高一物理万有引力与航天复习
高考物理总复习 5专题五 万有引力与航天 专题五 万有引力与航天(讲解部分)

,
而
M' r3
=
M R3
,而该处物体的重力在数值上等于该处的万有引力,则有
GMr3m R3r 2
=
mg‘,得GMm r=mg'。因此球体内距球心r处的重力随着r的增大成正比增加。
R3
例1 已知质量分布均匀的球壳对壳内物体的引力为0。假设地球是一半
径为R的质量分布均匀的球体,地球表面的重力加速度大小为g。试求:
②三颗质量均为m的星体位于等边三角形的三个顶点上,如图乙。
(3)四星模型 ①四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆 形轨道做匀速圆周运动,如图丙。 ②三颗恒星位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕 O点做匀速圆周运动,如图丁。
2.一些物理量的定性分析
(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上 过A点和B点时速率分别为vA、vB。因在A点加速,则vA>v1,因在B点加速,则v 3>vB,又因v1>v3,故有vA>v1>v3>vB。 (2)加速度:因为在A点,卫星只受到万有引力作用,故无论从轨道Ⅰ还是轨
an=G M ,即an∝ 1
r2
r2
v= GM ,即v∝ 1
r
r
ω= GM ,即ω∝ 1
r3
r3
T= 4π 2r3 ,即T∝ r3
GM
2.人造地球卫星的轨道 由于万有引力提供向心力,因此所有人造地球卫星的轨道圆心都在地心上。 (1)赤道轨道:卫星的轨道在赤道平面内,同步卫星轨道就是其中的一种。 (2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气 象卫星轨道。 (3)其他轨道:除以上两种轨道外的卫星轨道,轨道平面一定通过地球的球心。
高一物理《万有引力与航天》知识点归纳

高一物理《万有引力与航天》知识点归纳
高一物理《万有引力与航天》知识点归纳
一、两个定律
1、开普勒行星运动定律:开Ⅰ;开Ⅱ;开Ⅲ。
2、万有引力定律:公式中的r是两个质点间的距离;或是两个质量分布均匀的球体的'球心间的距离;或是质量分布均匀的球体的球心与球外质点间的距离。
二、两个天体
1、中心天体:可视为静止不动;在考虑自转时球心的位置是视为不动的。
2、环绕天体:围绕中心天体做匀速圆周运动(有可能是行星、卫星、飞船、空间站)。
三、两个半径
1、天体半径:宇宙、太阳、恒星、行星、月球、卫星等天体的半径,通常用R表示。
2、轨道半径:环绕天体围绕中心天体做匀速圆周运动的轨道的半径,通常用r表示。
四、两个近似
1、在天体表面附近,不考虑天体的自转。
2、天体(包括卫星)做匀速圆周运动。
下载全文。
高一物理万有引力与航天复习

③开普勒第三定律 (周期定律)
所有行星的轨道的半 a 3
长轴的三次方跟公转周期 的二次方的比值整都理ppt相等。
T2
k
7பைடு நூலகம்
例.有两个人造地球卫星, 它们绕地球运转的轨道半 径之比是1:2,则它们绕 地球运转的周期之比为 。
1: 2 2
整理ppt
8
二、万有引力定律内容
万有引 力
1.内容:宇宙间的一切物体 都是相互吸引的,两个物体 间的引力大小与它们的质量 的乘积成正比,跟它们距离 的平方成反比。
瓦解?计算时星体可视为均匀球
体。(G=6.67×10-11m3/Kg·s2)
整理ppt
23
例.宇航员站在一星球表面上的某高处, 以初速度V0沿水平方向抛出一个小球,经 过时间t,球落到星球表面,小球落地时 的速度大小为V. 已知该星球的半径为R, 引力常量为G ,求该星球的质量M。
解:小球做平抛运动如图,则有:
质量巨大的天体间或天体
与物体间它的存在才有宏
观的实际意义.
整理ppt
14
6.引力常量G的测定方法及意义:
• 卡文迪许扭称实验。
• 其意义是用实验证明了万 有引力的存在,使得万有引 力定律有了真正的使用价值。
• 推动了天文学的发展.
整理ppt
15
7.万有引力与重力
O1 F向 G
O F万
忽略地球自转可得:
(4)估算天体的质量和密度
解题思路:
1.一般只能求出中心天体质量及 密度。
2.应知道球体体积公式及密度公 式。 3.注意黄金代换式的运用。
4.注意隐含条件的使用,比如近
地飞行等。没有环绕天体可假设。
整理ppt
高一物理二第六章《万有引力与航天》复习练习题及参考答案.doc

高一物理万有引力与航天第一类问题:涉及重力加速度“g ”的问题Mm 解题思路:天体表面重力(或“轨道重力”)等于万有引力,即mg GR 2【题型一】两星球表面重力加速度的比较 1、一个行星的质量是地球质量的8 倍,半径是地球半径的4 倍,这颗行星表面的重力加速度是地球表面重力加速度的多少倍?解:忽略天体自转的影响,则物体在天体表面附近的重力等于万有引力,即有MmmgGR 2 ,因此:对地球: mg 地M 地 m ⋯⋯①G2R 地对行星: mg 行M 行 mG2⋯⋯②R 行则由② / ①可得, g 行M 行R 地 28 121 ,即 g 行1?242g 地g 地 M 地R 行 1 22【题型二】轨道重力加速度的计算2、地球半径为 R ,地球表面重力加速度为 g 0 ,则离地高度为 h 处的重力加速度是 ()h 2 g 0 R 2 g 0Rg 0 hg 0A .B .C . 2D .2(R h) 2( R h)2( R h)(R h)【题型三】求天体的质量或密度3、已知下面的数据,可以求出地球质量 M 的是(引力常数 G 是已知的)( )A .月球绕地球运行的周期 T 1 及月球到地球中心的距离 R 1B .地球“同步卫星”离地面的高度C .地球绕太阳运行的周期T 2 及地球到太阳中心的距离 R 2D .人造地球卫星在地面附近的运行速度v 和运行周期 T34、若有一艘宇宙飞船在某一行星表面做匀速圆周运动, 已知其周期为 T ,引力常量为 G ,那么该行星的平均密度为( )GT 2 4 GT 2 3A.B.C.D.3GT 24GT2第二类问题:圆周运动类的问题解题思路:万有引力提供向心力,即Mmma n4 2 v 2 2r Gr2 m 2 r m mT r【题型四】求天体的质量或密度5、继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7 年 35.2 亿公里在太空中风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间 6 月 30 日(北京时间7 月 1 日)抵达预定轨道,开始“拜访”土星及其卫星家族。
高一物理《万有引力与航天》知识点总结

高一物理《万有引力与航天》知识点总结高一物理《万有引力与航天》知识点总结上学期间,大家都背过各种知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
哪些知识点能够真正帮助到我们呢?下面是店铺收集整理的高一物理《万有引力与航天》知识点总结,仅供参考,大家一起来看看吧。
高一物理《万有引力与航天》知识点总结篇1一、人类认识天体运动的历史1、“地心说”的内容及代表人物:2、“日心说”的内容及代表人物:二、开普勒行星运动定律的内容开普勒第二定律:v近v远开普勒第三定律:K—与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:a地3a火3a水3=2=2= 2T地T火T水三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
m42R32mF=4πKFFmr ① ② FF③ K2222 rrTTF MMmMm FFGr2r2r22、表达式:FGm1m22r3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r的二次方成反比。
4、引力常量:-11N/m2/kg2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r为两物体质心间的距离。
mM42R3GM6、推导:G2m2R 22RTT4四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r处,质点受到的万有引力就等于半径为r的球体的引力。
五、黄金代换六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
高一物理万有引力与航天知识点归纳

高一物理万有引力与航天知识点归纳高一物理万有引力与航天知识点归纳在学习中,很多人都经常追着老师们要知识点吧,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
为了帮助大家更高效的学习,以下是店铺收集整理的高一物理万有引力与航天知识点归纳,仅供参考,欢迎大家阅读。
高一物理万有引力与航天知识点归纳 1一、知识点(一)行星的运动1、地心说、日心说:内容区别、正误判断2、开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1、万有引力定律:内容、表达式、适用范围2、万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二、重点考察内容、要求及方式1、地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2、开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)3、万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4、计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5、宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6、计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7、经典力学的局限性:了解其局限性所在,适用范围(选择)高一物理万有引力与航天知识点归纳 2一、开普勒行星运动定律(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
(完整版)万有引力与航天重点知识归纳
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
最新高一物理万有引力和航天复习知识点
万有引力与航天知识点复习☆知识梳理1.内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成 ,与它们之间的距离r 的 成反比.2.公式:221rm m G F =,其中G = N·m 2/kg 2叫引力常量. 3.适用条件:公式适用于 间的相互作用.也适用于两个质量分布均匀的球体间的相互作用,但此时r 是 间的距离,一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到 间的距离.☆要点深化1.万有引力和重力的关系万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转需要的向心力F 向,如图4-4-1所示,可知:(1)地面上的物体的重力随纬度的增大而增大.故重力加速度g 从赤道到两极逐渐增加.(2)在两极:重力等于万有引力,重力加速度最大.(3)在赤道:F 万=F 向+mg故22ωmR rMm G mg -= (4)由于地球的自转角速度很小,地球的自转带来的影响很小,一般情况下认为:mg RMm G =2,故GM =gR 2,这是万有引力定律应用中经常用到的“黄金代换”. (5)距地面越高,物体的重力加速度越小,距地面高度为h 处的重力加速度为: g h R R g 2/)(+= 其中R 为地球半径,g 为地球表面的重力加速度.2.万有引力定律的基本应用(1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由 提供. (2)“万能”连等式⎪⎪⎪⎩⎪⎪⎪⎨⎧===ωπωmv T mr mr rv mma mg r Mm G r 2222)2( 其中gr 为距天体中心r 处的重力加速度.☆针对训练1.假如一做圆周运动的人造地球卫星的轨道半径增加到原来的2倍,仍做圆周运动,则( )A .根据公式v =ωr 可知卫星运动的线速度将增大到原来的2倍B .根据公式rv m F 2=,可知卫星所需的向心力将减小到原来的1/2 C .根据公式2rMm G F =可知地球提供的向心力将减小到原来的1/4 D .根据上述B 和C 中给出的公式可知,卫星运行的线速度将减小到原来的22☆知识梳理1.应用万有引力定律分析天体运动的方法把天体运动看成是 运动,其所需的向心力由天体间的万有引力提供.===ma mg rMm G r 2_____________ . 应用时可根据实际情况选用适当的公式进行分析和计算.特别提醒三个近似近地卫星贴近地球表面运行,可近似认为做匀速圆周运动的半径等于地球半径; 在地球表面随地球一起自转的物体可近似认为其重力等于地球对它的万有引力; 天体的运动轨道可近似看作圆轨道.2.关于同步卫星的五个“一定”(1)轨道平面一定:轨道平面与 共面.(2)周期一定:与地球自转周期 ,即T =24 h.(3)角速度一定:与地球自转的角速度 . (4)高度一定:由222)()2()(h R T m h R Mm G +=+π,得同步卫星离地面的高度h = ≈3.6×107 m. (5)速度一定:v = =3.1×103 m/s.☆要点深化1.两种加速度——卫星的向心加速度和随地球自转的向心加速度的比较2. 两个半径——天体半径R和卫星轨道半径r的比较卫星的轨道半径是天体的卫星绕天体做圆周运动的圆的半径,所以r=R+h.当卫星贴近天体表面运动时,h≈0,可近似认为轨道半径等于天体半径.3.两种周期——自转周期和公转周期的比较自转周期是天体绕自身某轴线运动一周的时间,公转周期是卫星绕中心天体做圆周运动一周的时间.一般情况下天体的自转周期和公转周期是不等的,如:地球自转周期为24小时,公转周期为365天.但也有相等的,如月球,自转、公转周期都约为27天,所以地球上看到的都是月球固定的一面,在应用中要注意区别.☆针对训练2.2009年2月11日,俄罗斯的“宇宙2251”卫星和美国的“铱33”卫星在西伯利亚上空约805 km处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运动速率比乙的大,则下列说法中正确的是()A.甲的运动周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大3.我国正在自主研发“北斗二号”地球卫星导航系统,此系统由中轨道、高轨道和同步卫星等组成,可将定位精度提高到“厘米”级,会在交通、气象、军事等方面发挥重要作用.已知三种卫星中,中轨道卫星离地最近,同步卫星离地最远,则下列说法中正确的是() A.中轨道卫星的线速度小于高轨道卫星的线速度B.中轨道卫星的角速度小于同步卫星的角速度C.若一周期为8 h的中轨道卫星,某时刻在同步卫星的正下方,则经过24 h仍在该同步卫星的正下方D.高轨道卫星的向心加速度小于同步卫星的向心加速度特别提醒(1)三种宇宙速度均指的是发射速度,不能理解为环绕速度.(2)第一宇宙速度既是最小发射速度,又是卫星绕地球做匀速圆周运动的最大速度.☆要点深化1.如何推导出第一宇宙速度?由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,故人造卫星的最小发射速度对应将卫星发射到近地表面运行,此时发射时的动能全部转化为绕行的动能而不需要转化为重力势能. 根据论述可推导如下:R v m RMm G 212=,s km R GM v /9.71== 或Rv m mg 21=, s km gR v /9.71== 2.两种速度——环绕速度与发射速度的比较(1)不同高度处的人造卫星在圆轨道上运行速度即环绕速度rGM v =环绕v 环绕,其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,增大势能,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,此时v 发射>v 环绕.(2)人造地球卫星的最小发射速度应是卫星发射到近地表面运行,此时发射动能全部作为绕行的动能而不需要转化为重力势能.此速度即为第一宇宙速度,此时v 发射=v 环绕. ☆针对训练4.2009年3月7日(北京时间)世界首个用于探测太阳系外类地行星的“开普勒”号太空望远镜发射升空,在银河僻远处寻找宇宙生命.假设该望远镜沿半径为R 的圆轨道环绕太阳运行,运行的周期为T ,万有引力恒量为G .仅由这些信息可知( )A .“开普勒”号太空望远镜的发射速度要大于第三宇宙速度B .“开普勒”号太空望远镜的发射速度要大于第二宇宙速度C .太阳的平均密度D .“开普勒”号太空望远镜的质量5.已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响.(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T .解题思路探究题型1 万有引力定律在天体运动中的应用【例1】 “嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的1/6,月球半径为地球半径的1/4,根据以上信息得( )A .绕月与绕地飞行周期之比为B .绕月与绕地飞行周期之比为C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96以题说法1.两条线索(1)万有引力提供向心力F 引=F 向.(2)重力近似等于万有引力提供向心力.2.两组公式r T m r m r v m rMm G 2222)2(πω=== r Tm r m r v m mg r 222)2(πω=== (g r 为轨道所在处重力加速度) 3.应用实例(1)天体质量M 、密度ρ的估算测出卫星绕天体做匀速圆周运动的半径r 和周期T , 由r T m r Mm G 22)2(π=得2324GT r M π=,3233334RGT r R M V M ππρ===,R 为天体的半径.当卫星沿天体表面绕天体运行时,r =R ,则23GTπρ= (2)卫星的绕行速度、角速度、周期与半径R 的关系①由r v m rMm G 22=得r GM v =知:r 越大,v 越小. ②由r m rMm G 22ω=得3r GM =ω知:r 越大,ω越小. ③由r T m rMm G 22)2(π=得GMr T 324π=知:r 越大,T 越大.变式训练1-1 2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来(如图4-4-2所示).“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的半径为2r ,则可以确定( )A .卫星与“神舟七号”的加速度大小之比为1∶4B .卫星与“神舟七号”的线速度大小之比为1∶C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它做自由落体运动1-2 近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T ,则火星的平均密度ρ的表达式为(k 为某个常数)( )A .T k =ρB .ρ=kTC .ρ=kT 2D .2Tk =ρ题型2 天体表面重力加速度【例2】 火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2gB .0.4gC .2.5gD .5g以题说法星体表面及其某一高度处的重力加速度的求法设天体表面的重力加速度为g ,天体半径为R ,则2R Mm G mg =,即)或22(gR GM R GM g ==若物体距星体表面高度为h ,则2/)(h R Mm G mg +=,即g h R R h R GM g 22/)()(+=+= 变式训练2-1 英国《新科学家(New Scientist)》杂志评选出了2008年度世界8项科学之最,在XTEJ1650500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M和半径R 的关系满足Gc R M 22= (其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( )A .108 m/s 2B .1010 m/s 2C .1012 m/s 2D .1014 m/s 2题型3 宇宙速度问题的分析【例3】 我国成功发射一颗绕月运行的探月卫星“嫦娥一号”.设该卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的811,月球的半径约为地球半径的41,地球上的第一宇宙速度约为7.9 km/s ,则该探月卫星绕月运行的速率约为( )A .0.4 km/sB .1.8 km/sC .11 km/sD .36 km/s以题说法(1)解决此类题的关键:要明确卫星的第一宇宙速度等于最大环绕速度.(2)解决万有引力定律的应用问题,尽管题目很多,但其基本方法是不变的,即把天体的运动看成圆周运动,万有引力提供向心力.变式训练3-1 北京时间2007年11月7号上午8点24分,在北京航天飞行控制中心的控制下,嫦娥一号卫星主发动机点火成功,工作10分钟后,发动机正常关机,嫦娥一号进入距月球表面约200公里的圆轨道.设月球半径约为地球半径的1/4,月球质量约为地球质量的1/81,不考虑月球自转的影响,据此完成下列问题.(地球表面处的重力加速度g 取10 m/s2),地球半径R =6 400 km ,4.12=计算结果保留两位有效数字)(1)在月球上要发射一颗环月卫星,则最小发射速度多大?(2)嫦娥一号卫星在距月球表面约200公里绕月做匀速圆周运动的速度大小约为多少?3-1 如图4-4-3所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )A .R r a a =21B .221)(rR a a =C .R r v v =21D .rR v v =21。
高一物理万有引力与航天复习资料
知识点复习一、行星运动的三大定律二、万有引力定律及其应用1.万有引力定律(1)基本方法:①把天体的运动看成运动,其所需向心力由万有引力提供:。
(写出方程)②在忽略天体自转影响时,天体表面的重力加速度:。
(写出方程)2.应用(1)求重力加速度。
(2)估算天体的质量、天体密度。
(3)求环绕天体的V、、T。
3.宇宙速度和人造卫星。
(1)第一宇宙速度是指:。
求V1的方法:。
第二宇宙速度是指:。
第三宇宙速度是指:。
(2)卫星轨道的特点人造卫星绕地球做匀速圆周运动的圆心落在上。
同步卫星的特点:定周期、定高度、定轨道。
卫星的变轨分析:抓住万有引力与向心力的大小关系去分析。
向心、离心运动。
【典型例题】1、一颗质量为m的人造卫星,在距地面高度为h的圆轨道上运动,已知地球的质量为M,地球半径为R,引力常量为G,求解下列问题。
(1)卫星绕地球运动的向心加速度。
(2)卫星绕地球运动的周期。
(3)卫星绕地球运动的动能。
2、宇航员站在一个星球表面上的某高处,沿水平方向抛出一个小球,经过时间T小球落到星球表面,测得抛出点与落地点间的距离为L.若抛出时的初速度增大到原来的2倍,3则抛出点与落地点间距离为L,已知两落地点在同一水平面上,该星球半径为R,万有引力常数为C,求出该星球的质量。
3、宇航员在月球表面完成下面实验:在一个固定的竖直光滑圆弧轨道内部的最低点,静止一只质量为m的小球(可视为质点)如图所示,当给小球水平初速度v0时,刚好能使小球在竖直面内做完整的圆周运动。
已知圆弧轨道半径为r,月球的半径为R,万有引力常量为G,若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?【强化训练】1、关于地球同步卫星,下列说法中正确的是( )A.地球同步卫星只是依靠惯性运动。
B.质量不同的地球同步卫星轨道高度不同。
C.质量不同的地球同步卫星线速度不同。
D.所有地球同步卫星的加速度大小相同。
2、对人造地球卫星,下列说法正确的是( )A.由v=r ω,卫星轨道半径增大到原来的2倍时,速度增大到原来的2倍。
第六章+万有引力与航天+章末复习讲义-2021-2022学年高一下学期物理人教版必修2
万有引力与航天知识梳理要点一、开普勒三大定律①椭圆定律所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。
②面积定律行星和太阳的连线在相等的时间间隔内扫过相等的面积。
③调和定律所有行星绕太阳一周的恒星时间(T i)的平方与它们轨道长半轴(a i)的立方成比例,即T 12T 22=a 13a 23要点二、基本等式:2.1、在处理天体的运动问题时,通常把天体的运动看成是匀速圆周运动,其所需要的向心力由万有引力提供。
其基本关系式为:GMm r 2=mv 2r=mω2r =m4π2T 2r =4mπ2f 2r .2.2、掌握“一模”“两路”“三角”,破解天体运动问题(1)一种模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看作质点,围绕中心天体(视为静止)做匀速圆周运动。
(2)两条思路:①动力学思路。
万有引力提供向心力,即G Mm r 2=ma ,a =v 2r=ω2r =4π2T 2r ,这是解题的主线索。
②对于天体表面的物体:忽略自转时G Mm r 2=mg 或GM =gR 2(R 是天体半径、g 是天体表面重力加速度)2.3、卫星的绕行速度v 、角速度ω、周期T 与轨道半径r 的关系 由G Mm r 2=m v 2r ,得v =√GM r,则r 越大,v 越小. 由G Mm r 2=mω2r ,得ω=√GM r 3,则r 越大,ω越小. 由GMm r 2=mω2r ,得T =√4π2r 3GM,则r 越大,T 越大.要点三、卫星变轨与双星(1)由低轨变高轨,需增大速度,稳定在高轨道上时速度比在低轨道小. (2)由高轨变低轨,需减小速度,稳定在低轨道上时速度比在高轨道大.(3)在圆轨道上卫星做匀速圆周运动,在椭圆轨道上靠近行星则加速,远离行星则减速(4)双星系统是指由两颗恒星组成,是指两颗恒星各自在轨道上环绕着共同质量中心的恒星系统。
S 近=S 远12v 近∙t ∙a =12v 远∙t ∙b 其中,确定天体表面g 的方法有: (1)测重力法;(2)平抛(或竖直上抛)物体法; (3)近地卫星环绕法.如右图:Gm 1m 2L2=m 1L 1ω2=m 2L 2ω2 L 1+L 2=L要点四、宇宙速度(1) 第一宇宙速度:推导过程为:由mg=m v12R =G MmR2,得:v1=√GMR=√gR=7.9km/s.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.(2) 第二宇宙速度:v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度.(3) 第三宇宙速度:v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度.要点五、卫星通信地球卫星之间的通信采用微波,直线传播,所以只有在两卫星之间没有阻隔才能相互通信,所以要注意卫星们与地球之间的几何关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 万有引力与航天(复习设计)★新课标要求1、理解万有引力定律的内容和公式。
2、掌握万有引力定律的适用条件。
3、了解万有引力的“三性”,即:①普遍性②相互性 ③宏观性4、掌握对天体运动的分析。
★复习重点万有引力定律在天体运动问题中的应用 ★教学难点宇宙速度、人造卫星的运动★教学方法:复习提问、讲练结合。
★教学过程(一)投影全章知识脉络,构建知识体系(二)本章要点综述 1、开普勒行星运动定律第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆周期定律 开普勒行星运动定律轨道定律 面积定律发现 万有引力定律 表述 G 的测定 天体质量的计算 发现未知天体 人造卫星、宇宙速度 应用 万有引力定律的一个焦点上。
第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
即:32a kT=比值k 是一个与行星无关的常量。
2、万有引力定律(1)开普勒对行星运动规律的描述(开普勒定律)为万有引力定律的发现奠定了基础。
(2)万有引力定律公式:122m m F Gr=,11226.6710/GN m kg-=⨯⋅(3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。
3、万有引力定律在天文学上的应用。
(1)基本方法:①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:222M m vGmm rrrω==②在忽略天体自转影响时,天体表面的重力加速度:2M g GR=,R为天体半径。
(2)天体质量,密度的估算。
测出环绕天体作匀速圆周运动的半径r ,周期为T ,由2224M m G mrrTπ=得被环绕天体的质量为2324r M G Tπ=,密度为3223M rVGT Rπρ==,R 为被环绕天体的半径。
当环绕天体在被环绕天体的表面运行时,r =R ,则23G Tπρ=。
(3)环绕天体的绕行速度,角速度、周期与半径的关系。
∴r 越大,v 越小②由22M m Gm rrω=得ω=∴r 越大,ω越小③由2224M m GmrrTπ=得T=∴r 越大,T 越大 (4)三种宇宙速度①第一宇宙速度(地面附近的环绕速度):v 1=7.9km/s ,人造卫星在地面附近环绕地球作匀速圆周运动的速度。
②第二宇宙速度(地面附近的逃逸速度):v 2=11.2km/s ,使物体挣脱地球束缚,在地面附近的最小发射速度。
③第三宇宙速度:v 3=16.7km/s ,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。
(三)本章专题剖析1、测天体的质量及密度:(万有引力全部提供向心力)由rT m rMm G 222⎪⎭⎫⎝⎛=π 得2324GTr Mπ=又ρπ⋅=334R M得3233RGT rπρ=【例1】继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7年35.2亿公里在太空中风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族。
这是人类首次针对土星及其31颗已知卫星最详尽的探测!若“卡西尼”号探测器进入绕土星飞行的轨道,在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t 。
试计算土星的质量和平均密度。
解析:设“卡西尼”号的质量为m ,土星的质量为M . “卡西尼”号围绕土星的中心做匀速圆周运动,其向心力由万有引力提供.22)2)(()(Th R m h R Mm Gπ+=+,其中nt T =,所以:2322)(4Gth R n M +=π.又334RVπ=,3232)(3RGt h R n VM +⋅⋅==πρ2、行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力)表面重力加速度:2002RGM g mg R MmG =∴=轨道重力加速度:()()22h R GMg mg h R GMmh h +=∴=+【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。
设卫星表面的重力加速度为g ,则在卫星表面有mgrGMm =2……经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。
上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。
解析:题中所列关于g 的表达式并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度。
正确的解法是卫星表面2RGm =g 行星表面2R GM =g 0 即20)(RR Mm =g g即g =0.16g 0。
3、人造卫星、宇宙速度: 宇宙速度:(弄清第一宇宙速度与卫星发射速度的区别)【例3】将卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同步轨道3。
轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:PA .卫星在轨道3上的速率大于轨道1上的速率。
B .卫星在轨道3上的角速度大于在轨道1上的角速度。
C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。
D .卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点时的加速度。
解:由22M m m v G rr=得v =而v r ω==轨道3的半径比1的大,故A 错B 对,“相切”隐含着切点弯曲程度相同,即卫星在切点时两轨道瞬时运行半径相同,又2G M a r=,故C 错D 对。
4、双星问题:【例4】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。
解析:设两星质量分别为M 1和M 2,都绕连线上O 点作周期为T 的圆周运动,星球1和星球2到O 的距离分别为l 1和l 2。
由万有引力定律和牛顿第二定律及几何条件可得对M 1:G 221RM M =M 1(T π2)2l 1 ∴M 2=21224GTl R π对M 2:G 221RM M =M 2(Tπ2)2l 2 ∴M 1=22224GTl R π两式相加得M 1+M 2=2224GTR π(l 1+l 2)=2324GTR π。
5、有关航天问题的分析:【例5】无人飞船“神州二号”曾在离地高度为H =3. 4⨯105m 的圆轨道上运行了47小时。
求在这段时间内它绕行地球多少圈?(地球半径R =6.37⨯106m ,重力加速度g =9.8m/s 2)解析:用r 表示飞船圆轨道半径r =H + R ==6. 71⨯106m 。
M 表示地球质量,m 表示飞船质量,ω表示飞船绕地球运行的角速度,G 表示万有引力常数。
由万有引力定律和牛顿定律得rm rGMm 22ω=利用G 2RM =g 得32rgR =ω2由于ω=Tπ2,T 表示周期。
解得T =Rr π2gr ,又n =Tt 代入数值解得绕行圈数为n =31。
(四)针对训练1.利用下列哪组数据,可以计算出地球质量:( )A .已知地球半径和地面重力加速度B .已知卫星绕地球作匀速圆周运动的轨道半径和周期C .已知月球绕地球作匀速圆周运动的周期和月球质量D .已知同步卫星离地面高度和地球自转周期 2.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗天体各有一颗靠近表面飞行的卫星,并测得两颗卫星的周期相等,以下判断错误的是A .天体A 、B 表面的重力加速度与它们的半径成正比 B .两颗卫星的线速度一定相等C .天体A 、B 的质量可能相等D .天体A 、B 的密度一定相等3.已知某天体的第一宇宙速度为8 km/s ,则高度为该天体半径的宇宙飞船的运行速度为A .22km/sB .4 km/sC .42 km/sD .8 km/s4.2002年12月30日凌晨,我国的“神舟”四号飞船在酒泉载人航天发射场发射升空,按预定计划在太空飞行了6天零18个小时,环绕地球108圈后,在内蒙古中部地区准确着陆,圆满完成了空间科学和技术试验任务,为最终实现载人飞行奠定了坚实基础.若地球的质量、半径和引力常量G 均已知,根据以上数据可估算出“神舟”四号飞船的A.离地高度B.环绕速度C.发射速度D.所受的向心力 5.(1998年全国卷)宇航员站在某一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。
若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L 。
已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。
求该星球的质量M 。
6.(2004年全国理综第23题,16分)在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。
假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h ,速度方向是水平的,速度大小为v 0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。
已知火星的一个卫星的圆轨道的半径为r ,周期为T 。
火星可视为半径为r 0的均匀球体。
参考答案:1.A B 2.B 3.C 4.AB5.解析:设抛出点的高度为h ,第一次平抛的水平射程为x ,则有x 2+y 2=L 2(1)由平抛运动的规律得知,当初速度增大到2倍,其水平射程也增大到2x ,可得(2x )2+h 2=(3L )2(2)由以上两式解得h=3L(3)设该星球上的重力加速度为g ,由平抛运动的规律得h=21gt 2 (4)由万有引力定律与牛顿第二定律得mg RGMm =2(式中m 为小球的质量) (5)联立以上各式得:22332GtLR M=。
点评:显然,在本题的求解过程中,必须将自己置身于该星球上,其实最简单的办法是把地球当作该星球是很容易身临其境的了。
6.以g '表示火星表面附近的重力加速度,M 表示火星的质量,m 表示火星的卫星的质量,m '表示火星表面出某一物体的质量,由万有引力定律和牛顿第二定律,有g m r m M G ''='20①rTm rMmG22)2(π= ②设v 表示着陆器第二次落到火星表面时的速度,它的竖直分量为v 1,水平分量仍为v 0,有h g v '=221 ③221v v v +=④由以上各式解得2202328v rT hr v +=π ⑤★课余作业复习本章内容,准备章节过关测试。