(1)求DOE ∠的度数;(2)求BOF ∠的度数.26.如图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为__________;(2)观察图②,三个代数式22(),()m n m n +-,mn 之间的等量关系是___________.(3)若6, 2.75x y xy +=-=,求x y -的值.(4)观察图③,你能得到怎样的等式呢?(5)试画出一个几何图形,使它的面积能表示()(3)m n m n ++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163,故选B.2.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【解析】【分析】根据实际情况可知,硬币有2面,正面和反面;投掷一次,正面与反面的可能性是一样的,据此解答.【详解】解:小明连续抛一枚硬币,前5次都是正面朝上,抛第6次正面朝上和反面朝上的可能性一样大.故选D.【点睛】本题考查的是可能性的运用,较为简单.4.C解析:C根据轴对称的概念对各选项分析判断即可求解.【详解】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B解析:B【解析】【分析】设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【点睛】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.6.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】解:第1个是轴对称图形;第2个不是轴对称图形;第3个是轴对称图形;第4个是轴对称图形;第5个不是轴对称图形.故选:B.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.D解析:D【分析】根据全等三角形的判定条件结合AE=AB 、∠A=∠A 逐项判定即可.【详解】解:∵AE=AB 、∠A=∠A∴A 、补充∠B=∠E ,根据ASA 可证明△ABC ≌△AED ,不符合题意;B 、补充AC=AD ,根据SAS 可证明△ABC ≌△AED ,不符合题意;C 、补充∠ADE=∠ACB ,根据AAS 可证明△ABC ≌△AED ,不符合题意;D 、补充BC=DE ,为SSA 不能证明△ABC ≌△AED ,符合题意.故答案为D .【点睛】本题考查了三角形全等的证明,掌握AAA 、SSA 不能判定普通三角形全等是解答本题的关键.8.C解析:C【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠, 在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键.9.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.10.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。

2021-2022年七年级数学下期末第一次模拟试题附答案(1)

2021-2022年七年级数学下期末第一次模拟试题附答案(1)

一、选择题1.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数2.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.16B.13C.12D.233.“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是4.下面4个汽车标志图案中,不是轴对称图形的是()A.B.C.D.5.下列与防疫有关的图案中不是轴对称图形的有()A.1个B.2个C.3个D.4个6.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数为()A.60°B.45°C.22.5°D.30°7.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.118.下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④⊥,在BF上找点9.如图,要测量河两岸相对的两点A、B的距离,先过点B作BF AB⊥,再取BD的中点C,连接AC并延长,与DE交点为E,此时测D,过D作DE BF△全等的依据是()得DE的长度就是AB的长度.这里判定ABC和EDCA.ASA B.SAS C.SSS D.AAS10.正常人的体温一般在37℃左右,在不同时刻体温也在变化.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是().A.清晨5时体温最低B.下午5时体温最高≤≤C.这一天中小明体温T(单位:℃)的范围是36.5T37.5D.从5时至24时,小明体温一直在升高11.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.北偏西47B.南偏东47C.北偏东43D.南偏西4312.已知235m n +=,则48m n ⋅=( )A .16B .25C .32D .64二、填空题13.一个均匀的正方体,6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是____.14.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___.15.如图,在△ABC 中,AB=AC=8cm ,BC=5cm .D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点A′的位置,点A′在△ABC 的外部,则阴影部分图形的周长为________cm .16.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.17.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).18.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.19.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠=______________________.20.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1002,1012,1022,…,1992,2002,若1002S =,用含S 的式子表示这组数据的和是__________.三、解答题21.某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题.(1)在扇形统计图中,a 的值是 ,成绩为10分所在扇形的圆心角是 度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.22.如图,三角形A′B′C′是三角形ABC 经过某种变换后得到的图形.(1)分别写出点A 和点A′,点B 和点B′,点C 和点C′的坐标;(2)观察点A 和点A ′,点B 和点B′,点C 和点C′的坐标,用文字语言描述它们的坐标之间的关系 ; (3)三角形ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点M′,则点M′的坐标为 .23.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,2.5cm AD =,求1cm BE =,求DE 的长.24.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度 乙的速度(大于、等于、小于);(3)6时表示 ;(4)路程为150km ,甲行驶了 小时,乙行驶了 小时;(5)9时甲在乙的 (前面、后面、相同位置);(6)乙比甲先走了3小时,对吗? .25.如图,在三角形ABC 中,D 、E 、G 分别是AC 、AB 、BC 上的点,CF 是ACB ∠的平分线,已知3ACB ∠=∠,45180︒∠+∠=.(1)图中1∠与3∠是一对______,2∠与5∠是一对______,3∠与4∠是一对______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?并说明理由.(3)若CF AB ⊥,垂足为F ,56︒∠=A ,则ACB ∠的度数为______,ADE ∠的度数为______.26.(1)填空:①32(2)(5)x xy ⋅-=____________;②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A 、明天会下雨是随机事件,故此选项错误;B 、x 是实数,x 2<0,是不可能事件,故此选项错误;C 、两个奇数之和为偶数,是必然事件,正确;D 、异号两数相加,和为负数是随机事件,故此选项错误.故选C .【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.2.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形, 则构成轴对称图形的概率为:3162= 故选:C .【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键. 3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵5+1<12,∴用长分别为5cm、12cm、1cm的三条线段不能构成三角形,则“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是不可能事件,故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.D解析:D【分析】根据轴对称图形的概念求解.注意找到对称轴可很快的判断是否是轴对称图形.【详解】解:A、是轴对称图形,故不符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、不是轴对称图形,故符合题意.故选:D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】解:由轴对称图形的概念可得:第一、二个图案是轴对称图形,第三、四个图案不是轴对称图形,故选:B.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.B解析:B【分析】根据轴对称的性质,即可求出∠AOB的度数.【详解】∵折叠纸飞机的过程,对折了3次,∴180°÷2÷2÷2=22.5°,∴机翼展开在同一平面时,∠AOB=22.5°×2=45°,故选B.【点睛】本题主要考查轴对称的性质,理解通过折叠,把原来的角平分,是解题的关键.7.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.8.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.9.A解析:A【分析】根据条件可得到BC=CD,∠ABD=∠EDC,∠ACB=∠DCE,可得出所用的判定方法.【详解】解:∵C为BD中点,∴BC=CD,∵AB⊥BF,DE⊥BF,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE ,∴在△ABC 和△EDC 中,满足ASA 的判定方法,故选:A .【点睛】本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .10.D解析:D【解析】观察图象可知:A. 清晨5时体温最低,正确;B. 下午5时体温最高,正确;C. 这一天中小明体温T (单位:℃)的范围是36.537.5T ≤≤,正确;D. 从5时至17时,小明体温一直在升高,故D 选项错误,故选D.11.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF ∥DE ,∴∠ABE =∠FAB =43°,∵AB ⊥BC ,∴∠ABC =90°,∴∠CBD =180°-∠ABC -∠ABE =47°,∴C 地在B 地的北偏西47°的方向上.故选:A .【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.12.C解析:C【分析】根据同底数幂的乘法、幂的乘方,即可解答.【详解】解:2323548222232m n m n m n +⋅=⋅===,故选:C .【点睛】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.二、填空题13.【分析】根据简单事件的概率公式计算解答【详解】6个面中有1个面是黄色的2个面是红色的3个面是绿色的任意掷一次该正方体则绿色面朝上的可能性是故答案为:【点睛】此题考查简单事件的概率理解事件中绿色发生的 解析:12 【分析】 根据简单事件的概率公式计算解答.【详解】6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是3162=, 故答案为:12. 【点睛】此题考查简单事件的概率,理解事件中绿色发生的可能性大小是解题的关键. 14.【解析】试题解析:14【解析】试题根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S 1=S 2,则阴影部分的面积占14, 故飞镖落在阴影区域的概率为14;15.21【分析】由折叠性质可知△ADE ≌△A′DE 可得对应边相等然后将阴影部分图形周长BC+BD+AD′+AE′+CE 转化为BC+AB+AC 即可求解【详解】解:∵AB=AC=8∴△ABC 是等腰三角形又由解析:21【分析】由折叠性质可知,△ADE ≌△A′DE ,可得对应边相等,然后将阴影部分图形周长BC+BD+AD′+AE′+CE 转化为BC+AB+AC 即可求解.【详解】解:∵AB=AC=8,∴△ABC 是等腰三角形,又由折叠性质可知AD=AD′,AE=AE′,∴阴影部分图形的周长为,BC+BD+AD′+AE′+CE ,=BC+BD+AD+CE+AE ,=BC+AB+AC ,=5+8+8,=21,故答案为:21.【点睛】本题主要考查轴对称折叠性质,正确理轴对称折叠性质是本题的解题关键.16.65【解析】【分析】根据翻折的定义可以得到各角之间的关系从而可以得到∠AEF+∠BEG 的度数从而可以解答本题【详解】解:由题意可得∠AEA=2∠AEF ∠BEB=2∠BEG ∴(∠AEA+∠BEB )∵∠解析:65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件.17.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中 解析:时间 温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.19.34°【分析】先求出∠AOD 的度数再求∠DOE 的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE ⊥AB ∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD 的度数,再求∠DOE 的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.故答案为:34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.20.【分析】根据已知条件和2100=S将按一定规律排列的一组数:210021012102…21992200求和即可用含S的式子表示这组数据的和【详解】解:∵2100=S∴2100+2101+2102+…解析:22S S【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【详解】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100-2+2100)=S(2S-1)=2S2-S.故答案为:2S2-S.【点睛】本题考查了规律型-数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.三、解答题21.(1)10,216; (2)见解析;(3)7 15.【解析】【分析】(1)用8分的人数除以60可求得a的值,用360度乘以10分所占的百分比即可求得答案;(2)分别求出8分以下的女生人数、16分的女生人数,然后补全条形统计图即可;(3)先求出男生的总人数,然后确定出成绩不是10分的人数,根据概率公式进行计算即可.【详解】(1)a%=(2+4)÷60=10%,所以a=10,成绩为10分所在扇形的圆心角是360°×(1-10%-10%-20%)=216°,故答案为:10,216;(2)成绩为8分以下的人数为:60×10=6,其中女生人数为:6-2=4人,成绩为16分的人数为:60×(1-10%-10%-20%)=36,其中女生人数为:36-16=20人,所以补全条形统计图如图所示:(3)男生共有2+4+8+16=30人,其中成绩为10分的有16人,成绩不是10分的有14人,所以从该班男生中随机抽取一人,成绩不是10分的概率是147 3015.【点睛】本题考查了条形统计图与扇形统计图的综合运用,简单的概率计算,准确识图,从中找到有用的信息是解题的关键.22.解:(1)A(-2,4),A′(2,4),B(-4,2),B′(4,2),C(-1,-1),C′(1,-1);(2)横坐标互为相反数,纵坐标相等;(3)(-x,y)【分析】(1)根据点的位置写出坐标即可;(2)探究规律,利用规律解决问题即可;(3)利用(2)中结论解决问题即可.【详解】解:(1)A(-2,4),A′(2,4),B(-4,2),B′(4,2),C(-1,-1),C′(1,-1);(2)观察可知:横坐标互为相反数,纵坐标相等故答案为:横坐标互为相反数,纵坐标相等;(3)三角形ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点M则点'M的坐标为(-x,y).故答案为:(-x,y).【点睛】本题考查几何变换类型,坐标与图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23. 1.5cm DE =.【分析】根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证明△BCE ≌△CAD ;根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE−CD ,即可解答.【详解】AD CE ⊥,BE CE ⊥90ADC CEB ∴∠=∠=︒90BCE CBE ∴∠+∠=︒又90ACB ∠=︒90BCE ACD ∴∠+∠=︒CBE ACD ∴=∠在ACD △和CBE △中ADC CEB ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ∴△≌△CD BE ∴=,AD CE =又 2.5cm AD =,1cm BE =2.5cm CE ∴=,1cm =CD2.51 1.5cm DE CE CD ∴=-=-=.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ACD CBE ∴≌的三个条件.24.(1)t ;s ;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小; (3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解:(1)函数图象反映路程随时间变化的图象,则t 是自变量,s 是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面; (6)不对,是乙比甲晚走了3小时.故答案为(1)t ;s ;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.考点:函数的图象.25.(1)同位角,同旁内角,内错角;(2)CF ∥DE ,理由见解析;(3)68°,34°【分析】(1)根据同位角,内错角,同旁内角的定义分别判断;(2)根据∠ACB =∠3得到FG ∥AC ,得到∠4=∠2,结合∠4+∠5=180°,可判断CF ∥DE ; (3)根据三角形内角和,结合∠A =56°,得到∠2,从而可得∠ACB ,再根据平行线的性质得到∠ADE =∠2.【详解】解:(1)由题意可得:1∠与3∠是一对同位角,2∠与5∠是一对同旁内角,3∠与4∠是一对内错角, 故答案为:同位角,同旁内角,内错角;(2)平行,理由是:∵∠ACB =∠3,∴FG ∥AC ,∴∠4=∠2,又∵∠4+∠5=180°,∴∠2+∠5=180°,且∠2和∠5是一对同旁内角,∴CF ∥DE ;(3)∵CF ⊥AB ,∴∠BFC =∠AFC =90°,∵∠A =56°,∴∠2=∠1=90°-56°=34°,∴∠ACB =2∠2=68°,又∵CF ∥DE ,∴∠ADE =∠2=68°×12=34°, 故答案为:68°,34°.【点睛】本题考查了平行线的判定和性质,同位角、同旁内角、内错角的定义,三角形内角和,解题的关键是掌握基本定理,逐步推导.26.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅-=328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。

初一数学下期末第一次模拟试卷及答案

初一数学下期末第一次模拟试卷及答案

初一数学下期末第一次模拟试卷及答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个2.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .603.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 4.116的平方根是( ) A .±12 B .±14 C .14 D .125.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块 6.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >7.计算2535-+-的值是( )A .-1B .1C .525-D .255-8.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .29.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm10.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)11.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <6 12.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5-- 二、填空题13.若264a =,则3a =______.14.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .16.不等式71x ->的正整数解为:______________.17.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°18.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 19.若3的整数部分是a ,小数部分是b ,则3a b -=______.20.结合下面图形列出关于未知数x ,y 的方程组为_____.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.小红同学在做作业时,遇到这样一道几何题:已知:AB ∥CD ∥EF ,∠A =110°,∠ACE =100°,过点E 作EH ⊥EF,垂足为E ,交CD 于H 点.(1)依据题意,补全图形;(2)求∠CEH 的度数.小明想了许久对于求∠CEH 的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;23.已知方程组137x y ax y a-=+⎧⎨+=--⎩中x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式221ax x a++>的解集为1x<?24.解方程组:1234311236x yx y-+⎧-=⎪⎪⎨--⎪-=⎪⎩25.如图,已知在ABC∆中,FG EB,23∠∠=,说明180EDB DBC∠+∠=︒的理由.解:∵FG EB(已知),∴_________=_____________(____________________).∵23∠∠=(已知),∴_________=_____________(____________________).∴DE BC∥(___________________).∴180EDB DBC∠+∠=︒(_________________________).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个1),3,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.3.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.4.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】∵116=14,14的平方根是12±,∴116的平方根是12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.5.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.6.D解析:D【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.7.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】解:23+-(23231-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 8.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m 的值即可.【详解】解:276359632713x y x y +=⎧⎨+=-⎩①② ②-①得36x-36y=-72则x-y=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.9.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.10.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.11.B解析:B【解析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.12.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..14.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①②由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x 的正整数解为123456故答案为12345解析:1,2,3,4,5.【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.17.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.18.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.20.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)补图见解析;(2)两直线平行,同旁内角互补,70,30,∠CEF ,两直线平行,内错角相等,60.【解析】(1)按照题中要求作出线段EH ⊥EF 于点E ,交CD 于点H 即可;(2)按照“小丽所给提示”的思路结合题中的已知条件根据“平行线的性质、垂直的定义”进行分析解答即可.【详解】解:(1)依据题意补全图形如下图所示:;(2)根据题意可得:①:两直线平行,同旁内角互补;②:70°;③:30°;④:∠CEF ;⑤:两直线平行,内错角相等;⑥:60°故答案为:两直线平行,同旁内角互补,70,30,∠CEF ,两直线平行,内错角相等,60.【点睛】“读懂小丽的思路过程,熟悉平行线的性质”是解答本题的关键.23.(1)a 的取值范围是﹣2<a≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.【解析】【分析】(1)先解方程组得342x a y a =-+⎧⎨=--⎩,再解不等式组30420a a -+≤⎧⎨--⎩;(2)由不等式的解推出210a +,再从a 的范围中确定整数值.【详解】(1)由方程组:713x y a x y a +=--⎧⎨-=+⎩,得 342x a y a =-+⎧⎨=--⎩, 因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩, 解得23a -≤.(2) 不等式221ax x a ++可化为()2121x a a ++,因为不等式的解为1x <,所以210a +,所以在23a -≤中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.24.42x y =⎧⎨=⎩【解析】【分析】本题应对两个方程进行化简,把分数化为整数,然后运用加减消元法进行运算.【详解】 解:原方程组化为:12034311236x y x y -+⎧-=⎪⎪⎨--⎪-=⎪⎩ 即4310328x y x y -⎧⎨-⎩=①=②将①×2-②×3,得x =4. 将x =4代入①,得y =2.∴原方程组的解为42x y =⎧⎨=⎩25.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】初一数学下期末第一次模拟试题及答案(1)一、选择题1.下列各式中计算正确的是()A.93=±B.2(3)3-=-C.33(3)3-=±D.3273=2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5 {15 2x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°5.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°6.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=107.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)8.已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-29.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .132°B .134°C .136°D .138°10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3211.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1) 12.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 15.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.18.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.19.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是________________________三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表. 组别成绩分组(单位:分) 频数 A 50≤x <60 40 B 60≤x <70 a C 70≤x <80 90 D 80≤x <90 b E 90≤x <100100 合计c根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?23.解方程组()()3121021132x y x y ⎧++-=⎪⎨+=-⎪⎩24.解不等式组523(1)13222x x x x +>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和. 25.如图,12180∠+∠=︒,B DEF ∠=∠,55BAC ∠=︒,求DEC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A93=,此选项错误错误,不符合题意;B2(3)3-=,此选项错误错误,不符合题意;C33(3)3-=-,此选项错误错误,不符合题意;D3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.5.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.6.A解析:A【解析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.7.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 8.B解析:B【解析】【分析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.9.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线, ∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDS A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2),∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.15.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.16.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.17.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.18.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 19.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.20.【解析】【分析】设绳索长为x 尺竿子长为y 尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy 的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:5152x yx y+⎧⎪⎨-⎪⎩==.故答案为:5152x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×60400=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.12x y =⎧⎨=-⎩. 【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】方程组整理得:321432x y x y +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:x=1, 把x=1代入①得:y=﹣2,则方程组的解为12x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.512x -<„,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①②„ 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<„,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 25.55︒【解析】【分析】只要证明AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:∵1180CDF ∠+∠=︒,12180∠+∠=︒,∴2CDF ∠=∠,∴//EF BC ,∴DEF CDE ∠=∠,∵B DEF ∠=∠,∴B CDE ∠=∠,∴//DE AB ,∴55DEC BAC ∠=∠=︒.【点睛】此题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.。

相关文档
最新文档