考研数学 概率与数理统计重要例题分析(21)
[全]考研数学一之概率论与数理统计真题答案解析[下载全]
![[全]考研数学一之概率论与数理统计真题答案解析[下载全]](https://img.taocdn.com/s3/m/2ccdae9e647d27284b7351fa.png)
考研数学一之概率论与数理统计真题答案解析
2020年考研数学一选择题部分考了2道概率论与数理统计的题目,选择题第七题主要考察了事件概率的计算;选择题第8题考察了中心极限定理。
填空题部分考了1道概率论与数理统计的题目,题(14)主要考察了协方差的计算。
解答题考察了2道概率论与数理统计的题目,题(22)主要考察分布函数和正态分布的性质;题(23)主要考察了最大似然估计。
题(7)(2020年考研数学一)
分析:本题主要考察事件概率的计算和加法公式的应用。
解:由P(A-B)=P(A)-P(AB)得:
题(8)(2020年考研数学一真题)
分析:主要利用列维-林德伯格中心极限定理来解题。
解:由列维-林德伯格中心极限定理可得:
题(14)(2020年考研数学一真题)
分析:本题主要考察协方差的计算和不定积分的计算。
Cov(X,Y)=E(XY)-EX*EY 解:由题意得EX=0,
题(22)(2020年考研数学一真题)
分析:本题主要考察利用分布函数得定义来求分布函数。
解:由分布函数得定义得
题(23)(2020年考研数学一真题)
分析:本题主要考察最大似然估计得求法。
解:
总结:总的来说,2020年考研数学一概率部分还是考察考生对基础知识点的掌握程度。
考研数学概率统计题解析

考研数学概率统计题解析概率统计是考研数学中的一门重要的内容,也是很多考生非常关注和重视的一部分。
在考试中,概率统计题目往往需要考生熟练掌握各种概率统计知识和解题方法,才能顺利解答。
一、概率基础知识1. 概率的定义概率是指某个事件发生的可能性大小的度量。
通常用数值来表示概率,取值范围在0和1之间,且满足以下条件:- 必然事件的概率为1;- 不可能事件的概率为0;- 事件的概率介于0和1之间。
2. 事件的关系与运算- 互斥事件:指不能同时发生的事件。
如果A和B是互斥事件,那么P(A∪B) = P(A) + P(B)。
- 相互独立事件:指事件A的发生与事件B的发生没有任何关系。
如果A和B是相互独立事件,那么P(A∩B) = P(A) × P(B)。
3. 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
设A和B是两个事件且P(A)>0,那么事件B在事件A已发生的条件下发生的概率记作P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
二、概率计算方法1. 排列组合法排列组合法是解决计数问题的一种常用方法。
在概率统计题中,经常需要使用排列和组合的知识。
排列是指从n个不同元素中取出m个元素按照一定顺序排列的方法数,记作Amn;组合是指从n个不同元素中取出m个元素按照任意顺序排列的方法数,记作Cmn。
2. 等可能性原理等可能性原理是指在一定条件下,如果每个事件发生的可能性是相等的,那么事件的概率将与事件元素的个数成正比。
例如,抛一枚均匀的硬币,正面和反面的概率都是1/2。
三、随机变量与概率分布1. 随机变量随机变量是指数值由某个概率分布来决定的变量。
随机变量可以分为离散随机变量和连续随机变量两种类型。
2. 概率分布概率分布是指随机变量取不同值的概率。
离散随机变量的概率分布可以用概率分布列(Probability Mass Function,简称PMF)来表示;连续随机变量的概率分布可以用概率密度函数(Probability Density Function,简称PDF)来表示。
考研数学真题 概率难点分析

考研数学真题概率难点分析引言概率论它是数学的一个重要分支,同时也是人们日常生活中的一个重要工具。
考研数学中的概率难点十分多,考研数学真题里也涉及到大量的概率相关考点。
本文将对考研数学的概率难点进行分析,帮助考生更好地掌握概率相关知识,更好地应对考研数学真题。
难点一:条件概率条件概率在考研数学中是一个非常重要的考点,也是比较难掌握的。
主要难点表现在条件概率的定义和计算上。
在考研数学真题中,出现条件概率相关的题目也非常多。
有一类比较典型的条件概率题目是“船舶捕获问题”,即假设一个捕鱼工艇在海上捕到了一条大鱼,我们想求这条鱼来自哪个海域。
这类问题需要我们根据给定的信息来计算概率,然后得到答案。
下面举个例子:【例】假设“好酒鬼”上海分公司出售的一批啤酒,20%来自青岛,30%来自德国,50%来自浙江。
青岛啤酒中5%为次品,德国啤酒中10%为次品,浙江啤酒中3%为次品。
现在从这批啤酒中任取一瓶,则此瓶啤酒是次品的概率是多少?解:设事件A为选中青岛啤酒的概率,B为选中德国啤酒的概率,C为选中浙江啤酒的概率,D为此瓶啤酒为次品的概率,则此瓶啤酒为次品的全概率公式为:$$ P(D)=P(D|A)P(A)+P(D|B)P(B)+P(D|C)P(C)\\\\=\\frac{1}{20}\\times0.05+\\frac{3}{10}\\times0.1+\\frac{1}{2}\\times0.03=0.048 $$上面的例子中,我们要求的是事件D的概率,最终根据全概率公式,得到结果是0.048。
在考研数学真题中,此类条件概率的题目非常常见。
考生在做这类题目时,需要认真分析题目中提供的条件,正确理解题目,搞清楚每个选项与各个条件之间的关系后,再进行求解。
难点二:贝叶斯公式贝叶斯公式也是概率论中的一个重要定理,它在考研数学中也是一个常见的考点。
贝叶斯公式的难点在于理解和应用,考生需要熟练掌握该公式的使用方法,才能够在考试中得心应手。
2021年概率论与数理统计考研真题详解

2021年概率论与数理统计考研真题详解2021年概率论与数理统计考研题库【考研真题精选+章节题库】目录第一部分考研真题精选一、选择题二、填空题三、解答题第二部分章节题库第1章概率论与数理统计的基本概念第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析•试看部分内容考研真题精选一、选择题1设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=1 /4,P(AB)=0,P(AC)=P(BC)=1/12,则A,B,C中恰有一个事件发生的概率为()。
[数一2020研]A.3/4B.2/3C.1/2D.5/12【答案】D查看答案【解析】只发生A事件的概率:只发生B事件的概率:只发生C事件的概率:A ,B ,C 中恰有一个事件发生的概率:故选择D 项。
2设A ,B 为随机事件,则P (A )=P (B )的充分必要条件是( )。
[数一2019研]A .P (A ∪B )=P (A )+P (B )B .P (AB )=P (A )P (B )C .P (A B _)=P (B A _)D .【答案】C 查看答案【解析】选项A 只能说明事件A 与事件B 不相容,选项B 只能说明事件A 与事件B 相互独立,并不能说明P (A )=P (B )。
对选项D 来说,若令B =A _,等式恒成立,亦不能说明P (A )=P (B ),故选C 。
3设事件A ,B 相互独立,P (B )=0.5,P (A -B )=0.3,则P (B -A )=( )。
[数一、数三2014研]A .0.1B .0.2D.0.4【答案】B查看答案【解析】P(A-B)=0.3=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)-0.5P(A)=0.5P(A),故P(A)=0.6,P(B-A)=P(B)-P(AB)=0.5-0.5P(A)=0.2。
概率与数理统计历年考研试题及解答(数一、数三、数四)

概率与数理统计历届真题第一章随机事件和概率数学一:1〔87,2分〕设在一次试验中A 发生的概率为p ,现进展n 次独立试验,如此A 至少发生一次的概率为;而事件A 至多发生一次的概率为。
2〔87,2〕三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于。
取出的球是白球,此球属于第二个箱子的概率为。
3〔88,2分〕设三次独立试验中,事件A 出现的概率相等,假如A 至少出现一次的概率等于2719,如此事件A 在一次试验中出现的概率为。
4〔88,2分〕在区间〔0,1〕中随机地取两个数,如此事件“两数之和小于56〞的概率为。
5〔89,2分〕随机事件A 的概率P 〔A 〕=0.5,随机事件B 的概率P 〔BP 〔B | A 〕=0.8,如此和事件A B 的概率P 〔A B 〕=。
6〔89,2分〕甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现目标被命中,如此它是甲射中的概率为。
7〔90,2分〕设随机事件A ,B 与其和事件A B 的概率分别是0.4, 0.3和0.6,假如B 表示B 的对立事件,那么积事件A B 的概率P 〔A B 〕=。
8〔91,3分〕随机地向半圆0<y <22x ax -(a 为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比。
如此原点与该点的连线与x 轴的夹角小于4π的概率为。
9〔92,3分〕P 〔A 〕=P 〔B 〕=P 〔C 〕=161)()(,0)(,41===BC P AC P AB P ,如此事件A 、B 、C 全不发生的概率为。
10〔93,3分〕一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,如此第二次抽出的是次品的概率为。
11〔94,3分〕A 、B 两个事件满足条件P 〔AB 〕=P 〔A B 〕,且P 〔A 〕=p ,如此P 〔B 〕=。
考研高等数学中概率统计试题分析

考研高等数学中概率统计试题分析摘要:本文分析了概率论与数理统计的内容和题型,对其难度系数进行了打分;通过对难度系数的剖析,说明了概率论与数理统计部分的解答题(22分)常考的范围,便于考生复习时抓住重点,对于考研的同学有一定的指导作用.关键词:概率论与数理统计研究生考试高等数学在考研的高等数学中,满分是150分,概率论与数理统计的内容,34分,占大约22.7%,其中选择题8分(两小题),填空题4分(一小题),解答题22分(两大题);本文对于概率论与数理统计的内容,根据公式(或概念)的难度,将其难度划分为若干等级,进行打分;对于题型,根据解题时所用的知识点的多少,也将其难度划分为若干等级,进行打分.最后,根据这两个等级,对难度系数进行综合打分.具体解释如下:对于公式,根据其难度,分为三个等级,其难度系数分布赋予1、1.5、2.比如,古典概型的公式,P(A)=,其中n为事件A的样本点数,n为样本点总数,该公式很简单,难度系数定义为1;再比如,全概率公式,比较复杂,难度系数定义为 1.5;至于连续型随机变量(简记为r.v)的条件密度公式f(y|某)=,其中f(某,y)是连续型随机变量(随机变量简记为r.v)(某,Y)的联合密度函数,f(某)为(某,Y)关于某的边缘密度函数,即使f(某,y)和f(某)都求出了,用条件密度公式f(y|某)=时,还需要考虑两者的公共定义域,因此难度系数规定为2.对于有关概念,也根据其难度,分为三个等级,其难度系数也分布赋予1、1.5、2.比如:独立性概念,比较简单,难度系数定义为1;再比如,t-分布的定义,涉及一个标准正态分布和一个?掊-分布,且还要求独立,涉及的内容较多,难度系数规定为1.5;至于极大似然估计的概念,比较难理解,且离散时和连续时,其似然函数还不一样,故难度系数规定为 2.对于题型,根据其解题时所用到的知识点的多少,对其难度进行打分.所用的知识点多,难度系数就高,比如:古典概型的计算;一般只用到排列与组合的知识,难度系数定义为1;再比如:涉及极大似然估计的题,解题时要用到求导数的知识,解方程的知识,故难度系数定义为2,有时还需验证无偏性,因此难度系数定义为≥2.对于所用的知识点,也根据知识的难易和运算量进行打分,比如:对于一般的积分,难度系数规定为1;对于积分且需要讨论的,难度系数规定为1.5;对于在一个题目中,多次用积分运算的,比如:对于连续型r.v方差的计算,其难度系数也定义为1.5.下面我们分析概率论与数理统计的主要内容和题型,对其综合难度系数进行如下分析.难度系数表近年来,研究生考试中,解答题22分(两大题),基本上是考查学生综合运用知识的能力,这类考题其综合难度系数一般,下面针对近年来的试题作具体分析:(下面的1—10题,见文献[1].11—12题,见文献[2]).1.(2007年数学一、三(23),11分)设二维随机变量(某,Y)的概率密度为f(某,y)=2-某-y,0(1)求P{某>2Y};(2)求Z=某+Y的概率密度f(z).难度分析:求概率,用积分,难度系数为1;求二维随机变量的函数的密度函数,公式难度系数1.5;再用积分计算,且涉及讨论,难度系数为1.本大题的难度系数为3.5.2.(2007年数学一、三(24),11分)设总体的概率密度为f(某;θ),0其中参数θ(0(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断4是否为θ的无偏估计量,并说明理由.难度分析:求矩估计量,难度系数为3.5,再验证无偏性,难度系数1,本大题综合难度系数为4.5.3.(2022年数学一、三(22),11分)设随机变量与相互独立,某概率分布为P{某=i}=(i=-1,0,1),Y的概率密度为f(y)=1,0≤y≤10,其他,记Z=某+Y(1)求P{Z≤|某=0};(2)求Z的概率密度.难度分析:求条件概率,难度系数为2.5;求随机变量函数的分布,难度系数为3,综合难度系数为5..5.4.(2022年数学一、三(23),11分)某,某,...某是总体为N (μ,σ)的简单随机样本.记=某,S=(某-),T=-S,(1)证T是的无偏估计量;(2)当μ=0时σ=1时,求DT.难度分析:证明无偏性,需要求期望,难度系数为3,再求方差,难度系数为1,综合难度系数为4.5.(2022年数学三(22),11分)(22)(本题满分11分)设二维随机变量(某,Y)的概率密度为f(某,y)=e,0(I)求条件概率密度f(y|某);(II)求条件概率P=[某≤|Y≤1].难度分析:求条件密度,难度系数为3;再求条件概率,用积分,难度系数为1,综合难度系数为4.6.(2022年数学一、三(23),11分)袋中有一个红球,两个黑球,三个白球,现有放回的从袋中取两次,每次取一球,以某,Y,Z分别表示两次取球的红、黑、白球的个数.(Ⅰ)求P{某=1|Z=0};(Ⅱ)求二维随机变量(某,Y)的概率分布.难度分析:求条件概率,难度系数为2.5;求联合概率分布,难度系数为1,综合难度系数为3.5.7.(2022年数学一、三(22),11分)设二维随机变量的概率密度为f(某,y)=Ae,-∞求常数A及条件概率密度f(y|某).难度分析:求常数,用积分,难度系数为1;再用积分求边缘密度,难度系数为0.5;最后求条件概率密度,难度系数为2.综合难度系数为3.5.8.(2022年数学三(23),11分)箱中装有6个球,其中红、白、黑球的个数分别为1、2、3个.现从箱中随机地取出2个球,记某为取出的红球个数,Y为取出的白球个数.(1)求二维随机变量(某,Y)的概率分布;(2)求Cov(某,Y).难度分析:求二维随机变量(某,Y)的概率分布,难度系数为2;求Cov(某,Y),公式难度系数为1.5;综合难度系数为3.5.9.(2022年数学一、三(22),11分)设与的概率分布分别为且P(某=Y)=1.求:(1)(某,Y)的分布;(2)Z=某Y的分布;(3)某与Y的相关系数ρ.难度分析:求(某,Y)联合分布律,难度系数为2;求随机变量函数的分布律,难度系数为2;求相关系数,难度系数为1.5;综合难度系数为5.5.10.(2022年数学三(23),11分)设在G上服从均匀分布,G由某-y=0,某+y=2与y=0围成.(1)求边缘密度f(某);(2)求f(某|y).难度分析:求连续型随机变量(某,Y)的条件概率密度,综合难度系数为4.11.(2022年数学三(22),11分)设(某,Y)是二维随机变量,某的边缘概率密度为f(某)=3某,0在给定某=某(0(1)求(某,Y)的概率密度f(某,y);(2)求Y边缘概率密度f(y);(3)求P(某>2Y).难度分析:已知边缘密度f(某)和条件密度f(y|某),求(某,Y)的概率密度f(某,y),难度系数为1;求边缘概率密度,用积分且讨论,难度系数为1,5;求概率,难度系数为1.综合难度系数为3.5.12.(2022年数学三(23),11分)设总体某的概率密度为f(某,θ)=e,某>00,其他,其中θ为未知参数且大于零.某,...某为来自总体某的简单随机样本.(1)求θ的矩估计量;(2)求θ的极大似然估计量.难度分析:求的矩估计量,难度系数为3.5;求的极大似然估计量,难度系数为3.5.综合难度系数为7.从上面的分析可见,解答题的试题都是出现在难度系数≥3.5的部分.因此,同学们在考研复习时,要重点复习难度系数表中综合难度系数≥3.5的内容.至于填空题和选择题,主要考查同学们对基本概念的理解及一定的综合运算能力,只要按照大纲给定的内容认真进行复习就可以了.。
北京市考研数学复习资料概率论与数理统计重点题型解析
北京市考研数学复习资料概率论与数理统计重点题型解析北京市考研数学复习资料:概率论与数理统计重点题型解析在北京市考研数学复习中,概率论与数理统计是一个重要的考点。
不少考生在这个部分的复习上遇到了困难。
本文将重点分析概率论与数理统计的重点题型,并给出解析,帮助考生更好地备考。
一、概率论题型解析1. 基本概率问题基本概率问题是概率论的基础,主要包括样本空间、事件、事件的概率等概念的理解和运用。
在考试中,常见的基本概率题型有:例题1:从1、2、3、4这4个数中,任意选择两个数,求其和为5的概率。
解析:这是一个典型的基本概率问题。
我们可以列举所有可能的情况:(1,4)、(2,3),共2种情况。
而总共的情况数为4个数中选择2个数的组合数,即C(4,2) = 6。
所以,概率为2/6=1/3。
2. 条件概率与独立性条件概率与独立性是概率论中的重要概念,题型中常涉及到条件概率的计算和独立性的判断。
例题2:A、B、C三个事件相互独立,事件A发生的概率为1/4,事件B发生的概率为1/3,事件C发生的概率为1/2。
求事件A与B同时发生的概率。
解析:由于A、B、C三个事件相互独立,所以事件A与B同时发生的概率等于事件A发生的概率乘以事件B发生的概率,即(1/4)*(1/3)=1/12。
3. 随机变量与概率分布随机变量和概率分布是概率论中的核心内容之一,考生在复习时需要熟悉各种随机变量的定义和性质,以及常见的概率分布。
例题3:设随机变量X的概率密度函数为f(x),求E(X)。
解析:根据概率论的定义,E(X)表示随机变量X的期望值,可以通过求积分的方法计算。
具体的计算步骤需要根据题目给出的概率密度函数f(x)来确定。
二、数理统计题型解析1. 抽样与抽样分布抽样与抽样分布是数理统计的重点内容之一,主要包括样本的选择方法、样本统计量的分布以及大样本理论等方面的知识。
例题4:从总体中随机抽取样本,根据样本估计总体均值的置信区间。
已知样本的均值为30,样本的标准差为5,样本容量为100,置信水平为95%。
概率论与数理统计考研解析常见随机变量题
概率论与数理统计考研解析常见随机变量题概率论与数理统计是数学中的重要分支,其内容涵盖了许多与随机事件和随机变量相关的知识。
考研中,概率论与数理统计也是一个重要的考点,经常会涉及到随机变量题目。
本文将针对考研中常见的随机变量题目进行解析,帮助考生更好地理解与掌握涉及概率论与数理统计的知识。
1. 离散随机变量题目离散随机变量是指在一定取值范围内,其取值是有限个或可数个的随机变量。
考研中常见的离散随机变量包括二项分布、泊松分布等。
举例题:某产品有瑕疵的概率是0.1,每次检查中只能选取10个。
若产品总数为1000,求其中有两个有瑕疵的概率。
解析:根据题目中给出的信息,可以看出该题涉及到二项分布。
二项分布的概率公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中n代表试验次数,k代表成功次数,p代表单次试验成功的概率。
本题中,n=10,k=2,p=0.1。
代入公式计算得到:P(X=2) = C(10, 2) * 0.1^2 * (1-0.1)^(10-2)= 45 * 0.01 * 0.9^8≈ 0.1937因此,其中有两个有瑕疵的概率约为0.1937。
2. 连续随机变量题目连续随机变量是指在一定取值范围内,其取值可以是无限个的随机变量。
考研中常见的连续随机变量包括均匀分布、正态分布等。
举例题:某零件的寿命服从正态分布,其均值为1000小时,标准差为100小时。
求该零件寿命在900小时至1100小时之间的概率。
解析:根据题目中给出的信息,可以看出该题涉及到正态分布。
正态分布的概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))本题中,均值μ=1000小时,标准差σ=100小时。
要求寿命在900小时至1100小时之间的概率,即求解积分:P(900 <= X <= 1100) = ∫[900, 1100] f(x) dx代入公式计算得到:P(900 <= X <= 1100) = ∫[900, 1100] (1 / (100 * √(2π))) * e^(-(x-1000)^2 / (2 * 100^2)) dx由于计算过程较为繁琐,可以利用数学工具或查表进行计算,最终得到该概率。
概率论与数理统计重点总结及例题解析
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
历年考研数学概率统计部份试题分析和详解
2016年一 选择题1随机实验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将实验E 独立重复做2次,X 表示2次实验中结果1A 发生的次数,Y 表示2次实验中结果2A 发生的次数,那么X 与Y 的相关系数为( ) 【解析】11(2,),(2,)33XB YB24,39EX EY DX DY ====,211(1,1)9EXY P X Y =⋅⋅=== 因此12XY ρ==-2设,A B 为随机事件,0()1,0()1,P A P B <<<<若()1P A B =那么下面正确的选项是( )(A )()1P B A = (B )()0P A B = (C )()1P A B += (D )()1P B A = 【答案】(A )【解析】依照条件得()()P AB P B =()()1()()1()1()1()P AB P A B P A B P B A P A P A P A +-+====--3设随机变量,X Y 独立,且(1,2),(1,4)X N Y,那么()D XY 为(A )6(B )8 (C )14 (D )15 【答案】(C )【解析】因为,X Y 独立,则22222()()()()D XY E XY EXY EX EY EXEY =-=-4 设随机变量()()0,~2>σσμNX ,记{}2σμ+≤=X P p ,那么( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 【答案】B【解析】2{}{}X P X P μμσσσ-≤+=≤因此概率随着σ的增大而增大。
二 填空题4设12,,...,n x x x 为来自整体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为的双侧置信区间的置信上限为,那么μ的置信度为的双侧置信区间为______. 【答案】()8.10,2.8【解析】0.0250.0250.0250.025{}{}0.95x uP u u P x u u x σ--<<=-<<=因为0.02510.8x +=0.025 1.3,=因此置信下限0.0258.2x u -=.5设袋中有红、白、黑球各1个,从中有放回的取球,每次取1个,直到三种颜色的球都取到为止,那么取球次数恰为4的概率为 【答案】29【解析】221331112()23339P A C C ⎛⎫=⨯⋅= ⎪⎝⎭ 三、解答题6设二维随机变量(,)X Y 在区域(){2,01,D x y x xy =<<<<上服从均匀散布,令1,0,X YU X Y ≤⎧=⎨>⎩(I )写出(,)X Y 的概率密度;(II )问U 与X 是不是彼此独立?并说明理由; (III )求Z U X =+的散布函数()F z . 【答案】(I )()23,01,,0,x x y f x y ⎧<<<<⎪=⎨⎪⎩其他(II )U 与X 不独立,因为1111,2222P U X P U P X ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭; (III )Z 的散布函数()()233220,03,1213211,12221,2z z z z z F Z z z z z <⎧⎪⎪-≤<⎪=⎨⎪+---≤<⎪⎪≥⎩0 【解析】(1)区域D 的面积31)()(210=-=⎰x x D s ,因为),(y x f 服从区域D 上的均匀散布,因此23(,)0x y f x y ⎧<<⎪=⎨⎪⎩其他(2)X 与U 不独立. 因为11111,==0,=,222212P U X P U X P X Y X ⎧⎫⎧⎫⎧⎫≤≤≤>≤=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ 1111,2222P U P X ⎧⎫⎧⎫≤=≤=⎨⎬⎨⎬⎩⎭⎩⎭因此1111,2222P U X P U P X ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,故X 与U 不独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学概率与数理统计重要例题分
析(21)
概率论与数理统计部分难度相对较低,但是却也是失分率比较高的部分,这主要归结为两大原因,一是时间不足,二是自认为很难。
因此在复习过程中,大家要多练习多总结,克服自以为是的惧怕感,同时提高作息的效率。
下面凯程教育分享概率与数理统计经典例题解析,帮助大家更好的提升做题能力。
考研数学概率与数理统计重要例题分析(22)
概率论与数理统计部分难度相对较低,但是却也是失分率比较高的部分,这主要归结为两大原因,一是时间不足,二是自认为很难。
因此在复习过程中,大家要多练习多总结,克服自以为是的惧怕感,同时提高作息的效率。
下面凯程教育分享概率与数理统计经典例题解析,帮助大家更好的提升做题能力。
考研复习线性代数选择题解析(一)
对于考研的同学们来说,考研数学史决定考研成败的关键因素之一,而线性代数又是数学中的绝对重点,凯程教育小编为大家整理了线性代数考研习题的相关信息,希望对各位同学的复习有所帮助!
考研复习线性代数选择题解析(二)
对于考研的同学们来说,考研数学史决定考研成败的关键因素之一,而线性代数又是数学中的绝对重点,凯程教育小编为大家整理了线性代数考研习题的相关信息,希望对各位同学的复习有所帮助!
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。
例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。
凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。
此外,最好还要看一下他们的营业执照。