空间几何体的结构特征及三视图和直观图(含解析)

合集下载

高中数学必修2 空间几何体的结构特征及三视图和直观图附答案

高中数学必修2 空间几何体的结构特征及三视图和直观图附答案

空间几何体的结构特征及三视图和直观图一.相关知识点1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图。

(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线。

②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线。

3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直。

(2)原图形中平行于坐标轴的线段,直观图中还是平行于坐标轴的线段。

平行于x轴和z一、细品教材1.(必修2P15练习T4改编)如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥2.(必修2P29B组T1改编)如图是一个几何体的三视图,根据图中数据可得该几何体的表面积为()A.9π B.10π C.11π D.12π答案:1.B, 2.D二、基础自我检测1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。

A.0个B.1个C.2个D.3个3.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()4.如图所示,等腰△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形5.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________。

空间几何体的结构特征及三视图与直观图

空间几何体的结构特征及三视图与直观图

(2)三视图的画法
①基本要求: 长对正 ,高平齐 , 宽相等 .
②画法规则: 正侧 一样高, 正俯 一样长, 侧俯 一样 宽;看不到的线画 虚 线
1.台体可以看成是由锥体截得的,易忽视截面与底面平行且 侧棱延长后必交于一点.
2.空间几何体不同放置时其三视图不一定相同.
3.对于简单组合体,若相邻两物体的表面相交,表面的交线 是它们的分界线,在三视图中,易忽视实虚线的画法.
空间几何体的结构特征及三视图与直观图
1.多面体的结构特征
底面:互相 平行 (1)棱柱侧面:都是 四 边形,且每相邻两个面的交线都 平行且相等
底面:是 多 边形 (2)棱锥 侧面:都是有一个 公共顶点 的三角形
(3)棱台 棱锥被平行于棱锥 底面 的平面所截, 截面与
底面
之间的部分.
答案:9
1.由三视图还原几何体的方法
定底面
定棱及侧面
定形状
根据俯视图确定
根据正视图确定几何体的侧棱与侧面 特征,调整实线、虚线对应棱的位置
确定几何体的形状
2.斜二测画法中的“三变”与“三不变”
坐标轴的夹角改变, “三变”与y轴平行的线段的长度变为原来的一半, 图形改变.
平行性不改变, “三不变”与x,z轴平行的线段的长度不改变, 相对位置不改变.
解:由斜二测画法规则可知,直观图△A′B′C′一底边 3 1 2 6 上的高为 a× × = a 2 2 2 8 1 6 6 2 ∴S△A′B′C′= ×a× a= a . 2 8 16
[类题通法]
对于几何体的直观图, 除掌握斜二测画法外, 记住 2 原图形面积 S 与直观图面积 S′之间的关系 S′= S, 4 能更快捷地进行相关问题的计算.

空间几何体结构及其三视图和直观图PPT课件

空间几何体结构及其三视图和直观图PPT课件

圆柱体实例分析
总结词:直上直下
详细描述:圆柱体的底面和顶面都是圆,侧面是曲面。在三视图和直观图中,圆柱体的上下底面是圆形,侧面则呈现为矩形 或椭圆,体现了其直上直下的特性。
圆锥体实例分析
总结词:尖顶曲底
详细描述:圆锥体的底面是圆,侧面是曲面。在三视图和直观图中,圆锥体的底面是圆形,侧面则呈 现为三角形或曲线,体现了其尖顶曲底的特性。
左视图
左视图是空间几何体在左侧投影 下得到的视图,通常表示物体的
宽度和高度。
左视图的方向应与投影方向一致, 且应将物体的主要轮廓和特征反
映出来。
在左视图中,垂直于投影面的线 段长度和倾斜线段的高度应保持
不变。
俯视图
俯视图是空间几何体在顶部投 影下得到的视图,通常表示物 体的长度和宽度。
俯视图的方向应与投影方向一 致,且应将物体的主要轮廓和 特征反映出来。
常见空间几何体
01
02
03
多面体
由多个平面围成的几何体, 如正方体、长方体、三棱 锥等。
旋转体
由一个平面图形围绕其一 边或一点旋转而成,如圆 柱、圆锥、球等。
复杂几何体
由多个多面体和旋转体组 合而成,如组合体、镶嵌 体等。
空间几何体的性质
空间性
空间几何体存在于三维空 间中,具有大小和方向。
封闭性
04
空间几何体与三视图的 应用
三视图在工程设计中的应用
工业设计
三视图是工业设计中重要的表达 工具,用于展示产品的外观、结
构和功能。
建筑设计
在建筑设计中,三视图用于呈现建 筑物的外观、内部布局和结构设计, 以便更好地进行施工和规划。
机械设计
在机械设计中,三视图用于描述机 器的零件、装配关系和运动原理, 以确保机器的正常运行。

空间几何体的结构特征及三视图和直观图 (共50张PPT)

空间几何体的结构特征及三视图和直观图 (共50张PPT)

【规律方法】 (1)画几何体三视图的要求是:正视图与俯视 图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等.一 般正视图与侧视图分别在左右两边,俯视图画在正视图的下方.
(2)由三视图还原几何体时,要遵循以下三步:①看视图,明 关系;②分部分,想整体;③综合起来,定整体.
变式思考 2 某几何体的正视图和侧视图均如右图所示,则 该几何体的俯视图不可能是( )
备考这样做
1.重点掌握以三视图为命题背景,研究空间几何体的结构特征 的题型.
2.熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱 锥等几何体的三视图.
D 读教材·抓根底
回扣教材 扫除盲点
课本导读 1.多面体的结构特征
2.旋转体的形成
3.空间几何体的直观图
空间几何体的直观图常用__斜__二__测____画法来画,其规则:
疑点清源 1.对三视图的认识及三视图画法 (1)空间几何体的三视图是该几何体在三个两两垂直的平面上 的正投影,并不是从三个方向看到的该几何体的侧面表示的图形. (2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱 用实线表示,挡住的线要画成虚线. (3)三视图的正视图、侧视图、俯视图分别是从几何体的正前 方、正左方、正上方观察几何体用平行投影画出的轮廓线.
解析 选项 A 中只要是两个圆柱放在一起即可;一个圆柱和 一个正四棱柱的组合体也可,选项 B 也有可能;选项 C 中是一个 底面为等腰直角三角形的三棱柱和一个正四棱柱的组合体,其符 合要求;选项 D 中的如果可能的话,则这个空间几何体是一个正 三棱柱和一个正四棱柱的组合体,三种视图方向,其正视图中上 面矩形的底边是三棱柱的底面边长,但侧视图中矩形的底面边长 是三棱柱底面三角形的高,故只有选项 D 中的不可能,故选 D.

2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图

2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图
索引
考点二 空间几何体的三视图
例1 (1)(2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视 图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次 为__③__④__(_或__②__⑤__,__答__案__不__唯__一__)_____(写出符合要求的一组答案即可).
_平__行__且__相__等___
相交于_一__点___,但 不一定相等
延长线交于___一__点_
_平__行__四__边__形___
_三__角__形___
__梯__形__
索引
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
图形
互相平行且相等,
母线
__垂__直__于底面
相交于__一__点__
轴截面 侧面展开图
索引
2.(易错题)在如图所示的几何体中,是棱柱的为___③__⑤___(填写所有正确的序号). 解析 由棱柱的定义可判断③⑤属于棱柱.
索引
3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体
是( C )
A.棱台
B.四棱柱
C.五棱柱
D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
索引
训练1 (1)如图,网格纸的各小格都是正方形,粗实线画
出的是一个几何体的三视图,则这个几何体是( B )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 解析 由题知,该几何体的三视图为一个三角形、两个四边形,经分析可 知该几何体为三棱柱.
索引
(2)(2022·成都检测)一个几何体的三视图如图所示,
索引
解析 根据“长对正、高平齐、宽相等”及图中数据,可知图②③只能是侧 视图,图④⑤只能是俯视图,则组成某个三棱锥的三视图,所选侧视图和俯 视图的编号依次是③④或②⑤.若是③④,则三棱锥如图1所示;若是②⑤, 则三棱锥如图2所示.

第七章 第一节 空间几何体的结构特征及三视图和直观图讲解

第七章  第一节  空间几何体的结构特征及三视图和直观图讲解
视图可能不相同)、三角形(内外两个三角形且对应顶点 相连); 正四棱锥的主视、左视、俯视图依次为:三角形、三角 形、正方形. 答案:D
4.一个平面四边形的斜二测画法的直观图是一个边长 为a的正方形,则原平面四边形的面积等于 解析:如图所示. .
原平面四边形面积为a×2 答案:2
=2
.
5.如图所示,图①、②、③是图④表示的几何体的三视
(3)由题设知四边形ABCD和四边
形EFGH均为正方形,
∴FH⊥EG, 又ABCD-EFGH为长方体, ∴BD∥FH.┄┄┄┄┄┄┄┄9分
设点O是EFGH的对称中心, ∵P-EFGH是正四棱锥,
∴PO⊥平面EFGH,而FH⊂平面EFGH,
∴PO⊥FH.┄┄┄┄┄┄┄┄11分 ∵FH⊥PO,FH⊥EG,PO∩EG=O, PO⊂平面PEG,EG⊂平面PEG, ∴HF⊥平面PEG.┄┄┄┄┄┄┄┄┄┄┄┄13分
间图形的直观图.
4.三视图 (1)正投影的性质
①垂直于投射面的直线或线段的正投影是 点 .
②垂直于投射面的平面图形的正投影是 直线 或 直线的 一部分 . (2)三视图 三视图的主视图、俯视图、左视图分别是从物体的 正前方、正上方、 正左方 看到的物体轮廓线的正投影围 成的平面图形.
[思考探究]
(3)底面是正三角形的棱锥是正三棱锥; (4)顶点在底面上的射影是底面多边形的内心,又是外 心的棱锥必是正棱锥.其中正确命题的个数是 A.1 B.2 ( )
C.3
D.4
[思路点拨]
[课堂笔记] 命题(1)不正确;正棱锥必须具备两点,一 是:底面为正多边形,二是:顶点在底面内的射影是底 面的中心;命题(2)缺少第一个条件;命题(3)缺少第二 个条件;而命题(4)可推出以上两个条件都具备.

课件2:空间几何体的结构特征及其直观图、三视图

课件2:空间几何体的结构特征及其直观图、三视图




·



A.8
B.6 2
菜单
C.10
课 后 作 业
D.8 2
91淘课网 ——淘出优秀的你
网 络
【思路点拨】
根据几何体的三视图确定几何体的形
典 例


建 ·
状,并画出几何体的直观图,标示已知线段的长度,最后求
究 ·

全 各个面的面积确定最大值.
提 知


【尝试解答】 将三视图还原成几何体的直观图,如图
提 知
局 正四面体的4个顶点;②用一个平面去截棱锥,底面和截面 能
策 略
之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧
高 考


导 ·
面是平行四边形.
验 ·


高 考
A.①④
B.②③
C.①③
D.②④
考 情

【解析】 用平行于底面的平面去截棱锥,底面和截面

落 之间的部分才叫棱台,且棱台的侧面是梯形,但并不一定是
体 验
· 备
视图可排除D.故选B.
· 明



【答案】 B




实 · 固 基 础
课 后 作 业
菜单
91淘课网 ——淘出优秀的你




构 建
5.(2012·湖南高考)某几何体的正视图和侧视图均如图
探 究
· 览
7-1-4所示,则该几何体的俯视图不.可.能.是(
)
· 提




高考大一轮总复习81空间几何体的结构特征、三视图、直观图解析

高考大一轮总复习81空间几何体的结构特征、三视图、直观图解析

第八章立体几何§8.1空间几何体的结构特征、三视图、直观图考纲展示► 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.考点1空间几何体的结构特征空间几何体的结构特征多面体(1)棱柱的侧棱都______,上、下底面是______且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是________多边形旋转体(1)圆柱可以由________绕其任一边所在直线旋转得到.(2)圆锥可以由直角三角形绕其________所在直线旋转得到.(3)圆台可以由直角梯形绕________所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕________所在直线旋转得到(1)矩形(2)直角边(3)直角腰(4)直径(1)[教材习题改编]一个几何体由5个面围成,其中两个面是互相平行且全等的三角形,其他面都是全等的矩形,则该几何体是________;一个等腰直角三角形绕其斜边所在的直线旋转一周后形成的封闭曲面所围成的几何体是________.答案:三棱柱两个同底的圆锥解析:根据多面体和旋转体的概念知,第一个几何体是三棱柱,第二个几何体是两个同底的圆锥.(2)[教材习题改编]如图所示,图①②③是图④表示的几何体的三视图,若图①是正视图,则图②是________,图③是________.答案:侧视图俯视图解析:根据三视图的概念知,图②是侧视图,图③是俯视图.空间几何体的认识误区.给出下面四种说法:①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有一个面是多边形,其余各面都是三角形的几何体叫棱锥;④棱台各侧棱的延长线交于一点.其中错误说法的序号为________.答案:①②③解析:①如果上、下两个面平行,但不全等,即使其余各面是四边形,那也不可能是棱柱.②如图所示,平面ABC∥平面A1B1C1,但图中的几何体不是棱柱.③棱锥的一个面是多边形,其余各面是有一个公共顶点的三角形.④棱台是由棱锥截得的,故侧棱延长线交于一点.[典题1](1)给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3[答案] B[解析]①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)下列说法中正确的是________.①有一个面是多边形,其余各面都是三角形,由这些面组成的几何体是棱锥;②四面体的任何一个面都可以作为棱锥的底面;③用一个平面去截棱锥,可得到一个棱锥和一个棱台;④棱锥的各侧棱长相等.[答案]②[解析]棱锥的侧面三角形有一个公共顶点,故①错误;三棱锥又叫四面体,其各个面都是三角形,都可以作为棱锥的底面,故②正确;用平行于底面的平面去截棱锥,截面与底面之间的部分叫做棱台,故③错误;④明显错误.[点石成金]解决与空间几何体结构特征有关问题的技巧(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.考点2空间几何体的三视图空间几何体的三视图是用________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是________的,三视图包括________、________、________.答案:正投影完全相同正视图侧视图俯视图三视图:注意三个视图之间的长度关系.若某几何体的三视图如图所示,则此几何体的体积是________.答案:48解析:由三视图可知,上面是一个长为4、宽为2、高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是上、下底分别为2,6,高为2的梯形.又长方体的体积为4×2×2=16,四棱柱的体积为4×2+6 2×2=32,所以该几何体的体积为32+16=48.角度一由三视图还原几何体[典题2][2017·河南郑州模拟]若某几何体的三视图如图所示,则这个几何体的直观图可以是()A B C D[答案] D[解析]A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.角度二由空间几何体的直观图判断三视图[典题3]一几何体的直观图如图,下列给出的四个俯视图中正确的是()A B C D[答案] B[解析]由直观图可知,该几何体是由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.故选B.角度三由空间几何体的部分视图画出剩余部分视图[典题4][2017·吉林长春模拟]已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是________.(把你认为正确的图的序号都填上)[答案]①②③④[解析]直观图如图①的几何体(上部是一个正四棱锥,下部是一个正四棱柱)的俯视图为题图①;直观图如图②的几何体(上部是一个正四棱锥,下部是一个圆柱)的俯视图为题图②;直观图如图③的几何体(上部是一个圆锥,下部是一个圆柱)的俯视图为题图③;直观图如图④的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图为题图④.①②③④[点石成金]三视图问题的常见类型及解题策略(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.考点3空间几何体的直观图空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.[典题5]已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2C.68a2 D.616a2[答案] D[解析]图①所示的是△ABC的实际图形,图②是△ABC的直观图.由图①②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.[点石成金]用斜二测画法画直观图的技巧(1)在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行;(2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线;(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑曲线连接而画出.如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a的正三角形,求△ABC的面积.解:建立如图所示的坐标系xOy′,△A′B′C′的顶点C′在y′轴上,边A′B′在x轴上,把y′轴绕原点逆时针旋转45°得y轴,在y轴上取点C使OC=2OC′,A,B 点即为A′,B′点,长度不变.已知A′B′=A′C′=a,在△OA′C′中,由正弦定理,得OC′sin ∠OA′C′=A′C′sin 45°,所以OC′=sin 120°sin 45°a=62a,所以原三角形ABC的高OC=6a,所以S△ABC=12×a×6a=62a2.真题演练集训1.[2016·天津卷]将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()A B C D答案:B解析:由正视图、俯视图得原几何体的形状如图所示,则该几何体的侧视图为B.2.[2014·新课标全国卷Ⅰ]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62 B. 4 2C.6 D.4答案:C解析:如图,侧面SBC⊥底面ABC.点S在底面ABC的射影点O是BC的中点,△ABC为直角三角形.∵AB=4,BO=2,∴AO =20,SO⊥底面ABC ,∴SO ⊥AO,SO =4,∴最长的棱AS=20+16=6.3.[2015·北京卷]某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案:C解析:根据三视图,可知几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB =1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.课外拓展阅读三视图识图中的易误辨析[典例]在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②[错解]由已知该几何体正视图是一个直角三角形,三个顶点的坐标分别为(0,0,2),(0,2,0),(0,2,2),且内有一实线,故正视图为①,俯视图是一个斜三角形,三个顶点坐标分别为(0,0,0),(2,2,0),(1,2,0),故俯视图为②.[错因分析](1)不能由点的坐标确定点在空间直角坐标系中的位置.(2)不能借助于正方体,由空间几何体的直观图得到它的三视图.(3)受思维定势的影响,直观感觉正视图为三角形,而无法作出选择.[解析]在空间直角坐标系中,构建棱长为2的正方体,设A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),则ABCD即为满足条件的四面体,得出正视图和俯视图分别为④和②,故选D.[自我矫正] D答题启示对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,再画其三视图.另外要注意交线的位置,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线,即一定要分清可见轮廓线与不可见轮廓线,避免出现错误.课时跟踪检测(三十九)[高考基础题型得分练]1.[2017·山东潍坊模拟]一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案:D解析:球、正方体的三视图形状都相同,大小均相等.三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同,大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.[2017·广州七校联考]如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案:C解析:由三视图可知,该几何体是一个横放的三棱柱,故选C.3.利用斜二测画法得到的()①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④答案:B解析:由斜二测画法规则知①正确,②错误;③中平行性不变,梯形两底平行且长度不相等,故在直观图中平行且长度不相等,故不可能为平行四边形;④中由平行于x轴的长度不变,平行于y轴的长度减半,故菱形的直观图应为平行四边形.故选B.4.[2017·湖北武昌调研]已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()A BC D 答案:D解析:易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B,D选项知,D选项中侧视图方向错误,故选D.5.[2017·云南师大附中月考]已知一几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体(图形)可能是()①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③每个面都是直角三角形的四面体.A.①②③B.②③C.①③D.①②答案:A解析:由三视图知,该几何体为正四棱柱如图所示.当选择的四个点为B1,B,C,C1时,几何体为矩形,①正确;当选择B,A,B1,C时,几何体满足②中要求;当选择A,B,D,D1时,几何体满足③中要求.故选A.6.[2017·山东淄博一模]把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为()A.22B.12C.24D.14答案:D解析:由正视图与俯视图可得,三棱锥A-BCD的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S=12×22×22=14.7.在棱长为1的正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为62.其中正确的是()A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤答案:B解析:四边形BFD1E为平行四边形,①显然不成立,当E,F分别为AA1,CC1的中点时,②④成立,四边形BFD1E在底面的投影恒为正方形ABCD.当E,F分别为AA1,CC1的中点时,四边形BFD1E的面积最小,最小值为62.故选B.8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF 在该正方体的各个面上的投影可能是________.(填出所有可能的序号)答案:①②③解析:空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.9. 在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO为________,面积为________ cm2.答案:矩形8解析:由斜二测画法的特点可知,该平面图形是一个长为 4 cm、宽为2 cm的矩形,所以面积为8 cm2.[冲刺名校能力提升练]1.[2017·湖南长沙三校一模]已知点E、F、G分别是正方体ABCD -A1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥P-MNQ的俯视图不可能是()答案:C解析:当M与F重合、N与G重合、Q与E重合、P与B1重合时,三棱锥P-MNQ的俯视图为A;当M,N,Q,P是所在线段的中点时,三棱锥P-MNQ的俯视图为B;当M,N,Q,P位于所在线段的非端点位置时,存在三棱锥P-MNQ,使其俯视图为D.故选C.2.[2017·河北模拟]某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则()A.3∈A B.5∈AC.26∈A D.43∈A答案:D解析:由三视图可得,该几何体的直观图如图所示,其中底面是边长为4的正方形,AF⊥平面ABCD,AF∥DE,AF=2,DE=4,可求得BE的长为43,BF的长为25,EF的长为25,EC的长为42,故选D.3.[2017·湖南郴州模拟]一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④答案:D解析:由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现,故选D.4.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A B C D答案:B解析:本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和侧视图是个矩形,可以堵住方形空洞,故选B.5.[2017·辽宁大连模拟]某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是________.答案:27解析:由三视图可知,该四面体为V-ABC,如图所示.其中AE ⊥BE,VC⊥平面ABE.EC=CB=2,AE=23,VC=2,所以AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,VA=20=2 5.AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25,所以该四面体的六条棱的长度中,最大的为27.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳与技巧:空间几何体的结构特征及三视图和直观图基础知识归纳一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.基础题必做1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③解题方法归纳1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中“正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.空间几何体的结构特征典题导入[例1]下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答]A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案] D解题方法归纳解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2]某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案] C解题方法归纳三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1) 如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.(2)如图,正三棱柱ABC-A1B1C1的各棱长均为2,其正视图如图所示,则此三棱柱侧视图的面积为()A.22B.4C. 3 D.2 3解析:选D依题意,得此三棱柱的左视图是边长分别为2,3的矩形,故其面积是2 3.几何体的直观图典题导入[例3]已知△ABC的直观图A′B′C′是边长为a的正三角形,求原△ABC的面积.[自主解答]建立如图所示的坐标系xOy′,△A′B′C′的顶点C′在y′轴上,A′B′边在x轴上,OC 为△ABC 的高.把y ′轴绕原点逆时针旋转45°得y 轴,则点C ′变为点C ,且OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变. 已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45° a =62 a ,所以原三角形ABC 的高OC =6a . 所以S △ABC =12×a ×6a =62a 2.解题方法归纳用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”. “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行线段的长度改变,图形改变;“三不变”⎩⎪⎨⎪⎧平行性不变,与x 轴平行的线段长度不变,相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+2 B.1+22C.2+22D .1+ 2解析:选A 恢复后的原图形为一直角梯形 S =12(1+2+1)×2=2+ 2.1.如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④B.①②③C.①③④D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选C C选项不符合三视图中“宽相等”的要求,故选C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD ,且EC 投影在面P AD 上,故B 正确.5.如图△A ′B ′C ′是△ABC 的直观图,那么△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形解析:选B 由斜二测画法知B 正确.6. 一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3B .1+ 3C .2+2 3D .4+ 3解析:选D 依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7. 一个几何体的正视图和侧视图都是边长为1的正方形,且体积为12,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图1所示,直三棱柱ABE -A 1B 1E 1符合题设要求,此时俯视图△ABE 是锐角三角形;如图2所示,直三棱柱ABC -A 1B 1C 1符合题设要求,此时俯视图△ABC 是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD -A 1B 1C 1D 1符合题设要求,此时俯视图(四边形ABCD )是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8. 一个几何体的三视图如图所示,则该几何体的体积为________.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin 60°×2-13×12×2×2sin 60°×1=533.答案:5339.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2 210.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11. 正四棱锥的高为3,侧棱长为7,求棱锥的斜高(棱锥侧面三角形的高). 解:如图所示,正四棱锥S -ABCD 中,高OS =3,侧棱SA =SB =SC =SD =7,在Rt △SOA 中,OA =SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,在Rt △SOE 中,∵OE =12BC =2,SO =3, ∴SE =5,即棱锥的斜高为 5.12. 已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA = 42-⎝⎛⎭⎫23×32×232 =12=23,∴S △VBC =12×23×23=6.1. 底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A .2 3B .3 C. 3 D .4解析:选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2. 如图所示的几何体中,四边形ABCD 是矩形,平面ABCD ⊥平面ABE ,已知AB =2,AE =BE =3,且当规定正视方向垂直平面ABCD 时,该几何体的侧视图的面积为22.若M ,N 分别是线段DE ,CE 上的动点,则AM +MN +NB 的最小值为________.解析:依题意得,点E 到直线AB 的距离等于(3)2-⎝⎛⎭⎫222=2,因为该几何体的左侧视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB 2=AE 2+BE 2-2AE ·BE cos 120°=9,即AB =3,即AM +MN +NB 的最小值为3. 答案:33.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a 的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC ,BD 交于点O ,E 为线段AA 1的中点,求证:OE ∥平面A 1C 1C ;(3)求该多面体的表面积.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE .∵E 为AA 1的中点,O 为AC 的中点,∴在△AA 1C 中,OE 为△AA 1C 的中位线.∴OE ∥A 1C .∵OE ⊄平面A 1C 1C ,A 1C ⊂平面A 1C 1C ,∴OE ∥平面A 1C 1C .(3)多面体表面共包括10个面,S ABCD =a 2,SA 1B 1C 1D 1=a 22, S △ABA 1=S △B 1BC =S △C 1DC =S △ADD 1=a 22, S △AA 1D 1=S △B 1A 1B =S △C 1B 1C =S △DC 1D 1=12×2a 2×32a 4=3a 28, ∴该多面体的表面积S =a 2+a 22+4×a 22+4×3a 28=5a 2.1. 有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是( )A .1B.322C. 2D. 3解析:选D 如图所示是棱长为1的正方体.当投影线与平面A 1BC 1垂直时,∵面ACD 1∥面A 1BC 1, ∴此时正方体的正投影为一个正六边形.设其边长为a ,则3a=2,∴a =63. ∴投影面的面积为6×34×⎝⎛⎭⎫632= 3. 此时投影面积最大,故D 正确.2.如图,△ABC 与△ACD 都是等腰直角三角形,且AD =DC=2,AC =BC .平面ACD ⊥平面ABC ,如果以平面ABC 为水平平面,正视图的观察方向与AB 垂直,则三棱锥D -ABC 的三视图的面积和为________. 解析:由题意得AC =BC =22,AB =4,△ACD 边AC 上的高为2,正视图的面积是12×4×2=22,侧视图的面积 是12×2×2=2,俯视图的面积是12×22×22=4,所以三视图的面积和为4+3 2. 答案:4+3 23. 已知正三棱柱ABC -A ′B ′C ′的正视图和侧视图如图所示,设△ABC ,△A ′B ′C ′的中心分别是O ,O ′,现将此三棱柱绕直线OO ′旋转,射线OA 旋转所成的角为x 弧度(x 可以取到任意一个实数),对应的俯视图的面积为S (x ),则函数S (x )的最大值为________;最小正周期为________.(说明:“三棱柱绕直线OO ′旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,OA 旋转所成的角为正角,顺时针方向旋转时,OA 旋转所成的角为负角.)解析:由题意可知,当三棱柱的一个侧面在水平面内时,该三棱柱的俯视图的面积最大.此时俯视图为一个矩形,其宽为3×tan 30°×2=2,长为4,故S (x )的最大值为8.当三棱柱绕OO ′旋转时,当A 点旋转到B点,B 点旋转到C 点,C 点旋转到A 点时,所得三角形与原三角形重合,故S (x )的最小正周期为2π3. 答案:82π3。

相关文档
最新文档