三角形中位线定理的应用2
三角形中位线定理2

矩形
( 4) 顺次连结 正方 ) 顺次连结正方 形 各边中点所得的四 边 形 是 ___________ ? 5)顺次连结梯形 梯形各边 (5)顺次连结梯形各边 中点所得的四边形是 ______________? ? (6)顺次连结等腰梯形 )顺次连结等腰梯形 各边中点所得的四边形 是__________? ?
E
G C
猜想:顺次连结四边形各边中 猜想: 点所得的四边形是什么形状与 原四边形的 有关? 有关?
B
F
进入数学画板
1、当原四边形的对 、当原四边形的对 角线相等时 角线相等时,会有 什么变化? 什么变化? 2、当原四边形的对 、当原四边形的对 角线垂直时 角线垂直时,会有 什么变化? 什么变化?
( 1) 顺次连结 对角线相等 ) 顺次连结对角线相等 的四边形各边中点所得的四 边形是什么? 边形是什么? ( 2) 顺次连结 对角线垂直 ) 顺次连结对角线垂直 的四边形各边中点所得的四 边形是什么? 边形是什么? (3)顺次连结对角线相等且 )顺次连结对角线相等且 垂直的四边形各边中点所得 垂直的四边形各边中点所得 的四边形是什么? 的四边形是什么?
A
那么 ⑴ DE∥BC, ∥ ,
E
D
⑵ DE=1/2BC 定理的主要用途: 定理的主要用途: ① 证明平行 ② 证明一条线段是另一条线段 倍或1/2 的2倍或 倍或 解决“中点问题” ③ 解决“中点问题”
B
C
必做题: 必做题:P93 页 1 、2 、3 自选一个顺次连结特殊四边形中点的问 总结形成文字命题,并加以证明。 题,总结形成文字命题,并加以证明。 自选一种方法证明三角形中位线定理。 自选一种方法证明三角形中位线定理。 选做题: 选做题:用图形计算器探索梯形中位线 的性质。 的性质。
三角形的中位线定理及其应用

第二个三角形,再连接第二个三角形三边的中点构成第三个三
角形,依此类推,第2019个三角形的周长为(
).A
B
C
1(数
量关系)
2
三、顺势而发 再提问题
A
见证奇迹
如图,连接三
角形的三条中 D
E
的时刻到 了!!
位线,会得到
哪些结论?
B
F
C
1.四个小三角形全等.
2.每一个小三角形的面积是大三角形面积的 .
3.存在三个平行四边形.
4.△DEF的周长为△ABC的周长的 .
四、运用定理 把定乾坤
如图,A,B两点被池塘隔开,在 AB外选一点C,连接AC和BC,怎样 测出A、B两点的实际距离?根据 是什么?
你收获ቤተ መጻሕፍቲ ባይዱ哪些知识?
三角形
转化
平行四边
中位线
定义 性质
数量关系 位置关系
六、使用所获 达成目标
1.如图,D、E、F分别为△ABC三边上的中点.
线段AD叫做△ABC的
,线段DE叫做△ABC
的
,图中有
个平行四边形.
2.三角形各边长为5、9、12,则连接各边中点所
构成的三角形的周长是
.
3.如图,已知△ABC的周长为1,连接△ABC三边的中点构成
一、温故求新 合情发现
定义:连结三角形两边中点的线 段叫做三角形的中位线。
D
E
你还能画出几条三角形的中位线?
F
思考: 1.你还能画出三角形的几条中线? 2.三角形中位线与三角形的中线有什么区别和联系?
一、温故求新 合情发现
A 概念对比 A
D
E
D 中线DC
中位线DE
三角形中位线定理的证明与应用

三角形中位线定理的证明与应用三角形中位线定理是初中数学中的重要定理,也是几何学中的基本概念之一。
本文将通过证明与应用,来深入解析三角形中位线定理的原理和意义。
一、三角形中位线定理的证明三角形中位线定理是指在任意三角形ABC中,连接三个顶点A、B、C处的中点形成的三条线段AD、BE、CF,它们两两平行且长度相等。
为了证明这个定理,我们可以利用向量和线段相等的性质进行推导。
假设三角形ABC的顶点分别为A(x1,y1)、B(x2,y2)、C(x3,y3),中点分别为D(x4,y4)、E(x5,y5)、F(x6,y6)。
可以得到以下向量关系式:AB = AO + OB = (x2 - x1, y2 - y1) + (x2, y2)BC = BO + OC = (x3 - x2, y3 - y2) + (x3, y3)AC = AO + OC = (x3 - x1, y3 - y1) + (x3, y3)根据中点的定义,可以得到:D = (A + B) / 2 = (x1 + x2) / 2, (y1 + y2) / 2E = (B + C) / 2 = (x2 + x3) / 2, (y2 + y3) / 2F = (A + C) / 2 = (x1 + x3) / 2, (y1 + y3) / 2利用向量的加减法,可以计算得到:AD = D - A = [(x1 + x2) / 2 - x1, (y1 + y2) / 2 - y1]BE = E - B = [(x2 + x3) / 2 - x2, (y2 + y3) / 2 - y2]CF = F - C = [(x1 + x3) / 2 - x3, (y1 + y3) / 2 - y3]将上述结果代入,得到:AD = [(-x1 + x2) / 2, (-y1 + y2) / 2]BE = [(-x2 + x3) / 2, (-y2 + y3) / 2]CF = [(x1 - x3) / 2, (y1 - y3) / 2]可以观察到AD、BE、CF的x方向和y方向的分量相等,即它们的长度相等。
三角形中位线定理的应用

三角形中位线定理的应用三角形中位线定理在初中教材体系中是一个很重要的定理,学好这部分内容将有助于梯形中位线定理乃至整个平面几何知识的学习.它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系.就第一个特性而言,中位线定理与平行线等分线段定理中的推论(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系.我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用.一、证明问题1、证明角相等关系例1、如图、四边ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证:∠AEF =∠DFE分析:欲证:∠AEF =∠DFE .由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN =∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有12GM AB∥,12GN CD ∥,由于AB =CD ,进而有GM =GN ,∠GMN =∠GNM 然后再转化∠EPN =∠Q ,从而证出结论.证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD ,取BD 的中点G ,连结GM 、GN .∵G 、M 分别为△ABD 的边BD 、AD 的中点∴12GM AB ∥.同理可证:12GN AB∥,又∵AB =CD ,∴GM =GN ,∴∠GMN =∠GNM ,∵GM //AB ,GN =CD ,∴∠GMN =∠EPN ,∠GNM =∠Q ,∴∠EPN =∠Q ,又 EF ⊥MN ,∴∠AEF =∠DFE (等角的余角相等)说明:添辅助线是证明几何题的难点.若要添多条辅助线,更为困难,掌握一般添辅助线的规律是必要的,更为重要的是分析中自由添加辅助线,添辅助线是分析问题过程的一个步骤,这是几何的证明的较高层次,要在实践中仔细体会,不断摸索,不断总结.2、证明线段的倍分以及相等关系例2.如图,已知平行四边形ABCD 中,BD 为对角线,点E 、F 分别是AB 、CD 的中点,连线EF ,交BD 于M 点.求证:(1)BM =14BD (2)ME =MF 分析:欲证问题(1)由E 、F 分别为AB 、BC 中点想到连结AC ,由平行线等分线段定理可证得BM =MO .又因为平行四边形的对角线互相平分,可得BO =OD ,即BM =41BD .欲证问题(2),由问题(1)中的辅助线,即连结AC ,由三角形中位线定理可得EM =12AO ,MF =12OC ,又由平行四边形对角线互相平分即可得到问题(2)的结论.证明:(1)连结AC ,交BD 于O 点,∵E 、F 分别为AB 、BC 中点,∴EF ∥AC ,∴BM =MO =12BO (平行线等分线段定理) 又∵四边形ABCD 是平行四边形∴BO =OD =12BD ,AO =OC =12AC , ∴BM =1124BO BD ,即BM =14BD(2)∵M 是BO 的中点,E 、F 分别是AB 、BC 中的中点.∴12ME AD =,12MF OC =,又∵AO =OC ,∴ME =MF 小结:问题(1)看起来似乎与三角形中位线定理无关,其实这是从侧面的运用了三角形中位线的位置关系,即三角形的中位线平行于底边,而问题(2)直接运用了三角形中位线的数量关系.3、证明线段平行关系例3.如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,重足分别为D 、E .求证:DE ∥BC 分析:欲证ED //BC 我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD 、AE ,交BC 与CB 的延长线于G 与H ,通过证明△ABD 与△GBD 全等易证D 是AG 中点,同理E 为AH 的中点,故,ED 是△AEG 的中位线,当然有DE ∥BC .证明:延长AD 、AE 交BC 、CB 的延长线于G 、H ,∵BD 平分∠ABC ,∴∠1=∠2,又∵BD ⊥AD ,∴∠ADB =∠BDG =900. 在△ABD 与△GBD 中12BD BDBDG BDA⎧⎪⎨⎪⎩=== ∠∠∠∠,∴△ABD ≌△GBD (A S A ) ∴AD =DG ,同理可证,AE =GE ,∴D ,E 分别为AG ,AH 的中点, ∴ED ∥BC小结:由此题我们可以知道证明直线或线段平行除了平行判定等,还可以用中位线定理来证明直线或线段平行.二、比较大小1、比较线段大小 例4.如图,M 、N 是四边形ABCD 的边 BC 、AD 的中点,且AB 与CD 不平行.求证:MN <12(AB +CD ). 分析:欲证MN <12(AB +CD ),我们从表面上看这个问题比较复杂,但由M 、N 分别为BC 、AD 中点我们可以联想到如何构造三角形中位线来证明问题,通过连结BD ,并取BD 中点P ,连结NP 、MP 这时分别为△DAB 、△DCB 的中位线,这时三条线段NP 、MP 、MN 都在一个三角形里,问题就迎刃而解了.证明:连结BD 并取BD 中点P ,连结NP ,MP . ∵N 为AD 中点,P 为BD 中点.∴NP 为△DAB 的中位线,∴NP =12AB ,同理可得MP =12CD .∵AB 与CD 不平行,∴P 点不在MN 上.在△PMN 中,由于两边之和大于第三边,∴MN <PM +PN =12(AB +CD )小结:此类题型通过转化,把有关的线段或与之有联系的线段集中在一个三角形中,再应用三角形的有关知识,如:三角形中位线及两边之和大于第三边,两边之差小于第三边等知识,即可得出证明.2、比较角的大小例5、如图:AD 是△ABC 的中线,如果AB >AC ,那么∠BAD <∠CAD . 分析:因为D 为BC 中点联想到,过点D 作中位线DE ,因为DE ∥AB 即△ABC 得到∠1=∠3,由AB >AC , 有12AB >12AC ,所以就有∠3<∠2,即∠BAD <∠CAD证明:过点D 作DE ∥AB 交AC 于E ,∴DE ∥AB 且 DE =12AB ,E 为AC 中点.∴∠1=∠3,∵AB >AC ,∴12AB >12AC ,即在△AED 中,DE >AE ,∴∠3<∠2,∴∠1<∠2,即∠BAD <∠CAD小结:本题证角不相等,因为要证的两个角不在同一个三角形中,如果这两个角在同一个三角形中能应用:在同一个三角形中,大边对大角原理这时就考虑到如何将这两个角放在一个三角形中,通过观察只要过D 作DE ∥AB 就可解决求证问题.三、求值问题例6. 如图,正方形ABCD 两对角线相交于点E ,∠CAB 的平分线交BE 于G ,交BC 于F ,若GE =24 求FC 的长.分析:求FC 的长,因为E 为对角线交点,就是AC 中点所以作辅助线PE ∥BC 就有PE ∥FC 且有PE =21FC 所以只要能求出PE 的长即可,而PE 的长可由∠3=∠4求出,因为∠3为△APE 的外角所以有∠3=∠2+∠5同理有∠4=∠1+∠7因为AF 为∠BAC 的平分线所以∠1=∠2又因为所以∠5=∠6,而∠6=∠7所以有∠3=∠4即PE =GE =12FC ,这样问题就解决了. 解:过点E ,作EP ∥BC ,交AF 于点P ,则P 为AF 中点,∵∠3=∠2+∠5=∠2+∠6,∠4=∠1+∠7,又∵AF 平分∠BAC ,∴∠1=∠2,又∵∠6=∠7,∴∠3=∠4,∴EP =EG ,∵PE 是△AFC 的中位线,∴PE =12FC =EG ,即FC =2EG =2PE =2×24=48小结:求值问题,主要是如何添加辅助线,将比较难的问题转为容易的问题.总之,三角形中位线定理及其应用,在初中数学中占有很重要的地位,如何正确添加辅助线构造三角形中位线对每个学生来说是一个重点也是一个难点.要求学生要善于觉察图形中的有关定理的基本图形,涉及到中点问题时要及时联想到有关定理.一条或一组合理地利用了题目条件的辅助线常见有一箭双雕甚至一箭多雕的效益,准确而理想的图形能有效地帮助我们迅速地捕捉到题意预定的目标.。
三角形中位线定理的运用例谈(Word版,含解析、点评和练习设计)

专题复习:三角形中位线定理的运用例谈 赵化中学 郑宗平三角形的中位线定理在平面几何中比较特殊,它既反映三角形的中位线与三角形边的位置关系,又有与三角形边的数量关系的规律性结论;在一些所谓的几何难题中常见它的身影,而三角形的中位线往往能起牵线搭桥甚至是关键性的作用;下面我精选一部分“含”三角形的中位线的几何解答题,让我们共同来探究、解析、训练.知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1.三角形三条中位线围成的三角形与原三角形在某些数量上的关系⑴.周长关系如图点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,请探究DEF 的周长与ABC 的周长的关系? 分析: 点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,可知:,,,111EF BC DE AB DF AC 222===∴()1EF DE DF BC AC AB 2++=++所以三角形的三条中位线围成的三角形的周长是原三角形的周长的一半练习:以上面的图为例,若DEF 的周长为16cm ,则ABC 的周长为 .⑵.面积关系如图点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,请探究 DEF 的面积与ABC 的面积关系? 略析:根据三角形中位线定理可以得出,,,,111EF BC DF AC DE AB EF BC DF AC DE AB 222===;,再利用线段中点的定义、平行线性质、平行四边形的性质等可以进一步推出DEF 、AFE 、FBD 、DEC 是全等的,故它们的面积是相等的,则ABC S=DEF 4S.所以三角形的三条中位线围成的三角形的面积是原三角形的面积的14.说明:今后我们学习了相似三角形的性质后,这个结论的推导就简单多了.练习:以上面的图为例,若ABC 的面积为216cm ,则DEF 的面积为 .2、中点四边形顺次连结四边形四边中点所构成的四边形,我们把它简称为中点四边形.中点四边形是有规律可循的.中点四边形的特殊性主要是看原四边形的对角线的特征,分为下面几种情况:⑴.原四边形的对角线既不相等也不垂直,其中点四边形是个一般的平行四边形.如图⑴,点E F G H 、、、分别是四边形ABCD 的四边的中点,试探究中点四边形EFGH 的形状. 略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:,EH BD GF BD EH GF ∴ 同理:HG EF ;故中点四边形EFGH 的形状是平行四边形. (还有其它方法证明)⑵.原四边形的对角线相等但不垂直,其中点四边形是个菱形.如图⑵,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD =,试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,11EH BD EF AC EH EF 22==∴=;故中点四边形EFGH 是个菱形.⑶.原四边形对的角线垂直但不相等,其中点四边形是个矩形.如图⑶,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD ⊥试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,EH BD EF AC 可以进一步推得HEF 90∠=,故中点四边形EFGH 是个矩形.⑷.原四边形对的角线既垂直又相等,其中点四边形是个正方形.如图⑷,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD AC BD =⊥,,试探究中点四边形EFGH 的形状.略析:由⑵和⑶的方法推理易得点四边形EFGH 既是菱形又是矩形,故中点四边形EFGH 是个正方形. (还有其它方法证明)练习:1.顺次连结平行四边形四边中点所构成的中点四边形的形状是 ;C 图(1)C 图(2)图(3)A 图(4)2.顺次连结矩形四边中点所构成的中点四边形的形状是;3.顺次连结菱形四边中点所构成的中点四边形的形状是;4.顺次连结正方形四边中点所构成的中点四边形的形状是;5.顺次连结对角线互相垂直等腰梯形的四边中点所构成的中点四边形的形状是 .3、三角形的中位线与梯形⑴.连结梯形两腰中点的线段(梯形的中位线)与两底的关系.如图,梯形ABCD中,AD BC,E F、分别是两腰AB DC、的中点,请探究EF与AD BC、的关系.分析:本题关键是把梯形的中位线转化成三角形的中位线来解决.连结AF延长交BC的延长线于G点.根据题中条件易证ADF≌GCF,得:AF GF CG AD==,吧在ABG中,由,AE BE AF GF==可以推出,1EF BG EF BG2=.可以进一步得出:(),,1EF BC EF AD EF AD BC2=+.结论:梯形的中位线平行于两底,并且等于两底和的一半.⑵.连结梯形两对角线中点的线段与两底的关系.如图,梯形ABCD中,,AD BC BC AD>,E F、分别是两对角线AC BD、的中点,请探究EF与AD BC、的关系.分析:本题关键是把梯形的中位线转化成三角形的中位线来解决.连结DF延长交BC于M点.根据题中条件易证ADF≌CMF,得:DF MF CM AD==,.在D BM中,由,DE BE DF MF==可以推出,1EF BM EF BM2=.可以进一步得出:(),,1EF BC EF AD EF BC AD2=-.结论:连结梯形两对角线中点的线段平行于两底,并且等于两底差的一半.练习:1.若一梯形的高为h,其中位线长为m,则此梯形的面积为 .2.以上面的⑵题为例的条件的基础上,若增添梯形ABCD的中位线长为14cm EF8cm=,,求梯形ABCD的两底AD BC、的长分别是多少?4.巧添三角形的中位线来破题添三角形中位线是几何图形辅助线比较常见的辅助线.已知三角形边上的中点,直接连结构成中位线是最常见的添中位线的方式,也是同学们容易想到的,这里不举例;下面这些例子添三角形中位线的途径有些有一定的技巧性,希望能给同学们从中得到一些启发.⑴.补全三角形,得到三角形的中位线.例.如图E F G H、、、分别是AB BD CD CA、、、的中点,求证:四边形EFGH是平行四边形.分析:本题求证的是四边形EFGH在的线段并非是某完整三角形的边,如果我们连结AD或BC问题便解决了.如图,当连结BC后,在ABC和DBC,由于E F G H、、、分别是AB BD CD CA、、、定理可得:,;,.,11HE BC GF BC HE BC GF BC HE GF HE GF22==∴=.故四边形EFGH是平行四边形.⑵.再取中点,连成中位线例1. 如图,D为△ABC的边AB的中点,,1CE AC OE23==,求OB的长?分析:在三角形的一边上有一中点,根据条件很容易再取一中点来连结而成三角形的中位线来解决问题.如图,根据本题的条件若取出线段AE的中点F,容易得出E F、是线段AC的三等分点,E F、就分别是线段CF AE、的中点,连结DF后,在ABE中,又由于D为AB的中点,根据三角形的中位线定理可得:,BE2DF DF BE=;因为已得出E为线段CF的中点,根据平行线等分线段(属于选学内容)可以得出O为线段CD的中点,即OE为CDF的中位线,所以,DF2OE BE2DF4OE8=∴===;所以.OB BE OE826=-=-=例2.四边形ABCD中,对角线AC=BD,E、F分别为AB、DC的中点,点O为AC、BD的交点,M、N为EF分别与DB、AC的交点,求证:OM=ON分析:本题的E F、分别为AB DC、的中点,但并非为某三角形和梯形(四边形ABCD没有告诉是梯形)的中位线,本题的E F、分别为AB DC、的中点,若化在ABC和ABC来看,它们有一公共边,若在公共边BC取一中点G,连结GE GF、(见图示),此时GE GF、就分别是ABC和ABC的中位线,根据三角形的中位线定理可得:且,11GE AC GF BD22==;又AC BD GE GF GFE GEF=∴=∴∠=∠;∵,GE AC GF BDADB CEOFA DB CE M N FOG∴,;ONE GEF OMF GFE ONE OMF OM ON ∠=∠∠=∠∴∠=∠∴=.例3.M 、N 分别为AD 、BC 的中点,且AB=CD,求证:∠1=∠2分析:本题要证明的是两个角相等,而两个角相等的直接条件没有,再加上在图形上两个角的位置上有比较分散,所以我们应思考把分散位置上的12∠∠、转化在一起,很容易联想到由平行线来帮忙.由本题有线段中点的条件,所以可以尝试再取一中点连成三角形的中位线来提供平行线. 略证:如图,连结AC ,取出线段AC 的中点E . 又M N 、分别是线段AD BC 、的中点,,,NE CD ME AB NE CH ME BC 11NE CD ME AB22AB CD NE MEEMN ENM ∴===∴=∴∠=∠即,,NE CH ME BC1ENM 2EMN 12∴∠=∠∠=∠∴∠=∠ 点评:本题在添加辅助线上有些技巧性,但如果能想到把位置分散的12∠∠、“搬”到同一个三角形中且要使它们相等来解决问题,根据本题提供的条件这样的辅助线是应该想到的.另外例2和例3都有一个都一个共同的特点,要把问题转化到同一个三角形中,关键要找到或构造共同的边的中点,例2的公共边BC 的中点G 和例3构造的公共边AC (对角线)的中点E .⑶.挖出隐含的中点构成中位线. 例1.如图,,ME AB ME AB =,D 为线段EC 的中点,A M D 、、三点共线 求证:四边形ABCD 是梯形 分析:证明四边形ABCD 是梯形当然关键是证明有且只有一组对 边平行,根据本题提供的条件就是要证明AD BC .提供平行线 除了以前常用的方法,现在三角形的中位线定理又使我们多了一条途径.根据本题的条件已经有了D 为线段EC 的中点,若再找一个且是同一个三角形边的中点,连结就有了三角形中位线,有些中点是明显的,有的中点却是“隐藏”在图形中,需要用平时积累的知识使它现身.本题的,ME AB ME AB =可以得出:四边形ABM E 是平行四边形,平行四边形的对角线是互相平分的,若我们连结对角线BE 与对角线AM 的交点O 就是线段BE 的中点,在EBC 中,根据三角形的中位线定理可以得出,OD BC AD BC 即.例2. △ABC 中,AD 平分∠BAC,CD ⊥AD,E 为BC 的中点,求证:DE ∥AB分析:本题和例1的思路是一样的,关键是挖出隐含的中点,从而来使 问题得以解决.如图若我们延长CD 交AB 于带点F ,根据题中条件容易证得AFD ≌ADC ,所以DF DC =,即D 为CF 的中点;又E 为BC 的中点,根据三角形的中位线定理可以得出,DE FB DE AB 即.例3.BD 、CE 分别平分∠ABC 、∠ACB ,AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G 求证:GF ∥BC分析:本题和例1、例2的思路是一样的,关键是挖出隐含的中点,从而来使 问题得以解决.如图若我们分别延长AG AF 、交BC 于点M N 、,根据题中条件容易证得 AGC ≌MGC ,所以AG MG =,即G 为AM 的中点;同理可以得到F 为 AN 的中点,根据三角形的中位线定理可以得出,DG MN DG BC 即.点评:隐含在图形中的中点往往是我们平时容易忽视的,但挖出这些“隐藏的中点”往往有可能是一道题破题的一个关键环节;我们同学有的虽然有这方面的知识积累,但却没有这方面的意识,这也难以找到破题的的途径.根据上面三道例题来看,隐藏的中点要注意平行四边形(包括特殊的平行四边形)的对角线互相平分、角的平分线与垂线相结合的图形交点、等腰三角形的三线合一、平行线等分线段、中垂线等等知识点.练习:1. 如图,AD 、BE 、CF 分别是△ABC 三边中线交于点O ,FM ∥BE ,EM ∥求证:四边形ADCM 是平行四边形.2.如图,ABC 中,D 为边BC 上的一点,中线BE 与线段AD 交于的F ,且1DF AD =,求:BD DC 的值?如图正方形ABCD 的对角线AC BD 、交于点O ,BAC ∠的平分线交BD 于点F .求证:1OF CE 2= G B A D N M H 21EA DC B M E ODE C AF A B C FG E DONM C5.三角形中位线的实际应用举例例.A B 、两点被池塘隔开,现在要测出A B 、两点间的距离,但又无法直接去测量,怎么办? 略解:在池塘外的空地上取一点C ,用绳子“连结”CA CB 、CA CB 、的中点分别为M N 、,量出M N 、之间的距离,此时AB =根据是三角形的中位线定理.(见右图图解)练习:怎样测量一座建筑底面是四边形地基的对角线的长?请画出示意图进行解答说明.课外选练:1、 如图,等腰梯形ABCD 的ADBC ,若E F G H 、、、分别是AD BD BC AC 、、、的中点,请判断四边形EFGH 的形状,并说明理由. 2、如图ABC 中,EF 为三角形的中位线,AD 是BC 边上的中点,点O 为EF 和AD 的交点.求证:EF 和AD 互相平分.3、如图,点D E F 、、分别是ABC 的三边AB AC BC 、、的中点,是BC 的高。
三角形中点定理

三角形中点定理三角形中点定理,又称为中位线定理,是平面几何中的一个重要定理。
它阐述了三角形内三条中线的特点与性质。
本文将详细论述三角形中点定理及其相关推论,以便更好地理解和应用该定理。
一、三角形中线的定义与性质在三角形ABC中,由三个顶点A、B、C分别连接各边的中点D、E、F,所形成的线段AD、BE、CF即为三角形ABC的中线。
根据三角形中点定理,中线具有以下性质:1. 三条中线互相平行,且等于三角形两边的一半。
证明:连接AD和CF,由于D、E、F为各边的中点,根据两点间的线段中点定理可推出AD ∥ BC,并且AD = 1/2 BC。
同理,BE ∥AC,BE = 1/2 AC;CF ∥ AB,CF = 1/2 AB。
所以三条中线互相平行,且等于各边的一半。
2. 三条中线交于一个点,该点称为三角形的重心。
证明:假设三条中线交于点O。
连接AO、BO、CO。
根据平行四边形的性质可知,AD = 1/2 BC,BE = 1/2 AC,CF = 1/2 AB。
根据向量加法和平行四边形的关系可得:AO + BO = 2AD + 2BE = BC + AC = ABBO + CO = 2BE + 2CF = AC + AB = BCCO + AO = 2CF + 2AD = AB + BC = AC由此可得AO = BO = CO,即点O在三条中线的交点上,故点O为三角形的重心。
二、三角形中点定理的应用1. 判断三角形形状:根据三角形中点定理,如果三角形的中线相等,那么该三角形是等腰三角形。
因为等腰三角形的两条边相等,所以由中线的定义可推出三条中线相等,且平行。
2. 求解三角形面积:根据三角形中点定理,三角形的两条中线之间的长度恰好为三角形面积的一半。
因此,我们可以通过已知三角形中线的长度来求解三角形的面积。
3. 构造三角形:根据三角形中点定理,给定一条边的中点和该边上的长度,还可以根据中线的定义,得到另外两条边的中点,从而构造出三角形。
如何利用三角形中位线定理

如何利用三角形中位线定理三角形是初中数学中的重要内容,但是在学习三角形的时候,很多同学会发现一些特殊的线段,比如三角形中位线,但是很多同学并不知道如何利用这些特殊的线段来解决问题。
本文将介绍如何利用三角形中位线定理来解决一些实际问题。
一、三角形中位线定理的定义在三角形ABC中,连接AB、BC、AC的中点分别为D、E、F,那么有以下定理:1. 三角形中线定理:DE = 1/2BC,EF = 1/2AC,FD = 1/2AB。
2. 三角形中位线定理:三条中位线交于一点,且交点离每个顶点的距离是从该顶点到对边中点距离的一半。
二、利用三角形中位线定理解决实际问题1. 求三角形中位线长度在三角形ABC中,连接AB、BC、AC的中点分别为D、E、F,求DE的长度。
根据三角形中位线定理,DE的长度等于BC的一半,因此DE = 1/2BC。
如果知道BC的长度,就可以直接计算出DE的长度了。
2. 判断三角形是否为等腰三角形在三角形ABC中,连接AB、BC、AC的中点分别为D、E、F,如果DE = EF,则三角形ABC为等腰三角形。
因为DE = 1/2BC,EF = 1/2AC,所以DE = EF等价于1/2BC = 1/2AC,即BC = AC,因此三角形ABC为等腰三角形。
3. 求三角形面积在三角形ABC中,连接AB、BC、AC的中点分别为D、E、F,求三角形ABC的面积。
根据三角形面积公式,三角形ABC的面积等于1/2底边乘以高,而三角形的高正好是DE,因此三角形ABC的面积等于1/2BC乘以DE。
根据三角形中位线定理,DE = 1/2BC,因此三角形ABC的面积等于1/4BC。
4. 求三角形重心坐标在三角形ABC中,连接AB、BC、AC的中点分别为D、E、F,三条中位线交于点G,求点G的坐标。
根据三角形中位线定理,点G离每个顶点的距离是从该顶点到对边中点距离的一半。
因此,点G的坐标可以通过计算三个顶点的坐标和对边中点的坐标来求得。
三角形中位线定理几何语言

三角形中位线定理几何语言
一、三角形中位线定义
三角形中位线是指连接三角形两边中点的线段。
二、中位线与第三边平行
三角形中位线与第三边平行,即中位线与第三边没有交点。
三、中位线长度为第三边的一半
三角形中位线的长度等于第三边长度的一半。
四、中位线与两边形成的角
三角形中位线与两边形成的角为直角,即中位线与两边形成的角为90度。
五、中位线定理的应用
中位线定理的应用广泛,它可以用于解决各种与三角形有关的几何问
题。
例如,通过应用中位线定理,我们可以求出三角形中某个边的长度、确定三角形是否有一个特定的角度、或者证明两条线段是否相等等等。
中位线定理是一个重要的工具,能够帮助我们更好地理解三角形的几何性质,以及解决与之相关的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线定理的应用
三角形中位线定理是平面几何中十分重要的性质,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何题,如:1.说明线段的倍分关系
例1如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F,
AF=1
3
AC.试说明EF=
1
4
BF.
解:取CF的中点H,联结DH,则DH为△CBF的中位线.
又因为AF=1
3
AC,即F为AH的中点,则EF为△ADH的中位线,故DH=
1 2BF,EF=
1
3
DH,所以EF=
1
4
BF.
2.说明两线平行
例2如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为
垂足.试说明DE∥BC.
解:延长AE、AD交BC与BC的延长线于N、M.由∠1=∠2,BD⊥AM,可得AD=DM.同理可得AE=EN.故DE为△ANM的中位线.所以DE∥MN,即DE∥BC.
3.说明线段相等
例3如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD的中点,直线MN分别交AB、AC于P、Q.试说明AP=AQ.
解:取BC中点F,联结MF与NF.
因为BM=ME,BF=FC.
所以MF∥CE,且MF=1
2 CE.
同理可得NF∥BD,且NF=1
2
BD.且又BD=CE,所以MF=NF,故∠3=∠4,
又∠1=∠4,∠2=∠3,所以∠1=∠2,故AP=AQ.
4.说明两角相等
例4如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E 分别为MN与BC的中点,AP∥DE交BC于P.试说明∠BAP=∠CAP.
解:联结BN并取中点Q,联结DQ与EQ,则DQ∥BM,且DQ=1
2 BM,
EQ∥CN,且EQ=1
2
CN,又BM=CN,所以DQ=EQ,故∠1=∠2,因为AB∥DQ,
DE∥AP,所以∠1=∠BAP.因为QE∥NC,DE∥AP,所以∠2=∠CAP,所以∠BAP=∠CAP.
由以上几例不难看出,当有中点这一条件时,设法构造三角形中位线,然后利用三角形中位线定理解题,这是一种常用的解题技巧.。