广东工业大学应用数学学院《随机过程》教学大纲

合集下载

《随机过程》课程大纲

《随机过程》课程大纲

《随机过程》课程大纲一、课程简介随机过程是定量研究随机现象(事件)动态变化的统计规律的一门数学分支学科。

学习《随机过程》的主要目的是:了解和认识随机现象(事件)随时间变化的统计性质;知道如何构造随机过程和随机微分方程,并能应用随机分析的方法计算和分析随机过程的统计性质。

《随机过程》主要包括随机过程基础,Poisson 过程,Markov 过程,Brownian 运动,鞅,平稳过程,随机微分方程。

二、教学内容第一章***随机过程基础主要内容:随机过程的定义及性质,随机过程的分类,随机过程的构造。

重点与难点:随机过程的构造第二章***Poisson 过程主要内容:Poisson过程的定义,时间间隔的分布,复合Poisson 过程,更新过程。

重点与难点:时间间隔的分布,更新极限定理。

第三章***Markov过程主要内容:离散时间的Markov 链(常返与非常返,遍历性,转移概率极限,平稳分布,可逆Markov 链,强Markov链);连续时间Markov链(转移速率矩阵,向前与向后微分方程,转移概率极限与平稳分布),一般状态的Markov过程,Markov随机场。

重点与难点:转移概率极限与平稳分布。

第四章***Brownian 运动主要内容:Brownian运动的定义,随机游动与Brownian运动,Brownian运动的性质,Brownian 运动的函数(几种变型)。

,重点与难点:Brownian运动的性质第五章***鞅主要内容:离散鞅(上、下鞅),鞅收敛定理,鞅中心极限定理;连续时间鞅重点与难点:鞅收敛定理。

第六章***平稳过程主要内容:平稳过程的定义,相关函数的谱表示,平稳过程的遍历性。

重点与难点:平稳过程的遍历性。

第七章***随机微分方程主要内容:均方微积分,均方意义下的随机微分方程;Ito积分与Ito公式,随机微分方程,鞅表示定理,Girsanov Teory定理与,Feynman-Kac 公式重点与难点:Ito积分与Ito公式。

随机过程教学大纲

随机过程教学大纲

《随机过程》教学大纲课程编码:1511104303课程名称:随机过程学时/学分:48/3先修课程:《数学分析》、《概率论与数理统计》适用专业:数学与应用数学开课教研室:信息与计算科学教研室一、课程性质与任务1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。

随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。

随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。

本课程开设在第6学期。

2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。

提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。

二、课程教学基本要求《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。

本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容第一章 准备知识1.教学基本要求复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望公式的意义与应用;掌握随机变量的特征函数的定义、性质与求法;理解随机变量序列的各种收敛性。

《随机过程》教学大纲

《随机过程》教学大纲

《随机过程》教学大纲随机过程是概率论的一个重要分支,研究随机事件随时间的变化规律。

随机过程广泛应用于物理学、统计学、金融学、电子工程等领域。

本教学大纲旨在介绍随机过程的基本概念和理论,并引导学生熟练掌握随机过程的性质、分类以及常用的数学模型与分析方法。

一、课程背景与目的1.1课程背景随机过程是概率论的重要分支,应用广泛,对提高学生数理统计及相关领域的分析能力具有重要意义。

1.2课程目的本课程旨在使学生:(1)理解随机过程的基本概念和性质;(2)了解常见的随机过程模型及其应用;(3)掌握随机过程的数学分析方法;(4)培养学生的数理统计思维和问题解决能力。

二、教学内容与时长2.1教学内容(1)随机过程的基本概念与定义(2)随机过程的分类与性质(3)马尔可夫链与马尔可夫过程(4)泊松过程与排队论(5)连续时间马尔可夫链与布朗运动(6)随机过程的数学分析方法2.2课程时长本课程共设为36学时,每学时45分钟。

三、教学方法3.1教学方法3.2教学手段(1)理论讲解:通过讲解相关概念、定义和定理,介绍随机过程的基本原理和性质;(2)实例分析:通过分析实际应用场景中的问题,引导学生了解随机过程的模型构建和分析方法。

(3)案例研讨:选择一些典型的随机过程案例,进行深入分析和讨论。

四、教学内容与进度安排4.1教学内容安排1-2周随机过程的基本概念与定义(1)随机过程的基本概念(2)随机过程的定义与表示方式3-4周随机过程的分类与性质(1)齐次与非齐次性(2)平稳与非平稳性(3)独立增量性与相关性(4)过程与样本函数5-6周马尔可夫链与马尔可夫过程(1)马尔可夫链的概念及性质(2)马尔可夫过程的定义与表示(3)平稳马尔可夫过程与细致平衡原理7-8周泊松过程与排队论(1)泊松过程的基本性质与定义(2)排队论的基本概念与模型(3)排队理论中的常见问题和分析方法9-10周连续时间马尔可夫链与布朗运动(1)连续时间马尔可夫链的概念与性质(2)布朗运动的定义与性质(3)连续时间马尔可夫链与布朗运动的应用11-12周随机过程的数学分析方法(1)离散时间随机过程的数学分析(2)连续时间随机过程的数学分析(3)随机过程的数值模拟和仿真4.2进度安排第一周:随机过程的基本概念与定义第二周:随机过程的分类与性质第三周:马尔可夫链与马尔可夫过程第四周:泊松过程与排队论第五周:连续时间马尔可夫链与布朗运动第六周:随机过程的数学分析方法五、考核与评价5.1考核方式本课程的考核方式为闭卷考试和课程设计报告。

《应用随机过程》教学大纲

《应用随机过程》教学大纲

《应用随机过程》教学大纲应用随机过程教学大纲一、课程简介《应用随机过程》是一门应用性较强的数学课程,主要介绍了随机过程及其在实际问题中的应用。

随机过程是对随机变量的研究,是概率论的一个重要分支。

通过本课程的学习,学生可以了解随机过程的基本概念、性质和常见的应用领域,并能够运用所学知识解决实际问题。

二、教学目标1.掌握随机过程的基本概念、性质和常用模型。

2.学会应用随机过程解决实际问题,如排队论、信号处理等。

3.培养学生的数学建模能力和分析问题的能力。

三、教学内容1.随机过程的基本概念1.1随机过程的定义1.2随机过程的分类1.3随机过程的性质2.随机过程的常见模型2.1马尔可夫链2.2马尔可夫过程2.3泊松过程2.4随机游动3.应用随机过程解决实际问题3.1排队论3.1.1M/M/1模型3.1.2M/M/s模型3.1.3M/M/1队列的平稳分析3.2信号处理3.2.1随机信号的表示3.2.2自相关函数与功率谱密度3.2.3高斯过程与线性系统四、教学方法1.理论讲解:通过课堂讲解,介绍随机过程的基本概念、性质和常见模型。

2.实例分析:针对不同应用实际问题,引导学生运用所学知识解决实际问题。

3.课堂讨论:设置讨论环节,鼓励学生主动参与,提出问题并进行交流和讨论。

4.课后作业:布置随堂练习和课后作业,巩固学生对所学内容的理解和运用能力。

五、教学评价1.平时成绩:包括作业完成情况、课堂表现等。

2.期中考试:考查学生对基本概念和性质的掌握。

3.期末考试:综合考查学生对整个课程的理解和应用能力。

六、参考教材1. Sheldon M. Ross,《随机过程学》2.吴建平,李荣华,李云龙,《随机过程与应用》七、教学时长本课程共计48学时,其中理论课程36学时,实践课程12学时。

应用随机过程教学大纲(1)

应用随机过程教学大纲(1)

应用随机过程教学大纲(1)应用随机过程教学大纲一、课程简介本课程是一门本科水平的随机过程课程,主要涵盖概率论、随机过程的基本知识、随机过程的应用以及模拟技术等方面的内容。

本课程的重点是随机过程的应用,通过具体的案例来介绍随机过程在实际中的应用。

二、教学目标1. 理解概率论和随机过程的基本概念和理论。

2. 掌握随机过程的基本性质和刻画方法。

3. 熟悉各类随机过程的应用场景和模拟技术。

4. 培养学生运用随机过程理论解决实际问题的能力。

三、课程内容1. 概率论基础知识:样本空间、事件、概率的定义,条件概率、独立性等。

2. 随机过程的基本概念:概率空间、随机过程、状态空间等。

3. 马尔可夫链:离散时间马尔可夫链、连续时间马尔可夫链。

4. 随机游走及其应用:对称随机游走、非对称随机游走、随机游走的应用。

5. 泊松过程及其应用:泊松过程的定义、泊松过程的性质、泊松过程的应用。

6. 随机过程的模拟技术:伪随机数生成方法、蒙特卡洛模拟方法。

7. 其他随机过程:布朗运动、随机震荡、排队论等。

四、教学方式1. 采用课堂教学、案例分析及模拟实验相结合的教学方法。

2. 课堂上讲解基本概念和理论,鼓励学生参与讨论。

3. 通过案例分析来让学生理解随机过程的应用。

4. 通过模拟实验来让学生体验随机过程的模拟过程。

五、教学考核1. 期中考试占总成绩40%。

2. 期末考试占总成绩60%。

3. 作业占总成绩的一定比例。

4. 平时表现和出勤情况也将纳入总成绩考虑的因素之一。

六、参考教材1. 《随机过程与应用》(第2版),高维宏,学术出版社,2015年。

2. 《随机过程概论》(第4版),唐绪峰,清华大学出版社,2016年。

3. 《随机过程入门》(第2版),梁文康,高等教育出版社,2015年。

七、结语本课程重点介绍随机过程的应用,通过具体的案例来激发学生的兴趣,并通过模拟实验来让学生更好地理解随机过程。

希望学生在本课程中能够学到有用的知识,为未来的学习和工作打下坚实的基础。

《随机过程》课程大纲

《随机过程》课程大纲
(必含信息:教材名称,作者,出版社,出版年份,版次,书号)
其它
(More)
备注
(Notes)
备注说明:
1.带*内容为必填项。
2.课程简介字数为300-500字;课程大纲以表述清楚教学安排为宜,字数不限。
课堂教学
习题二
完成要求
书面作业
第3章
Poisson过程
6
课堂
教学
习题三
完成要求
书面作

第4章
Markov过程
15
课堂
教学
习题四
完成要求
ቤተ መጻሕፍቲ ባይዱ书面作

第5章
经典鞅论
7
课堂
教学
习题五
完成要求
书面作

第6章 布朗
运动
4
课堂
教学
习题六
完成要求
书面作

第7章 随机
分析
12
课堂
教学
习题七
完成要求
书面作

第8章 平稳
过程
(1)要能根据实际问题分析它的齐次性和马氏性;(A5,B1,B2,C2)
(2) 掌握Q(qij)的求法和概率含义;(A5,B1,B2,B3,C2,C4)
(3)对生灭过程,要能根据前进方程和后退方程,求解其转移概率pij(t); (A5,B1,B2,B3,C2)
(4) 熟练掌握平稳分布的求法。(A5,B1,B2,B3,C2,C4)
在本课程中,我们将讨论生活中的许多非常有趣而又十分重要的随机过程,如每天光顾一家大型超市的人数、排队系统、生灭过程等,金融中常用的布朗运动与连续鞅,以及工程中和控制系统中经常遇到的一类随机过程——平稳过程,通过对它们的分析,可以使学生进一步巩固已学过概率论基础,结合实际问题学习随机过程可以提高学生的学习兴趣,从而提高他们分析和处理实际问题的能

随机过程教学大纲

随机过程教学大纲一、引言(100字)1.1随机过程的概念和应用1.2随机过程与确定性过程的区别1.3随机过程的分类和性质二、概率论回顾(200字)2.1概率空间和随机变量2.2概率分布函数和密度函数2.3数学期望和方差2.4大数定律和中心极限定理三、随机过程的基本概念(200字)3.1随机过程的定义和性质3.2随机过程的样本函数3.3有限维分布和联合分布3.4随机过程的平稳性四、马尔可夫过程(250字)4.1马尔可夫过程的定义和性质4.2离散时间和连续时间马尔可夫过程4.3马尔可夫链的平稳分布4.4马尔可夫链的转移概率矩阵五、泊松过程(250字)5.1泊松过程的定义和性质5.2泊松过程的计数过程和插值过程5.3泊松过程的有限维分布5.4泊松过程在实际应用中的例子六、连续时间马尔可夫链(200字)6.1连续时间马尔可夫链的定义和性质6.2连续时间马尔可夫链的转移概率矩阵6.3连续时间马尔可夫链的平稳分布6.4连续时间马尔可夫链的生成函数七、布朗运动(250字)7.1布朗运动的定义和性质7.2布朗运动的性质和假设7.3布朗运动的微分方程表示和伊藤引理7.4布朗运动的应用八、维纳过程(200字)8.1维纳过程的定义和性质8.2维纳过程的性质和应用8.4维纳过程的泛函九、马尔可夫跳跃过程(250字)9.1马尔可夫跳跃过程的定义和性质9.2马尔可夫跳跃过程的转移概率矩阵9.3马尔可夫跳跃过程的数学期望和方差9.4马尔可夫跳跃过程的应用十、随机过程的极限定理(200字)10.1大数定律的随机过程版本10.2中心极限定理的随机过程版本10.3随机过程的强、弱和均方收敛十一、应用案例分析(200字)11.1金融领域中的随机过程应用11.2通信领域中的随机过程应用11.3生物医学领域中的随机过程应用11.4工程领域中的随机过程应用十二、总结与展望(100字)12.1随机过程的关键概念和理论12.2随机过程的应用前景12.3随机过程进一步学习的方向以上是一份关于随机过程教学大纲的简要介绍。

《应用随机过程》-课程教学大纲

《应用随机过程》课程教学大纲一、课程基本信息课程代码:16055502课程名称:应用随机过程英文名称:Applied Stochastic Processes课程类别:专业课学时:32学分: 2适用对象:财经类专业本科生考核方式:考试先修课程:微积分、线性代数、概率论二、课程简介中文简介紧抓课程改革核心环节,不断提升教学质量,将“课程思政”作为融合德育与智育的融合主渠道,是逐步实现“立德树人”的综合教育理念的前进方向。

《应用随机过程》是面向经济统计专业三年级学生开设的一门必修课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系。

具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用,培养学生的科学精神,探索自然和人类的奥秘。

英文简介The course Applied Stochastic Processes is one of the compulsory courses for the junior undergraduates majoring in Economic Statistics,which is usually viewed as the dynamic part of probability theories. It focuses on the dynamic feature of stochastic phenomena and emphasizes modeling the stochastic phenomena varying with time and space .Moreover,it explores the inner property and relationship among various models and it is quite theoretical and widely used in social science,natural science,Economic and management science etc.三、课程性质与教学目的本课程是经济统计专业一门应用性很强的专业课。

教学大纲_随机过程

教学大纲_随机过程一、课程名称:随机过程二、教学目标:1.了解随机过程的基本概念和特性;2.掌握随机过程的数学表示和描述方法;3.能够分析和应用随机过程的统计特性和性质;4.能够熟练运用随机过程解决实际问题;5.培养学生的分析和解决问题的能力。

三、教学内容:1.随机过程的基本概念a.随机过程的定义与分类;b.随机过程的样本函数和样本空间;c.随机过程的状态集合和转移概率。

2.随机过程的数学表示a.随机变量序列和随机过程的关系;b.随机过程的独立增量和平稳性;c.随机过程的马尔可夫性质。

3.随机过程的统计特性a.随机过程的均值和方差;b.随机过程的相关函数和自相关函数;c.随机过程的功率谱密度。

4.随机过程的性质与分析方法a.马尔可夫链和马尔可夫过程;b.稳态与瞬态分析方法;c.随机过程的极限性质。

5.随机过程在实际问题中的应用a.随机过程模型的建立;b.排队论中的应用;c.通信系统中的应用;d.金融风险评估中的应用。

四、教学方法:1.理论讲授:通过授课的方式,向学生介绍随机过程的基本概念、数学表示、统计特性和性质,并分析其应用。

2.示例分析:通过实例,引导学生分析和应用随机过程解决实际问题,提高学生的问题分析和解决能力。

3.研讨讲解:组织学生讨论、交流和分享相关的案例和经验,加深对随机过程的理解和应用。

4.实践操作:引导学生运用相关的数学工具和计算机软件,进行随机过程的建模和分析,培养学生的实际操作能力。

五、教材和参考书籍:。

教学大纲_随机过程

教学⼤纲_随机过程《随机过程》教学⼤纲课程编号:121213A课程类型:□通识教育必修课□通识教育选修课□√专业必修课□专业选修课□学科基础课总学时:48 讲课学时:32实验(上机)学时:16学分:3适⽤对象:数学与应⽤数学(⾦融数学)、统计学先修课程:数学分析、⾼等代数、概率论毕业要求:1.掌握数学、统计及计算机的基本理论和⽅法;2.建⽴数学、统计等模型解决⾦融实际问题;3.具备国际视野,并且能够与同⾏及社会公众进⾏有效沟通和交流。

⼀、教学⽬标随机过程是对随时间和空间变化的随机现象进⾏建模和分析的学科,在物理、⽣物、⼯程、⼼理学、计算机科学、经济和管理等⽅⾯都有⼴泛的应⽤。

本课程介绍随机过程的基本理论和⼏类重要随机过程模型与应⽤背景,通过本课程的学习,使学⽣获得随机过程的基本知识和基本运算技能,同时使学⽣在运⽤数学⽅法分析和解决问题的能⼒得到进⼀步的培养和训练,为学习有关专业课程提供必要的数学基础。

⼆、教学内容及其与毕业要求的对应关系(⼀)教学内容随机过程的基本概念(有限维分布、数字特征,复值随机过程,特征函数),⼏种重要随机过程(独⽴过程,独⽴增量过程,伯努利过程,正态过程,维纳过程),泊松过程(定义(计数过程)与例⼦,泊松过程的叠加与分解,时间间隔与等待时间的分布,复合泊松过程,⾮齐次泊松过程),更新过程介绍,马尔科夫过程(离散时间的马尔科夫过程定义及转移概率,C-K⽅程,马⽒链的分布,遍历性与平稳分布,状态分类与分解,马⽒链的应⽤,连续时间的马尔可夫链的定义与基本性质,鞅论初步),平稳随机过程(平稳过程及相关函数,随机微积分,各态历经,谱密度)。

(⼆)教学⽅法和⼿段教师课上讲授理论知识内容及相关基本例题,学⽣课下练习及教师答疑、辅导相结合。

(三)考核⽅式实⾏过程考核和期末考试相结合的⽅式,期末闭卷考试为主(70%),平时过程考核为辅(30%)。

学期期末闭卷考试⼀次,采⽤统⼀的考题和统⼀的评分标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机过程》课程教学大纲
Stochastic Process
课程代码:课程性质:专业基础理论课/必修
适用专业:信息计算、统计开课学期:5
总学时数:56 总学分数:3.5
编写年月: 2007.5 修订年月:2007.7
执笔:涂钰青
一、课程的性质和目的
本课程属于随机数学系列课程的组成部分。

随机数学系列课程是非数学类研究生数学公共基础课程之一。

随机过程是随机数学的一个高级组成部分,也是应用数学的基本研究对象之一,它研究随机现象的数学理论和方法。

在自然科学、工程技术和经济金融领域有广泛应用,学会求解随机数学问题,是众多领域的研究生的最基本的数学素养之一。

通过该门课程的学习,要求学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用于解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。

提高自己在建立随机数学模型、分析和解决问题方面的水平和能力。

二、课程教学内容及学时分配
本课程作为随机数学系列课程的组成部分,其主干内容包括随机过程的基本理论、思想和方法,教学内容分为五部分:随机过程引论、Poisson过程、Markov过程、平稳过程和Brown运动,以下对这五部分教学内容做出详细介绍。

第一章随机过程引论(6学时)
本章内容:随机过程基本概念和例子有限维分布和数字特征平稳过程和独立增量过程条件期望矩母函数及生成函数随机变量序列的收敛性
本章要求
1.了解参数集的定义, 理解随机过程的基本概念和例子;
2.了解有限维分布的概念,掌握有限维分布的计算及其数字特征;
3.理解严平稳和宽平稳的基本定义,掌握平稳独立增量过程的基本定义;
4.理解条件期望的概念, 熟练掌握条件期望的性质和计算;
5.理解矩母函数和生成函数的定义, 掌握用矩母函数来计算随机变量的某些数字特征;
6.了解随机变量序列的收敛性定义,理解均方收敛的定义。

第二章 Poisson过程(10学时)
本章内容:Poisson过程与Poisson过程相联系的若干分布非齐次Poisson过程复合Poisson过程标值Poisson过程空间Poisson过程更新过程
本章要求
1.理解Poisson过程的基本定义,掌握满足Poisson过程的4个条件;
2.了解Poisson过程样本路径的阶梯函数服从指数分布,事件到达时间服从 分布,理解等待时间的联合密度的计算公式;
3.理解非齐次Poisson过程的基本定义,掌握非齐次Poisson过程满足的条件;
4.了解复合Poisson过程的基本概念;
5.了解标值Poisson过程的基本概念;
6.了解空间Poisson过程的基本定义;
7.理解更新过程的基本定义,掌握更新过程的分布。

第三章 Markov过程(14学时)
本章内容:Markov链的定义和例子互达性和周期性常返与瞬过Markov链的极限定理与平稳分布分支过程连续时间Markov链纯生过程生灭过程Kolmogorov向后向前微分方程
本章要求
1.了解Markov链的基本定义和一步转移概率的定义,熟练掌握转移概率满足条件和计算;
2.理解可达、互达与周期的定义,理解非周期不可约的Markov链性质,掌握互达性的等
价关系、互达的周期和周期的基本性质;
3.理解常返和顺过的基本定义,理解零常返的概念,掌握常返的充要条件;
4.理解Markov链的基本极限定理,理解Markov链的平稳分布,掌握遍历的不可约Markov链及其极限分布之间关系的重要定理;
5.了解分支过程的基本概念,理解分支过程中群体消亡与生长到无穷的重要定理;
6.理解连续时间Markov链的基本定义及其转移概率,掌握Markov过程转移概率满足的条件;
7.了解纯生过程的基本概念,了解Yule过程;
8.了解生灭过程的基本概念和满足条件;
9.理解Kolmogorov向后微分方程和向前微分方程的表达式,理解Markov过程的性质。

第四章平稳过程(10学时)
本章内容:平稳过程的定义和例子遍历性定理平稳过程的协方差函数几个常见随机信号的协方差函数功率谱密度一般预报理论平稳序列的预报
本章要求
1.了解周期平稳过程的含义,理解平稳过程的基本定义、严平稳和宽平稳随机过程、高斯过程和滑动平均序列;
2.了解遍历性的基本概念,理解均值遍历和协方差函数遍历,掌握均值遍历性定理和协方程函数遍历性定理;
3.理解协方差函数的基本性质;
4.了解振幅调制波、频率调制波和平方检波;
5.了解确定性时间函数的能量、能谱密度、功率谱的基本概念,理解平稳过程功率谱的概念,理解Wiener-Khintchine公式;
6.了解最小均方误差预报,理解最佳预报的基本含义;
7.了解平稳序列的预报的基本概念,理解自回归模型的线性最佳预报和滑动平均模型的预报。

第五章 Brown运动(14学时)
本章内容:Brown运动的定义Brown运动的性质随机积分随机微分关于Brown运动的积分常系数线性随机微分方程n阶常系数线性随机微分方程Ito微分公式一般随机微分方程简介
Brown运动的其他一些应用
本章要求
1.了解Brown运动的物理含义,理解Brown运动的基本定义;
2.了解Brown桥过程的含义,理解Brown运动的基本性质;
3.了解随机积分、随机微分的基本定义,理解Brown运动的积分及其计算;
4.了解随机微分方程引入的物理背景,理解一般常系数线性随机微分方程和n阶常系数线性随机微分方程;
5.了解Ito微分公式的金融背景,理解Ito微分公式;
6.了解扩散方程,理解Black-Scholes公式及其在金融中的应用;
7.了解Donsker定理、反正弦律和Brown桥在经验分布函数中的应用。

三、课程教学的基本要求
随机过程是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。

是一门应用性很强的学科,教学上注意引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在工程、经济管理、生命科学、人文社科以及科学研究中出现的随机问题的数学方法,强调注重理论联系实际的教学思想,提高学生分析问题和解决问题的能力,通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。

课堂教学采用和现代化的教学手段结合的形式,利用多媒体教学手段效率高的特点,结合传统板书的讲授形式。

(一)课堂讲授
由于本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上应注意经常列举概率在各领域成功应用的实例,来联系已学过课程的有关概念、理论和方法,使同学加深对本课程的基本概念、基本理论和基本方法的理解。

(二)习题课
同时配合理论教学需要,习题课以典型例题分析为主,并适当安排开阔思路及综合性的练习及讨论,
使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论知识建立数学模型、解决实际问题的能力。

(三)课外作业
课外作业的内容选择基于对基本理论的理解和巩固,培养综合计算和分析、判断能力以及计算能力。

习题以计算性小题为主,平均每学时3~6道题。

(四)考试
考试采用闭卷的形式,题型包括基本概念,基本理论的选择题,真空题题型和分析计算题。

总评成绩:课外作业,平时测验,实验占30%;期末闭卷考试占70%
四、本课程与其它课程的联系与分工
先修课程:数学分析高等代数概率论、数理统计等
后续课程:时间序列统计的预测与决策等
五、建议教材及教学参考书
[1] 方兆本、缪柏其编著,《随机过程》(第二版),科学出版社,2004
[2] 盛骤等编,《概率论与数理统计》,浙江大学编,高等教育出版社
[3]《概率论》第三册——随机过程,复旦大学,人民教育出版社,1981
[4]钱敏平,龚光鲁,《应用随机过程》,北京大学出版社,1998
[5]S.M. Ross,《Stochastic Processes》, John Wiley & Sons。

相关文档
最新文档