实验二 组合逻辑集成器件
实验2 组合逻辑电路功能分析

实验二 组合逻辑电路功能分析与设计
一、实验目的:
1、了解组合逻辑电路的特点;
2、掌握组合逻辑电路功能的分析方法;
3、学会组合逻辑电路的连接方法;
4、掌握组合逻辑电路的设计方法。
二、实验原理:
1、组合逻辑电路的特点:
2、组合逻辑电路的分析方法:
3、组合逻辑电路的设计步骤:
三、实验器件
集成块:74LS00、74LS04、74LS08、74LS32
四、实验内容:
(一)、组合逻辑电路功能分析
分析图4-1所示电路的逻辑功能:
(二)、组合逻辑电路设计(根据组合逻辑电路的设计步骤,分别写出各个组合逻辑电路的设计步骤。
)
1、设计一个举重裁判表决器。
设举重比赛有三个裁判,一个主裁判和两个副裁判。
杠铃完全举上的裁决由每一个裁判按一下自己面前的按钮来确定。
只有当两个或两个以上裁判(其中必须有主裁判)判明成功时,表示“成功”的灯才亮。
(要求用与非门实现)
1图4-1
2、某设备有开关A、B、C,要求仅在开关A接通的条件下,开关B才能接通;开关C仅在开关B接通的条件下才能接通。
违反这一规程,则发出报警信号。
设计一个由与非门组成的能实现这一功能的报警控制电路。
(要求用与非门实现)
3、设计全减器,(要求用与非门实现)
五、实验总结与体会:。
实验二 组合逻辑电路实验

实验二 组合逻辑电路实验一、实验目的1.掌握组合逻辑电路的设计、分析方法与测试方法; 2.验证半加器、全加器的逻辑功能。
二、预习要求1.复习组合逻辑电路的设计、分析方法;2.复习用与非门和异或门等构成的半加器、全加器的工作原理;三、实验原理1.组合逻辑电路由很多常用的门电路组合在一起,实现某种功能的电路,它在任意时刻的输出,仅取决于该时刻输入信号的逻辑取值,而与信号作用前电路原来的状态无关。
2.组合逻辑电路的分析是指根据所给的逻辑电路,写出其输入与输出之间的逻辑函数表达式或真值表,从而确定该电路的逻辑功能。
其分析步骤为:四、实验器件1.数字电路实验箱 2.双踪示波器3. 74LS00 74LS86 74LS024.若干导线五、实验内容1.分析、测试用异或门74LS86和与非门74LS00组成的半加器的逻辑功能,填入表4-3表4.3 异或门组成的半加器图4-4 异或门和与非门组成的半加器 S= C=2.分析、测试用异或门74LS86、与非门74S00和或非门74LS02组成的全加器的逻辑功能图4-5 全加器逻辑电路(1)根据逻辑电路写出全加器的逻辑函数表达式,并化为最简。
Si= Si=(2)按图4-5连线,Ai 、Bi 、Ci 的值按表4-4输入,观察输出Si 、Si 的值,填入表4.4。
六、实验报告要求1.整理实验数据、图表,并对实验结果进行分析讨论。
2.总结组合电路的分析与测试方法。
3.对险象进行讨论。
七、实验注意事项1.实验中要求使用+5V ,电源极性绝对不允许接错。
2.插集成块时,要认清定位标记,不得插反。
3.连线之前,先用万用表测量导线是否导通。
4.输出端不允许直接接地或直接接+5V 电源,否则将损坏器件。
实验二 组合逻辑电路的设计与测试

实验二组合逻辑电路的设计与测试一、实验目的掌握组合逻辑电路的设计与测试方法二、实验器材1、THD-4型数字电路实验箱一台(双列直插式集成电路插座、+5V直流电源、逻辑电平开关、LED发光二极管显示器)2、集成芯片74LS00(四2输入与非门)3片、74LS20(双4输入与非门)3片三、实验原理使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。
设计组合电路的一般步骤是(1)根据设计任务的要求,列出真值表。
(2)用卡诺图或代数化简法求出最简的逻辑表达式。
(3)根据逻辑表达式,画出逻辑图,用标准器件构成电路。
(4)最后,用实验来验证设计的正确性。
四、实验内容1、设计一个四人无弃权表决电路(多数赞成则提案通过)本设计要求采用双4输入与非门(74LS20)实现。
要求按本文所述的设计步骤进行,直到测试电路逻辑功能符合设计要求为止。
设计步骤:根据题意列出真值表如表2-1所示,再填入卡诺图表2-2中。
Z = ABC+BCD+ACD+ABD= ABC·BCD·ACD·ABD最后画出用“与非门”构成的逻辑电路如图2-1所示图2-1 表决电路逻辑电路图2、设计一个保险箱的数字代码锁,该锁有规定的4位代码A 、B 、C 、D 的输入端和一个开锁钥匙孔信号E 的输入端,锁的代码由实验者自编(例如1001)。
当用钥匙开锁时(E=1),如果输入代码符合该锁设定的代码,保险箱被打开(Z 1=1),如果不符,电路将发出报警信号(Z 2=1)。
要求用最少的与非门(74LS00和74LS20)来实现,检测并记录实验结果。
1Z ABCD E ABCD E ABE CDE ===& & & & &。
数字电子技术基础实验二 组合逻辑电路设计

数字电子技术基础实验报告题目:实验二组合电路设计小组成员:小组成员:1.掌握全加器和全减器的逻辑功能;2.熟悉集成加法器的使用方法;3.了解算术运算电路的结构;4.通过实验的方法学习数据选择器的结构特点、逻辑功能和基本应用。
二、实验设备1.数字电路实验箱;2.Quartus II 软件。
三、实验要求要求1:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74153双四数据选择器和7400与非门电路,用原理图输入方法实现一一位全加器。
(1)用 Quartus II波形仿真验证;(2)下载到 DE0 开发板验证。
要求2:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一位全减器。
(1)用 Quartus II 波形仿真验证;(2)下载到 DE0 开发板验证。
要求3:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一个两位二进制数值比较器。
(MULTISM仿真和FPGA仿真)。
1、74138三线八线译码器原理2、74153双四数据选择器原理3、全加器原理全加器能进行加数、被加数和低位来的进位信号相加,并根据求和的结果给出该位的进位信号。
图一图一是全加器的符号,如果用i A,i B表示A,B两个数的第i位,1i C 表示为相邻低位来的进位数,i S表示为本位和数(称为全加和),i C表示为向相邻高位的进位数,则根据全加器运算规则可列出全加器的真值表如表一所示。
表一可以很容易地求出S 、C 的化简函数表达式。
i i i-1i i i-1i i ()i i S A B C C A B C A B =⊕⊕=⊕+用一位全加器可以构成多位加法电路。
由于每一位相加的结果必须等到低一位的进位产生后才能产生(这种结构称为串行进位加法器),因而运算速度很慢。
为了提高运算速度,制成了超前进位加法器。
这种电路各进位信号的产生只需经历以及与非门和一级或非门的延迟时间,比串行进位的全加器大大缩短了时间。
实验2 组合逻辑电路的设计

4. 实验内容及要求 (1) 用与非门设计实现异或逻辑功能。 a) 按照组合逻辑电路的设计方法, 列出两输入异或逻辑函数的真值表, 写出最简 与或式、与非-与非式,画出与非门实现的逻辑电路图。 b) 使用集成电路芯片 74LS10 和 74LS20 中的与非门, 按照所设计的逻辑电路图连 接电路。 c) 选择使用数字电路实验装置中的逻辑电平输入开关和逻辑电平输出 LED 指示 灯,设计实验测试方案。 d) 记录并分析实验数据参考表 2-2, 说明所设计的电路是否实现预计的异或逻辑 功能。
以二值逻辑的 0、1 两种状态分别代表输入变量和输出变量的两种不同状态。这里 0 和 1 的具体含意完全是由设计者人为选定的。
3) 根据给定的因果关系列出逻辑真值表。 举例: “大月指示器”的逻辑功能如下:输入一年中的具体月份,电路能自动判别出“大月” 还是“小月” (大月有 31 天) 。 通过分析,逻辑抽象结果为:月份输入 ABCD 可以由 4 位二进制代码表示,例如 ABCD=0001 表示输入月份为 1 月, ABCD=0010 表示 2 月, ABCD=0011 表示 3 月,...... , ABCD=1100 表示 12 月;输出 Y 的逻辑值 1 或 0 分别表示信息“大月”或“小月” ,Y=1 表 示大月,Y=0 表示小月。列出真值表如表 2-1 所示。
得到最简与或式为选定器件的类型实际逻辑问题逻辑抽象逻辑函数化简变换表达画出逻辑连接电路实现为了实现最终的逻辑函数既可以用小规模集成门电路组成相应的逻辑电路也可以用中规模集成的常用组合逻辑器件或可编程逻辑器件等构成相应的逻辑电路
实验二 组合逻辑电路的设计
1. 实验目的 (1)熟练使用数字电路实验装置设计实验方案; (2)掌握用基本门电路实现组合电路的设计方法。 (3)掌握实现组合逻辑电路的连接及调试方法。 2. 实验仪器与材料 (1)数字电路实验装置 1 台; (2)双列直插集成电路芯片 74LS10、74LS20 各 1 片,导线若干。 3 . 知识要点 (一)组合逻辑电路的设计方法
实验二 组合逻辑电路实验(半加器、全加器) PPT

5、记录实验结果(三)
3.全加器组合电路的逻辑功能测试
5、记录实验结果(四)
FABACBC
自己设计实现逻辑函数,给出逻辑电路连接图,并连接调试。
5、记录实验结果(选做)
(1)画出用异或门、或非门和与非门实现全加器的逻辑电路图,写出逻辑表达式。 (2)找出异或门、或非门和与非门器件,按自己设计画出的电路图接线,注意:接 线时,或非门中不用的输入端应该接地。与非门中不用的输入端应该接VCC。 (3)当输入端Ai Bi Ci-1为下列情况时,测量Si和Ci的逻辑状态并填入表格中
电路的逻辑功能测试(选做)
实验步骤
1、检查芯片完好
每个小组在数字电路试验箱上找到本次实验所需要的芯片 ,并查看芯片形状是否完好,芯片管脚有没有插牢。
2、查看数字电路实验箱
74LS86
74LS00
3、了解芯片
芯片管脚示意图
4、实验内容与结果(一)
1.组合逻辑电路功能测试 (选用芯片74LS00)
(1)按上图接线(注意数字编号与芯片管脚编号对应) (2)写出Y2的逻辑表达式并化简。 (3)图中A、B、C接实验箱下方的逻辑开关,Y1,Y2接实验箱上方的电平显示发光管。 (4)按表格要求,拨动开关,改变A、B、C输入的状态,填表写出Y1,Y2的输出状态。 (5)将运算结果与实验结果进行比较 。
5、记录实验结果(二)
2.用异或门(74LS86)和与非门(74LS00)组成的半加器电路
(1)在数字电路实验箱上插入异或门和与非门芯片。输入端A、B接逻辑开 关,Y,Z接电平显示发光管。 (2)按表格要求,拨动开关,改变A、B输入的状态,填表写出y、z的输出 状态,并根据真值表写出y、z逻辑表达式。
数电实验二 组合电路设计
实验二组合电路设计一、实验目的1.验证组合逻辑电路的功能。
2.掌握组合逻辑电路的分析方法。
3.掌握用SSI小规模集成器件设计组合逻辑电路的方法。
4.了解组合逻辑电路中竞争冒险的分析和消除方法。
二、实验设备1.数字电路试验箱2.数字万用表3.74LS00、74LS86三、实验原理1.组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的逻辑组合电路。
组合逻辑电路的输入信号和输出信号往往不止一个,其功能描述方法通常有函数表达式,真值表,卡诺图和逻辑图等几种。
2.组合逻辑电路的分析方法组合逻辑电路分析的任务是:对给定的电路求解其逻辑功能,即求出该电路的输出与输入之间的逻辑关系,通常是用逻辑表达式或者真值表来描述,又是也加上必须的文字说明。
分析一般分为以下几个步骤:(1)由逻辑图写出输出端的逻辑表达式,建立输出与输入的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3.组合逻辑电路的设计方法组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计过程是:(1)通过对给定问题的分析,获得真值表。
在分析中要特别注意实际问题如何抽象成几个输入变量和几个输出变量之间的逻辑关系问题,其输出变量之间是否存在约束关系,从而获得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
四、实验内容1.测试74LS00(二输入端四与非门),74LS86(而输入端四异或门)的逻辑功能;2.用与非门,异或门设计半加半减器。
3.用与非门,异或门设计全加全减器。
五、实验过程1.半加半减器的实现(1)列出半加半减器的真值表(2)画出卡诺图S=C=(3)写出逻辑表达式并化简S=A⊕BC= (A⊕M)*B=2.全加全减器的实现(1)列出全加全减器的真值表(2)画出卡诺图S=C=(3) 写出逻辑表达式并化简 S= A ⊕B ⊕C C=(BC)+=3. 逻辑电路设计 (1) 半加半减器BM CB(2)全加全减器SC。
实验二组合逻辑电路的设计与测试
实验二组合逻辑电路的设计与测试一、实验目的1、掌握组合逻辑电路的设计与测试方法2、设计半加器和全加器并测试其逻辑功能二.实验仪器及材料器件:74LS00 二输入端四与非门 1片74LS10 三输入端三与非门 1片74LS86 二输入端四异或门 1片三、实验原理1、设计组合电路的一般步骤如图2-1所示。
图2-1 组合逻辑电路设计流程图组合逻辑电路基本设计方法:(1)根据设计任务的要求建立输入、输出变量,并列出真值表。
(2)然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式(3)根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
(4)最后,用实验来验证设计的正确性。
2、 组合逻辑电路设计举例设计任务: 用“与非”门设计一个四个人的表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
(同意用"1"表示,反对用"0"表示;决议通过用"1"表示,不通过用"0"表示。
)设计步骤:(1)根据题意列出真值表如表2-1所示,再填入卡诺图表2-2中。
表2-2(2) 由卡诺图得出逻辑表达式,并演化成“与非”的形式 Z =ABC +BCD +ACD +ABD =ABC ACD BCD ABC ⋅⋅⋅(3)根据逻辑表达式画出用“与非门”构成的逻辑电路如图2-2所示。
图2-2 表决电路逻辑图(4)用实验验证逻辑功能A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1B 0 0 0 0 1 1 11 0 0 0 0 1 1 1 1C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Z 0 0 0 0 0 0 0 1 0 00 1 0 1 1 1 CD AB00 01 11 10 0001 111 1 1 110 1在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块74LS20。
组合逻辑器件_实验报告(3篇)
第1篇实验目的本实验的主要目的是:1. 掌握组合逻辑电路的基本设计方法。
2. 学习使用中规模组合逻辑器件设计组合逻辑电路。
3. 理解和实现组合逻辑电路的FPGA实现。
实验原理1. 组合逻辑电路:组合逻辑电路的输出仅依赖于当前的输入,与电路的历史状态无关。
可以通过逻辑门(如与门、或门、非门等)和逻辑函数来实现。
2. SSI逻辑器件:SSI(Small Scale Integration)是小型集成的意思,指的是集成度较低的集成电路,通常包含几个到几十个逻辑门。
3. FPGA实现:FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,可以通过编程实现各种逻辑功能。
实验内容1. 半加器设计:半加器是一种基本的组合逻辑电路,用于实现两个一位二进制数的加法运算。
它有两个输入(A和B)和一个输出(S)和一个进位输出(C)。
真值表如下:- A | B | S | C- 0 | 0 | 0 | 0- 0 | 1 | 1 | 0- 1 | 0 | 1 | 0- 1 | 1 | 0 | 1逻辑方程为:S = A'B + AB'2. 其他组合逻辑电路设计:实验中可能涉及其他组合逻辑电路的设计,如译码器、编码器、数据选择器等。
实验步骤1. 设计电路:根据设计要求,使用逻辑门和逻辑函数设计组合逻辑电路。
2. 搭建电路:使用SSI逻辑器件搭建电路。
3. FPGA实现:使用FPGA编程实现组合逻辑电路。
4. 测试电路:对电路进行测试,验证其功能。
实验报告实验报告应包括以下内容:1. 实验目的和原理。
2. 设计过程和电路图。
3. 测试结果和分析。
总结本实验旨在让学生掌握组合逻辑电路的设计方法和FPGA实现,培养学生的实际操作能力和创新思维。
通过本实验,学生可以加深对数字电子技术基础知识的理解,提高实践能力。
第2篇一、实验目的1. 理解和掌握组合逻辑器件的基本原理和功能。
2. 学会使用组合逻辑器件设计简单的逻辑电路。
数电实验二 组合逻辑电路
实验二 组合逻辑电路一、实验目的1.掌握组和逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制数的运算规律。
二、实验仪器及器件1.仪器:数字电路学习机2.器件:74LS00 二输入端四与非门 3片 74LS86 二输入端四异或门 1片 74LS54 四组输入与或非门 1片三、实验内容1.组合逻辑电路功能测试(1).用2片74LS00按图2.1连线,为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2).图中A 、B 、C 接电平开关,Y1、Y2接发光管电平显示(3).按表2.1要求,改变A 、B 、C 的状态,填表并写出Y1、Y2的逻辑表达式。
(4).将运算结果与实验比较。
Y1=A+B2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y 是A 、B 的异或,而进位Z 是A 、B 相与,故半加器可用一个集成异或门和二个与非门组成,如图2.2。
(1).用异或门和与非门接成以上电路。
输入A 、B 接电平开关,输出Y 、Z 接电平显示。
(2).按表2.2要求改变A 、B 状态,填表。
3.测试全加器的逻辑功能。
(1).写出图2.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表。
(3).根据真值表画逻辑函数SiCi 的卡诺图。
111S i C i4.测试用异或门、与或门和非门组成的全加器的功能。
全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门和一个与非门实现。
(1).写出用异或门、与或非门和非门实现全加器的逻辑表达式,画出逻辑电路图。
(2).连接电路图,注意“与或非”门中不用的“与门”输入端要接地。
(3).按表2.4记录Si 和Ci 的状态。
1-⊕⊕=i i C B A S ,AB C B A C i i +⊕=-1)(A i S iB i+ C i C i-1四、 1.整理实验数据、图表并对实验结果进行分析讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 组合逻辑集成器件
一、实验目的
1、掌握数据选择器和集成译码器的原理及功能测试;
2、了解数据选择器作为多路开关和实现函数的作用;
3、了解译码器的作用;
4、加深理解组合电路设计过程。
二、实验要求
1、复习数据选择器的工作原理,写出八选一74LS151的真值表及其函数表达式,画出以上两集成电路的外引脚排列分布图。
熟悉各引脚的功能和接法。
2、列出集成3线-8线译码器74LS138的真值表,画出其外引脚排列分布图。
3、完成设计任务1的电路图。
三、实验属性
验证性实验。
四、主要实验设备
示波器 万用表
集成逻辑门若干 电容、电阻若干
五、设计任务和要求
1、有一个楼梯口电灯控制电路,能分别从三处控制其灯亮、灭,其真值表如2.1,要求用两种方法实现:
10
10
1
01A B C Y 000011110011110001100110
表2.1
(1) 用数据选择器;
(2) 用逻辑门电路;
步骤:
a.分别画出数据选择器逻辑图和逻辑门电路图,如下:
b.按照设计图完成接线和调试。
c.记录数据结果列出真值表进行验证。
2、图2.1为两个三位二进制数的比较电路,按下图完成接线,并验证
012012B B B X X X = 时0=Y ,而012012B B B X X X ≠时1=Y 。
74LS138引脚图
步骤:a.按照图示完成接线。
b. 先验证012012B B B X X X = 时0=Y ;使X2,X1,X0分别与B2,B1,B0按次序接入,记下输出结果,进行对比。
c. 调整次序验证012012B B B X X X ≠时1=Y 。
图2.1
六、实验总结
通过此次实验,使我近距离的接触到了组合逻辑集成器件,进一步了解了数据选择器和集成译码器的功能实现。
此外,在动手连线的过程中对书本上的理论知识也有了更深的理解,感谢老师的辛勤知道和同学们的热心帮助,在以后的学习中我会更加努力。
思考题:
1、用具有n 个地址输入端的数据选择器如何实现m 变量的逻辑函数(分为n<m 和n>m 两种情况)?
(1) 扩展法
用8选1数据选择器实现4变量逻辑函数: F (A,B,C,D ) = ∑m (1,5,6,7,9,11,12,13,14)
8选1数据选择器有3个地址输入端、8个数据输入端,而4变量逻辑函数有16个最小项,所以需要采用两片8选1数据选择器,扩展成16选1数据选择器,从而得到4个地址输入端和16个数据输入端,以满足本题的要求。
解 :
第一步:将两片8选1MUX ,扩展成16选1MUX 。
Y
120
12
第二步:分配变量,确定数据输入端的二值电平。
用两片8选1MUX实现
采用4选1数据选择器的实现方法。
4选1MUX实现
2、举例并总结数据选择器的扩展功能,如何实现?
数据选择器的扩展功能:
用4选1数据选择器74LS153实现函数
F+
A
+
+
=
BC
C
ABC
AB
C
B
A
函数F的功能如表5—5所示
函数F由三个输入变量A、B、C,而数据选择器由两个地址输入端A0、A1少于函数输入变量个数,在设计时可选A接A1,B接A0。
将函数功能表改画成5—6形式,可见当将输入变量A、B、C中A、B 接选择器的地址端A1,A0,由表5—6不难看出:
D0=0,
D1=D2=C,
D3=1
则4选1数据选择器的输出,
F+
A
+
=
BC
+
ABC
C
AB
C
B
A。