人教版初中数学垂径定理知识点总结
人教版初三数学:垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA. 【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例4-例5】【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。
九年级数学垂径定理知识点

九年级数学垂径定理知识点数学是一门令我们既爱又恨的学科,而九年级的数学则是更加具有挑战性和深度的一门课程。
在九年级数学中,垂径定理是一个重要的知识点,它不仅在几何学中有广泛的应用,而且在实际生活中也有着许多有趣的应用。
在本文中,我们将一起来探索九年级数学中的垂径定理。
首先,我们来了解一下垂径定理的定义和概念。
垂径定理是几何学中的一个基本定理,它指出:“如果两条直线相交于一个点,并且其中一条直线垂直于另一条直线的过程中所产生的垂直线段与交点的距离相等,那么这两条直线是垂线。
”简单来说,垂径定理就是通过一个垂直线段来判断两条直线是否垂直的方法。
举个例子来说明垂径定理的应用。
假设有一个四边形的对角线相交于一个点,我们需要判断对角线是否垂直。
按照垂径定理,我们可以通过在交点处作一条垂直于对角线的线段,并将它延长至相邻的边上。
如果延长后的线段与相邻边的距离相等,那么我们可以断定对角线是垂直的;反之,如果距离不相等,则对角线不是垂直的。
通过这个简单的方法,我们可以快速判断一个四边形的对角线是否垂直。
垂径定理不仅在几何学中有重要的应用,而且在实际生活中也有许多有趣的应用。
例如,我们在修建房屋时需要确保墙体垂直,这就需要使用垂径定理来检验墙体是否垂直。
另一个应用是在导航系统中,也需要使用垂径定理来计算地球上两点之间的最短距离。
除了应用方面,垂径定理还有着一些有趣的数学性质。
一个有趣的性质是,如果两条直线是垂线,那么它们的斜率乘积为-1。
这个性质是垂径定理的一个重要推论,通过它我们可以更直观地理解垂线的概念。
此外,垂径定理还与其他几何定理有着密切的关系。
例如,垂径定理与直角三角形定理、等腰直角三角形定理以及勾股定理之间有着紧密的联系。
通过运用这些定理,我们可以更好地理解垂径定理的应用,并解决一些复杂的几何问题。
在学习垂径定理时,我们还需要注意一些容易出错的地方。
例如,我们在判断两条直线是否垂直时,不能只通过一个垂直线段的长度是否相等来判断,还需要考虑这个线段是否垂直于另一条直线。
初中数学人教八年级上册第十二章全等三角形垂径定理PPT

x²+4²=(x+2)²
4x x+2
变式二
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出 水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水 面2米的货船要经过这里,此货船能顺利通过:如图,用 AB表示桥拱, AB所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
垂径定理的推论
①经过圆心(或说直径) ②垂直于弦 ③平分弦 ④平分弦所对的劣弧
⑤平分弦所对的优弧
(1)垂直于弦的直线平分弦,并且平分弦所对的
弧…………………………………………..( × )
(2)弦所对的两弧中点的连线,垂直于弦,并且
经过圆心……………………………………..( √ )
(3)圆的不与直径垂直的弦必不被这条直径平
解得 R≈3.9(m).
在Rt△ONH中,由勾股定理,得
OH ON2HN2, 即 O H3.921.523.6.
D 3 .6 H 1 .5 2 .1 2 .∴此货船能顺利通过这座拱桥.
例3:如图,已知△ABC的三个顶点在⊙O上, AD是BC边上的高,E为 BC 的中点. 求证:AE平分∠OAD.
垂径定理
垂直于弦的直径平分弦,并且平分弦所的两条弧.
几何语言表达:
C
∵ CD是直径,
A
B
M└
CD⊥AB,
●O
∴ AM=BM,
⌒ ⌒⌒ ⌒
AC = BC, AD = BD.
D
条件
①一条直径 ②垂直于弦
③直径平分弦 结论 ④平分弦所对的劣弧
⑤平分弦所对的优弧
1、能够证明垂径定理的逆定理;
2、熟悉掌握垂径定理的逆定理及其语言符号; 3、能够熟练地使用垂径定理、垂径定理的逆定 理解决问题.
垂径定理及其推论

圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆1、不在同一直线上的三个点确定一个圆。
2、经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
第3章 3.3 垂径定理

垂足为 N,则 ON=( A )
A.5
B.7
C.9
D.11
如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB=8 cm,
OC=5 cm,则 OD 的长是( A )
ห้องสมุดไป่ตู้
A. 3 cm
B. 2.5 cm
C. 2 cm
D. 1 cm
如图,CD 为⊙O 的直径,弦 AB⊥CD,垂足为 M.若 AB=12,
OM∶MD=5∶8,则⊙O 的周长为( B )
A.26π
B.13π
C.956π
D.39 5 10π
二、填空题
如图,⊙O 的直径 AB 垂直于弦 CD , 垂足为 E , 若∠COD
=120°,OE=3 厘米,则 CD= 66 3
厘米.
如图,AP=4,BP=6,OP=5,则⊙O 的半径= 7 7 .
积为 6 .
三、解答题 如图是某公园新建的圆形人工湖,为测量该湖的半径,小强和 ︵︵ 小丽沿湖边选取 A,B,C 三根木桩,使得AB=BC,并测得 点 B 到 AC 的距离为 15 米,AC 的长为 60 米,请你帮他们求 出人工湖的半径.
解:如图,设点 O 为圆心, 连接半径 OA,OB,
设 OB 交 AC 于点 D.
即 AC=BD.
(2)若大圆的半径 R=10,小圆的半径 r=8,且圆心 O 到直线 AB 的距离为 6,求 AC 的长.
解:由(1)可知,OE⊥AB,OE⊥CD, 如图,连接 OC,OA. ∵OE=6,
∴CE= OC2-OE2= 82-62=2 7, AE= OA2-OE2= 102-62=8. ∴AC=AE-CE=8-2 7.
∵A︵B=B︵C, ∴OB⊥AC,AD=CD=30 米.
初中九年级圆垂径定理

初中九年级圆垂径定理
初中九年级圆垂径定理是初中数学中的一条重要定理,它指出:
如果一条直线垂直于圆的一条弦,那么这条直线就称为这条弦的垂径。
下面我们来总结一下这个定理的具体内容和证明方法。
一、圆垂径定理的具体内容:
对于任意一个圆,如果有一条直线垂直于圆上的一条弦,那么这
条直线就称为这条弦的垂径。
垂径与弦的关系是:垂径通过弦的中点,并且垂径两端与圆相交的点与该弦两端与圆相交的点构成的四个点构
成一个矩形。
二、圆垂径定理的证明方法:
1. 首先,连接圆心和垂足,将圆垂径问题转化成一个三角形和
一个圆交点的问题。
2. 然后,通过割圆等分弧的方法,证明垂线与弦长度相等。
3. 最后,根据直角三角形的性质,证明垂足在弦的中点上。
三、圆垂径定理的应用:
圆垂径定理在数学中有广泛的应用,例如:
1. 计算圆弧长度和面积,特别是在环形的测量问题中应用。
2. 解决不同形式的分割问题,例如分割圆弧使其长度达到所需
大小的问题。
3. 通过圆垂径定理,证明圆心角定理,从而推出其他的几何定理。
综上所述,初中九年级圆垂径定理是数学中的重要定理之一。
通
过学习和掌握这个定理,我们可以更好地理解和应用各种形式的几何
问题。
垂径定理知识点

垂径定理知识点1. 垂径定理说啦,垂直于弦的直径平分弦!就好像你有一根绳子,我拿一根直直的杆子从中间穿过,那这根杆子是不是就把绳子给平均分成两半啦!比如说,一个圆形的蛋糕,直径把它分成相等的两半,这就是垂径定理在起作用呀,是不是很神奇?2. 嘿,垂径定理还提到,平分弦的直径垂直于弦呢!这不就像拔河比赛,中间的红绳被公平地分成两半,那和地面肯定是垂直的呀!就像一个圆形的大饼,用刀平分它,这刀肯定和饼是垂直的呀,是不是很有意思呢?3. 你想想看呀,垂径定理告诉我们,垂直于弦的直径平分弦且平分这条弦所对的两条弧!好比一把撑开的伞,伞骨垂直伞面,把伞面分成相等的部分,那同时也把下面的空间也给平分啦!比如一个圆形的池塘,中间有根柱子垂直立着,那柱子两边的水面区域就是相等的,超厉害的吧!4. 不得了哦,垂径定理里说平分弦所对的一条弧的直径,必垂直平分这条弦!就好像英雄总是和他的武器相得益彰,武器能发挥最大威力,英雄也能更厉害!像个钟的指针,钟的中心轴线平分了指针划过的弧,那必然也和指针是垂直的呀,多形象呀!5. 哇塞,垂径定理也包括平分弦所对的两条弧的直径,垂直平分弦呢!这就好像有个神奇的魔法棒,只要一挥,就能让东西变得整齐有序!比如一个摩天轮,中间的轴既能把那些车厢走过的弧平分,又能让连接车厢的杆子垂直,这就是垂径定理的魅力呀!6. 哎呀呀,垂径定理还有哦,弦的垂直平分线经过圆心!这简直就像是给圆心找到回家的路一样清楚明白呀!好比你放风筝,线的垂直平分线肯定是要经过风筝的中心呀!像个圆形的轮子,轮子上一根线的垂直平分线肯定会经过轮子中心,是不是很明了?7. 最后呢,平分弦的直径,不一定垂直于弦哦!这就好像不是所有的好人都一定是强壮的一样。
比如有根不太直的棍子平分了一根线,但它们不一定是垂直的呀。
垂径定理真的很有趣呢,我们一定要好好掌握呀!我的观点结论就是:垂径定理非常的神奇和有趣,在很多方面都有重要的应用,我们要多多去理解和运用它呀!。
初三数学笔记精华-垂径定理

ET
A
B
c
D是直径 ABICD i AE EB
Ali BC
Ai
推论
直径时平行书垂直
D
AE 7 B C
10的为直径 ② ABID ⑦ EAEB
04 成二成 ⑤ 必成
銴 知 直- 粉 仍 非直径的弦 CD直径
- 直径
X
ˇ
- 直径
X
- 直径
X
V
斜 -
着平分
ㄨ
_
X
一
一
直A 13
A gE B
15 12
15
C 几下
D
烤 烤 平行弦所夹弧相等如何证明
A
B
已知 ABM
C
D 求证 成二叨
姤或订5
C
5
50
37
A 4 in
B
D
AK 4万
notice 分类讨论
C
A
4M732
13
50
D
At 诟
10 㞽 40an
D
A
25
O
i5
no Ep
B
L
D
15
25 O
A
t5
uE
L
9优弧
劣弧
B
A
连以 作CELAB于E
legon
a
Ian
没 air 则0 EH OF t 在12比04中 上 4 后 Fr
ir 4
i BE 4 26 2 an
CDEICF 诟 an
aocotttrroerocn
Ii tr
B
没汇功 则几二 犴印 咋 不EP
4 Http 4 以印上8 Epi4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学垂径定理知识点总结
一、垂径定理的定义
垂径定理是关于直径和过该直径的直线(或圆)交于圆内两点之间的线段长度和关系的重要定理。
如果一个直径和一条过该直径的直线交于圆内两点,那么这条直径平分过这两点的线段,并且这条直径垂直于过这两点的直线。
二、垂径定理的表述
1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条
弧。
2.垂直于弦的直径平分弦(不是直径),并且平分弦所对的两条
弧。
3.垂直于弦的直径平分过弦的两条直线,并且平分弦所对的两条
弧。
三、垂径定理的应用
垂径定理在几何学中有着广泛的应用,特别是在解决与圆和直径相关的问题时。
例如,可以利用垂径定理来证明圆的性质,如圆的对称性、圆的周长和面积等。
此外,垂径定理还可以用于解决与圆和直线相关的问题,如求圆的半径、确定圆的中心等。
四、垂径定理的推论
1.从圆心到弦的垂线是弦的中垂线。
2.圆内一条弦的两端到圆心的距离相等。
3.圆内一条过圆心的弦最短,其长度为圆的直径。
4.圆内一条不过圆心的弦最短,其长度等于从圆心到弦中点的线
段长。
五、垂径定理的证明
垂径定理可以通过以下两种方法证明:
1.直接证明法:通过作图和推理,直接证明垂径定理。
这种方法
比较直观和简洁,但需要一定的几何知识和推理能力。
2.代数法:利用圆的性质和代数运算,证明垂径定理。
这种方法
比较抽象,但具有普适性,可以用于证明其他类似的定理。
六、注意事项
1.在使用垂径定理时,要注意区分直径和其他弦的区别,避免混
淆。
2.在作图时,要确保所作的线段是垂直于弦的直径,否则将无法
使用垂径定理。
3.在解决实际问题时,要根据具体情况选择合适的方法来应用垂
径定理。
七、垂径定理的应用场景
1.确定圆的形状和大小:垂径定理可以用于确定圆的形状和大小。
例如,通过测量圆的直径或半径,可以确定圆的大小;通过观
察垂径定理的各种表现,可以判断圆的状态和形状。
2.计算圆的周长和面积:垂径定理可以用于计算圆的周长和面积。
例如,通过已知的直径或半径,可以计算出圆的周长和面积。
3.证明圆的对称性:垂径定理可以用于证明圆的对称性。
例如,
如果一个图形是圆,那么它一定具有轴对称性和旋转对称性,
这些都可以通过垂径定理得到证明。
4.在实际生活中的应用:在现实生活中,垂径定理也有广泛的应
用。
例如,在桥梁设计、机械制造、建筑设计等领域中,都需
要使用垂径定理来确定圆形物体的形状和大小。
八、总结
垂径定理是初中数学中一个重要的定理,它揭示了直径、弦、弧和圆心角等元素之间的相互关系。
通过学习垂径定理,可以帮助学生更好地理解圆的性质和特点,提高他们的几何思维能力和解决问题的能力。
在实际生活和生产实践中,垂径定理也有着广泛的应用,因此学生应该认真掌握这个定理,以便更好地应用于实际生活中。