粒子群优化算法介绍及matlab程序

合集下载

matlab 粒子群优化算法

matlab 粒子群优化算法

粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化
算法,它模拟了鸟群或鱼群等生物群体的行为,通过个体之间的协作和信息共享来寻找问题的最优解。

在 MATLAB 中,可以使用 PSO 工具箱来实现粒子群优化算法。

以下是在 MATLAB 中使用 PSO 工具箱实现粒子群优化算法的基本步骤:
步骤1: 定义优化问题
首先,需要定义要优化的目标函数。

目标函数是希望最小化或最大化的目标。

例如,如果希望最小化一个简单的函数,可以这样定义:
步骤2: 设置 PSO 参数
然后,需要设置 PSO 算法的参数,如种群大小、迭代次数、惯性权重等。

这些参
数的选择可能会影响算法的性能,需要根据具体问题进行调整。

步骤3: 运行 PSO 算法
使用particleswarm函数运行 PSO 算法,将目标函数和参数传递给它。

这里@myObjective表示使用myObjective函数作为目标函数,1是变量的维度,[]表
示没有约束条件。

示例:
考虑一个简单的最小化问题,目标函数为 Rosenbrock 函数:
设置 PSO 参数:
运行 PSO 算法:
在这个示例中,rosenbrock函数是一个二维的 Rosenbrock 函数,PSO 算法将寻找使得该函数最小化的变量值。

请注意,实际应用中,需要根据具体问题调整目标函数、约束条件和 PSO 参数。

MATLAB 的文档和示例代码提供了更多关于 PSO 工具箱的详细信息。

(完整word版)基本粒子群算法的原理和matlab程序.doc

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序作者—— niewei120 (nuaa)一、粒子群算法的基本原理粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通用的启发式搜索技术。

一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。

PSO 算法利用这种模型得到启示并应用于解决优化问题。

PSO 算法中,每个优化问题的解都是粒子在搜索空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。

PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。

每个粒子有了初始位置与初始速度。

然后通过迭代寻优。

在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。

第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。

另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。

上述的方法叫全局粒子群算法。

如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。

速度、位置的更新方程表示为:每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。

所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。

是保持原来速度的系数,所以叫做惯性权重。

是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。

通常设置为 2 。

是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。

粒子群算法matlab程序

粒子群算法matlab程序

粒子群算法matlab程序粒子群算法(PSO)是一种基于群体智能的求解优化问题的算法。

其通过模拟鸟群等大规模群体行为,实现全局搜索和基于群体协作的局部搜索。

在PSO中,通过一组粒子(每个粒子代表一个解)来搜索问题的解空间,在搜索过程中,粒子的位置表示该解在解空间中的位置,速度表示该解在该方向(即属性)上的变化速率,最终达到全局最优解或局部最优解。

PSO算法有着简单易懂、实现简便、计算速度快以及易于与其他算法结合等优点。

下面我将介绍一下如何使用matlab编写简单的粒子群算法程序。

程序主要分为以下步骤:1.初始化在程序开始之前需要对粒子进行初始化操作,其中需要确定粒子群的大小、每个粒子的位置、速度等初始参数。

2.计算适应值计算每个粒子的适应值,即根据当前位置计算该解的适应值。

适应值可以根据实际问题进行定义,如最小化目标函数或最大化收益等。

3.更新粒子速度和位置这一步是PSO算法的核心步骤,通过改变粒子的速度和位置来找到更优的解。

其核心公式为:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t)) x(t+1) = x(t) + v(t+1)其中w是惯性权重,c1、c2是学习因子,pbest是该粒子的历史最优解,gbest 是当前全局最优解。

4.更新pbest和gbest在每次更新位置之后需要更新每个粒子自己的历史最优解以及全局最优解。

5.停止条件判断设定停止条件,如最小适应值误差、迭代次数、最大迭代次数等,如果达到了停止条件,则程序结束,输出全局最优解。

下面是一份简单的PSO算法的matlab代码:function [best_fit, best_x] = pso(func, dim, lb, ub, max_iter, swarm_size, w, c1, c2)%初始化粒子v = zeros(swarm_size, dim);x = repmat(lb, swarm_size, 1) + repmat(ub - lb, swarm_size, 1) .* rand(swarm_size, dim);pbest = x;[best_fit, best_idx] = min(func(x));gbest = x(best_idx,:);%开始迭代for iter = 1 : max_iter%更新速度和位置v = w * v + c1 * rand(swarm_size, dim) .* (pbest - x) + c2 * rand(swarm_size, dim) .* repmat(gbest, swarm_size, 1) - x;x = x + v;%边界处理x = max(x, repmat(lb, swarm_size, 1));x = min(x, repmat(ub, swarm_size, 1));%更新pbest和gbestidx = func(x) < func(pbest);pbest(idx,:) = x(idx,:);[min_fit, min_idx] = min(func(pbest));if min_fit < best_fitbest_fit = min_fit;best_x = pbest(min_idx,:);endendend在使用上述代码时,需要定义适应值函数(func)、解空间维度(dim)、每个维度的上界(ub)与下界(lb)、最大迭代次数(max_iter)、粒子群大小(swarm_size)、惯性权重(w)、学习因子(c1、c2)等参数。

pso算法matlab程序 -回复

pso算法matlab程序 -回复

pso算法matlab程序-回复主题:PSO算法MATLAB程序PSO(粒子群优化)算法是一种模拟鸟群觅食行为的优化算法,它能够在搜索空间中寻找最优解。

在本文中,将详细介绍如何使用MATLAB 编写PSO算法程序,并进行一步一步的解释。

首先,我们需要明确PSO算法的基本原理。

PSO算法通过模拟鸟群搜索食物的行为,来搜索问题的最优解。

其中,群体中的每个粒子代表一个潜在的解,而每个粒子都有自己的位置和速度。

粒子根据自身经验和整个群体的经验来调整自己的位置和速度,以寻找最优解。

接下来,我们可以开始编写MATLAB程序来实现PSO算法。

第一步,我们需要定义问题的目标函数。

目标函数是确定问题最优解的函数,根据具体问题的不同而不同。

在本文中,以最小化函数为例进行讲解。

假设我们要最小化的函数为f(x),其中x为待求解的参数。

第二步,我们需要定义粒子的初始位置和速度。

粒子的初始位置可以是随机分布在搜索空间中的任意值,而速度可以初始化为零。

我们可以使用MATLAB的随机函数来生成初始位置。

第三步,定义粒子的个体和群体最优位置。

个体最优位置是指粒子自身搜索到的最优解,而群体最优位置是根据整个群体的搜索结果得到的最优解。

第四步,编写主循环。

在主循环中,我们更新每个粒子的速度和位置,直到满足一定的停止条件。

更新速度和位置的公式如下:速度更新公式:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t))位置更新公式:x(t+1) = x(t) + v(t+1)其中,v(t)表示t时刻的速度,x(t)表示t时刻的位置,w为惯性权重,c1和c2分别为加速因子1和2,pbest表示粒子的个体最优位置,gbest 表示群体最优位置。

第五步,更新个体和群体最优位置。

对于每个粒子而言,如果t时刻的位置优于个体最优位置,则更新个体最优位置;如果个体最优位置优于群体最优位置,则更新群体最优位置。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码pso算法是一种优化算法,全称为粒子群优化算法(Particle Swarm Optimization)。

它模拟了鸟群或者鱼群的行为,通过不断地迭代寻找最优解。

在许多优化问题中,pso算法都有着良好的表现,特别是在连续空间的优化问题中。

在matlab中实现pso算法并不复杂,以下是一个简单的例子:```matlabfunction [best_pos, best_val] = pso_algorithm(fitness_func,num_particles, num_iterations, range)% 初始化粒子的位置和速度positions = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);velocities = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);% 初始化每个粒子的最佳位置和适应度值personal_best_pos = positions;personal_best_val = arrayfun(fitness_func, personal_best_pos);% 初始化全局最佳位置和适应度值[global_best_val, global_best_idx] = min(personal_best_val);global_best_pos = personal_best_pos(global_best_idx, :);% 开始迭代for iter = 1:num_iterations% 更新粒子的速度和位置inertia_weight = 0.9 - iter * (0.5 / num_iterations); % 慢慢减小惯性权重cognitive_weight = 2;social_weight = 2;r1 = rand(num_particles, length(range));r2 = rand(num_particles, length(range));velocities = inertia_weight .* velocities + ...cognitive_weight .* r1 .* (personal_best_pos - positions) + ...social_weight .* r2 .* (global_best_pos - positions);positions = positions + velocities;% 更新每个粒子的最佳位置和适应度值new_vals = arrayfun(fitness_func, positions);update_idx = new_vals < personal_best_val;personal_best_pos(update_idx, :) = positions(update_idx, :);personal_best_val(update_idx) = new_vals(update_idx);% 更新全局最佳位置和适应度值[min_val, min_idx] = min(personal_best_val);if min_val < global_best_valglobal_best_val = min_val;global_best_pos = personal_best_pos(min_idx, :);endendbest_pos = global_best_pos;best_val = global_best_val;end```上面的代码实现了一个简单的pso算法,其中`fitness_func`是待优化的目标函数,`num_particles`是粒子数量,`num_iterations`是迭代次数,`range`是变量的范围。

ipso算法 matlab程序

ipso算法 matlab程序

ipso算法 matlab程序IPSO算法是一种基于粒子群优化算法的改进算法,它在解决复杂优化问题方面具有很高的效率和精度。

本文将介绍IPSO算法的原理和实现,并给出Matlab程序的实现。

IPSO算法的原理是基于粒子群优化算法的,它通过模拟粒子在空间中的运动来寻找最优解。

与传统的粒子群优化算法不同的是,IPSO算法引入了一种新的粒子更新策略,即“个体学习”和“群体学习”相结合的策略。

这种策略可以使得粒子在搜索过程中更加灵活和高效。

IPSO算法的实现过程如下:1. 初始化粒子群,包括粒子的位置和速度等信息。

2. 计算每个粒子的适应度值,即目标函数的值。

3. 根据适应度值更新全局最优解和个体最优解。

4. 根据全局最优解和个体最优解更新粒子的速度和位置。

5. 重复步骤2-4,直到满足停止条件。

下面是IPSO算法的Matlab程序实现:function [gbest, fgbest] = IPSO(fobj, dim, lb, ub, maxiter, npop)% fobj: 目标函数% dim: 变量维度% lb: 变量下界% ub: 变量上界% maxiter: 最大迭代次数% npop: 粒子数% 初始化粒子群x = rand(npop, dim) .* (ub - lb) + lb;v = zeros(npop, dim);pbest = x;fpbest = feval(fobj, pbest);[fgbest, gbest] = min(fpbest);% 迭代for iter = 1:maxiter% 更新速度和位置for i = 1:npopr1 = rand(1, dim);r2 = rand(1, dim);v(i,:) = v(i,:) + r1 .* (pbest(i,:) - x(i,:)) + r2 .* (gbest - x(i,:)); x(i,:) = x(i,:) + v(i,:);% 边界处理x(i,:) = max(x(i,:), lb);x(i,:) = min(x(i,:), ub);end% 更新个体最优解和全局最优解fp = feval(fobj, x);for i = 1:npopif fp(i) < fpbest(i)pbest(i,:) = x(i,:);fpbest(i) = fp(i);endend[fpbestmin, ibest] = min(fpbest);if fpbestmin < fgbestgbest = pbest(ibest,:);fgbest = fpbestmin;endendendIPSO算法的优点是可以在较短的时间内找到全局最优解,而且对于高维度的优化问题也有很好的适应性。

matlab 粒子群优化算法 并行计算

一、概述在当今信息化时代,计算机科学和人工智能技术发展迅速,其中优化算法是人工智能领域的重要内容。

粒子裙优化算法是一种新型的优化算法,具有较高的效率和精度。

在大规模数据处理和复杂问题求解中,粒子裙优化算法的并行计算具有重要的意义。

二、粒子裙优化算法简介粒子裙优化算法是一种基于裙体智能的优化算法,模拟了鸟裙觅食的行为。

该算法通过不断调整粒子的位置和速度,以寻找最优解。

在实际问题中,粒子裙优化算法可以应用于函数优化、神经网络训练等领域,取得了良好的效果。

三、粒子裙优化算法的特点1. 并行计算能力强:粒子裙优化算法可以进行并行计算,大大提高了计算效率。

2. 收敛速度快:粒子裙优化算法在迭代过程中具有较快的收敛速度,能够快速找到全局最优解。

3. 对初始化参数不敏感:与其他优化算法相比,粒子裙优化算法对初始化参数的选择不敏感,更加稳定可靠。

四、粒子裙优化算法的并行计算技术1. 并行计算模型:粒子裙优化算法的并行计算可以采用多种模型,如Master-Slave模型、多线程模型等。

2. 分布式计算:在大规模数据处理和复杂问题求解中,粒子裙优化算法可以利用分布式计算技术,将任务分配给多台计算机并行处理。

五、粒子裙优化算法的并行计算应用实例1. 函数优化:粒子裙优化算法的并行计算可以应用于复杂函数的优化问题,如参数调优、最优化设计等。

2. 数据挖掘:在大规模数据处理中,粒子裙优化算法的并行计算能够加快数据挖掘的速度,提高数据处理效率。

3. 多目标优化:粒子裙优化算法的并行计算还可以应用于多目标优化问题,寻找具有多个约束条件的最优解。

六、粒子裙优化算法的并行计算技术研究进展1. 底层技术优化:针对并行计算中的计算速度和存储空间等问题,研究者们对粒子裙优化算法的底层技术进行了优化,提高了算法的效率和稳定性。

2. 并行计算环境:研究者们还研究了粒子裙优化算法在不同并行计算环境下的性能表现,如集裙计算、云计算等。

七、粒子裙优化算法的并行计算未来发展趋势1. 大规模数据计算:随着大数据时代的到来,粒子裙优化算法的并行计算将在大规模数据处理方面发挥更大的作用。

matlab自带粒子群算法

matlab自带粒子群算法中括号在MATLAB中具有重要的功能和应用,其中之一就是在自带的粒子群算法中。

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,广泛应用于解决优化问题。

而MATLAB则提供了丰富的工具箱,包括自带的粒子群算法函数,方便用户直接使用这一高效优化算法来解决复杂的问题。

本文将详细介绍MATLAB中自带的粒子群算法的基本概念、工作原理、使用方法,以及一些注意事项和优化技巧。

一、粒子群算法的基本概念和原理粒子群算法是一种启发式算法,模拟了鸟群或鱼群等群体的行为进行问题求解。

算法的基本思想是将可能的解空间看作是粒子的搜寻范围,每个粒子代表一种解,通过迭代的方式不断更新粒子的位置和速度,以找到最优解。

1.1 粒子的位置和速度粒子的位置是解的表示,而速度则是解的搜索方向和速率。

在粒子群算法中,可以将解空间看作是一个多维空间,每个粒子都有一个位置向量,表示该粒子对应的解。

而速度向量则表示了该粒子在搜索过程中的移动方向和速率。

1.2 适应度函数适应度函数用于评价每个粒子的解的质量,也称为目标函数。

在优化问题中,我们希望通过粒子群算法求解的是目标函数的最小(或最大)值。

因此,适应度函数的选择在粒子群算法中尤为重要,它直接影响到算法的性能和效果。

1.3 群体的协作群体的协作是粒子群算法的核心思想之一。

每个粒子通过与其他粒子之间的信息交流来调整自己的搜索方向和速率,从而达到更好的解。

这种信息交流一般通过粒子之间的位置和速度更新公式来实现。

二、MATLAB中自带的粒子群算法函数MATLAB提供了自带的粒子群算法函数,可以直接调用并应用于问题求解。

下面将介绍一些常用的粒子群算法函数及其使用方法。

2.1 PSO函数在MATLAB中,可以使用pso函数来进行粒子群算法的优化。

该函数的基本形式如下:[x,fval,exitFlag,output] = pso(problem)其中,problem是一个结构体,用于存储问题的相关信息,包括目标函数、约束条件等。

(完整word版)用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例1.1 粒子群算法PSO 从这种模型中得到启示并用于解决优化问题。

PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。

所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。

另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量,。

第个粒子的“飞行 ”速度也是一个维的向量,记为,。

第个粒子迄今为止搜索到的最优位置称为个体极值,记为,。

整个粒子群迄今为止搜索到的最优位置为全局极值,记为在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置:(1.1) (1. 2)其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。

式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g )(2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。

pso算法matlab程序

pso算法matlab程序PSO(粒子群优化)算法是一种启发式优化算法,用于解决各种优化问题。

在Matlab中实现PSO算法可以通过以下步骤进行:1. 初始化粒子群:首先,定义需要优化的目标函数,然后确定粒子群的规模、搜索空间的范围、最大迭代次数等参数。

在Matlab中可以使用数组或矩阵来表示粒子群的位置和速度。

2. 计算适应度:根据目标函数,计算每个粒子的适应度值,以便评估其在搜索空间中的位置的好坏程度。

3. 更新粒子的速度和位置:根据PSO算法的公式,更新每个粒子的速度和位置。

这个过程涉及到调整粒子的速度和位置,使其朝着适应度更高的方向移动。

4. 更新全局最优解:在整个粒子群中找到最优的粒子,即具有最佳适应度值的粒子,然后更新全局最优解。

5. 循环迭代:重复步骤3和步骤4,直到满足停止迭代的条件(如达到最大迭代次数或达到精度要求)。

在Matlab中,可以使用循环结构和数组操作来实现上述步骤。

以下是一个简单的PSO算法的Matlab程序示例:matlab.% 定义目标函数。

function z = objective_function(x)。

z = x(1)^2 + x(2)^2; % 以x1和x2为变量的目标函数示例(可根据实际情况修改)。

% 初始化粒子群。

n = 30; % 粒子数量。

max_iter = 100; % 最大迭代次数。

c1 = 2; % 学习因子。

c2 = 2; % 学习因子。

w = 0.7; %惯性权重。

x = rand(n, 2); % 随机初始化粒子的位置。

v = rand(n, 2); % 随机初始化粒子的速度。

pbest = x; % 个体最佳位置。

pbest_val = zeros(n, 1); % 个体最佳适应度值。

gbest = zeros(1, 2); % 全局最佳位置。

gbest_val = inf; % 全局最佳适应度值。

% 迭代优化。

for iter = 1:max_iter.for i = 1:n.% 计算适应度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物。

计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。

并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。

这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。

这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。

更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。

由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。

每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素:1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ;2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。

下面给出粒子群算法的位置速度更新公式:112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+⨯⨯-+⨯⨯-, 11k k k i i i x x av ++=+.这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是:ω是保持原来速度的系数,所以叫做惯性权重。

1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。

通常设置为2。

2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。

通常设置为2。

()rand 是[0,1]区间内均匀分布的随机数。

a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。

通常设置为1。

这样一个标准的粒子群算法就介绍结束了。

下图是对整个基本的粒子群的过程给一个简单的图形表示。

判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。

注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

粒子群优化算法(3)—标准粒子群算法(局部优化版本) 在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1. 粒子自己历史最优值p i。

2. 粒子群体的全局最优值p g。

如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更新,A. 粒子自己历史最优值p i。

B. 粒子邻域内粒子的最优值pn k。

其余保持跟全局版的标准粒子群算法一样,这个算法就变为局部版的粒子群算法。

一般一个粒子i 的邻域随着迭代次数的增加而逐渐增加,开始第一次迭代,它的邻域为0,随着迭代次数邻域线性变大,最后邻域扩展到整个粒子群,这时就变成全局版本的粒子群算法了。

经过实践证明:全局版本的粒子群算法收敛速度快,但是容易陷入局部最优。

局部版本的粒子群算法收敛速度慢,但是很难陷入局部最优。

现在的粒子群算法大都在收敛速度与摆脱局部最优这两个方面下功夫。

其实这两个方面是矛盾的。

看如何更好的折中了。

根据取邻域的方式的不同,局部版本的粒子群算法有很多不同的实现方法。

第一种方法:按照粒子的编号取粒子的邻域,取法有四种:1,环形取法2,随机环形取法3,轮形取法4,随机轮形取法。

1环形 2 随机环形3 轮形4随机轮形因为后面有以环形取法实现的算法,对环形取法在这里做一点点说明:以粒子1为例,当邻域是0的时候,邻域是它本身,当邻域是1时,邻域为2,8;当邻域是2时,邻域是2,3,7,8;......,以此类推,一直到邻域为4,这个时候,邻域扩展到整个例子群体。

据文献介绍(国外的文献),采用轮形拓扑结构,PSO的效果很好。

第二种方法:按照粒子的欧式距离取粒子的邻域在第一种方法中,按照粒子的编号来得到粒子的邻域,但是这些粒子其实可能在实际位置上并不相邻,于是Suganthan提出基于空间距离的划分方案,在迭代中计算每一个粒子与群中其他粒子的距离。

记录任何2个粒子间的的最大距离为dm。

对每一粒子按照||x a-x b||/dm 计算一个比值。

其中||x a-x b||是当前粒子a到b的距离。

而选择阈值frac根据迭代次数而变化。

当另一粒子b满足||x a-x b||/dm<frac时,认为b成为当前粒子的邻域。

这种办法经过实验,取得较好的应用效果,但是由于要计算所有粒子之间的距离,计算量大,且需要很大的存储空间,所以,该方法一般不经常使用。

粒子群算法(4)—标准粒子群算法的实现标准粒子群算法的实现思想基本按照粒子群算法(2)—标准的粒子群算法的讲述实现。

主要分为3个函数。

第一个函数为粒子群初始化函数InitSwarm(SwarmSize......AdaptFunc)其主要作用是初始化粒子群的粒子,并设定粒子的速度、位置在一定的范围内。

本函数所采用的数据结构如下所示:表ParSwarm记录的是粒子的位置、速度与当前的适应度值,我们用W来表示位置,用V 来代表速度,用F来代表当前的适应度值。

在这里我们假设粒子个数为N,每个粒子的维数为D。

表OptSwarm记录每个粒子的历史最优解(粒子历史最好的适应度)以及全部粒子搜索到的全局最优解。

用Wg代表全局最优解,W.,1代表每个粒子的历史最优解。

粒子群初始化阶段表OptSwarm的前N行与表ParSwarm中的相同,而Wg的值为表ParSwarm中适应度值的根据粒子群算法(4 )的思想编制MATLAB程序function [ParSwarm,OptSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc)%功能描述:初始化粒子群,限定粒子群的位置以及速度在指定的范围内%[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc) %%输入参数:SwarmSize:种群大小的个数%输入参数:ParticleSize:一个粒子的维数%输入参数:ParticleScope:一个粒子在运算中各维的范围;%ParticleScope格式:%3维粒子的ParticleScope格式:%[x1Min,x1Max%x2Min,x2Max%x3Min,x3Max]%%输入参数:AdaptFunc:适应度函数%%输出:ParSwarm初始化的粒子群%输出:OptSwarm粒子群当前最优解与全局最优解%%用法[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc); %%异常:首先保证该文件在Matlab的搜索路径中,然后查看相关的提示信息。

%%编制人:Guide%编制时间:2011.8.9%参考文献:无%%容错控制if nargin~=4error('输入的参数个数错误。

')endif nargout<2error('输出的参数的个数太少,不能保证以后的运行。

');end[row,colum]=size(ParticleSize);if row>1|colum>1error('输入的粒子的维数错误,必须是一个1行1列的数据。

');end[row,colum]=size(ParticleScope);if row~=ParticleSize||colum~=2error('输入的粒子的维数范围错误。

');end%初始化粒子群矩阵%初始化粒子群矩阵,全部设为[0-1]随机数%rand('state',0);ParSwarm=rand(SwarmSize,2*ParticleSize+1);%对粒子群中位置,速度的范围进行调节for k=1:ParticleSizeParSwarm(:,k)=ParSwarm(:,k)*(ParticleScope(k,2)-ParticleScope(k,1))+ParticleScope(k,1);%调节速度,使速度与位置的范围一致ParSwarm(:,ParticleSize+k)=ParSwarm(:,ParticleSize+k)*(ParticleScope(k,2)-ParticleScope(k,1))+P articleScope(k,1);end%对每一个粒子计算其适应度函数的值for k=1:SwarmSizeParSwarm(k,2*ParticleSize+1)=AdaptFunc(ParSwarm(k,1:ParticleSize));end%初始化粒子群最优解矩阵OptSwarm=zeros(SwarmSize+1,ParticleSize);%粒子群最优解矩阵全部设为零[maxValue,row]=max(ParSwarm(:,2*ParticleSize+1));%寻找适应度函数值最大的解在矩阵中的位置(行数)OptSwarm=ParSwarm(1:SwarmSize,1:ParticleSize);OptSwarm(SwarmSize+1,:)=ParSwarm(row,1:ParticleSize);下面的函数BaseStepPso实现了标准全局版粒子群算法的单步更新位置速度的功能function[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,Min W,LoopCount,CurCount)%功能描述:全局版本:基本的粒子群算法的单步更新位置,速度的算法%%[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,Min W,LoopCount,CurCount)%%输入参数:ParSwarm:粒子群矩阵,包含粒子的位置,速度与当前的目标函数值%输入参数:OptSwarm:包含粒子群个体最优解与全局最优解的矩阵%输入参数:ParticleScope:一个粒子在运算中各维的范围;%输入参数:AdaptFunc:适应度函数%输入参数:LoopCount:迭代的总次数%输入参数:CurCount:当前迭代的次数%%返回值:含意同输入的同名参数%%用法:[ParSwarm,OptSwarm]=BaseStepPso(ParSwarm,OptSwarm,AdaptFunc,ParticleScope,MaxW,Min W,LoopCount,CurCount)%%异常:首先保证该文件在Matlab的搜索路径中,然后查看相关的提示信息。

相关文档
最新文档