三角形中位线定理的应用2

三角形中位线定理的应用2
三角形中位线定理的应用2

三角形中位线定理的应用

三角形中位线定理是平面几何中十分重要的性质,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何题,如:1.说明线段的倍分关系

例1如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F,

AF=1

3

AC.试说明EF=

1

4

BF.

解:取CF的中点H,联结DH,则DH为△CBF的中位线.

又因为AF=1

3

AC,即F为AH的中点,则EF为△ADH的中位线,故DH=

1 2BF,EF=

1

3

DH,所以EF=

1

4

BF.

2.说明两线平行

例2如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为

垂足.试说明DE∥BC.

解:延长AE、AD交BC与BC的延长线于N、M.由∠1=∠2,BD⊥AM,可得AD=DM.同理可得AE=EN.故DE为△ANM的中位线.所以DE∥MN,即DE∥BC.

3.说明线段相等

例3如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD的中点,直线MN分别交AB、AC于P、Q.试说明AP=AQ.

解:取BC中点F,联结MF与NF.

因为BM=ME,BF=FC.

所以MF∥CE,且MF=1

2 CE.

同理可得NF∥BD,且NF=1

2

BD.且又BD=CE,所以MF=NF,故∠3=∠4,

又∠1=∠4,∠2=∠3,所以∠1=∠2,故AP=AQ.

4.说明两角相等

例4如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E 分别为MN与BC的中点,AP∥DE交BC于P.试说明∠BAP=∠CAP.

解:联结BN并取中点Q,联结DQ与EQ,则DQ∥BM,且DQ=1

2 BM,

EQ∥CN,且EQ=1

2

CN,又BM=CN,所以DQ=EQ,故∠1=∠2,因为AB∥DQ,

DE∥AP,所以∠1=∠BAP.因为QE∥NC,DE∥AP,所以∠2=∠CAP,所以∠BAP=∠CAP.

由以上几例不难看出,当有中点这一条件时,设法构造三角形中位线,然后利用三角形中位线定理解题,这是一种常用的解题技巧.

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

初中几何中三角形中位线定理的应用

初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系; (2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=21BD ,HF=21AC,因为AC=BD,从而 得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=21BD ,EH//BD ,HF=21AC ,FH//AC (三角形中位线定理) 而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵EH//BD ,HF//AC ,∴∠HEF=∠ DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

三角形中位线定理的运用

教学案例:《三角形中位线定理教学设计》 ⒈创设问题情境,诱导学生发现结论 ⑴怎样测算操场中被一障碍物隔开的两点A、B的距离?小明测量的方法是:在AB外选一点C,连结AC、BC,取AC、BC的中点M、N。连结MN,量出MN=20m,这样能算出AB的长吗?AB与MN有何关系?经观察,你猜测 AB与MN的关系是:①②。 ⑵MN这条线段既特殊又重要,我们把它叫做△ABC的 中位线。即连结三角形两边点的线段叫三角 形的。 ⑶一个三角形有条中位线,画出图4的三角形的所有中位线,观察、测量发现: ( )∥( ),( )=( );( )∥( ),( )= ( );( )∥( ),( )= ( )。用语言叙述上述结论:三角形的中位 线并且 . ⑷再画出图2的△ABC的三条中线,它与中位线有何区别? 说明:⑴以上内容让学生按印发的学习提纲在课前完成。⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,

这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。 ⒉创设思维情境,启导学生发现证明结论的思路和方法 ⑴检查课前自学情况。教师提问有关问题,学生回答,并用多媒体展示答案。 ⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。教师板书,学生在提纲上写已知、求证。 ⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。 ①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。经过探讨,学生不难发现以下三种证法:(过程略) 证法㈠:利用相似三角形证法㈡: 证法㈢: 说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

三角形中位线在初中几何中的应用

1 初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要 取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH= 21BD ,HF=2 1 AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH= 21BD ,EH//BD ,HF=2 1 AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵ EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE 分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有 12GM AB ∥,1 2 GN CD ∥,由于AB=CD ,进而有GM=GN , ∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。 证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD , 取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴ 12GM AB ∥。同理可证:12 GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM , ∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

《三角形中位线定理》

课题:三角形中位线定理 科目:数学教学对象:八年级课时:§18.1平行四边形第4课时提供者:大城县第四中学毕宝清 一、教学目标 1.知识与技能: 理解三角形中位线的概念;探索并掌握三角形中位线定理;能正确应用三角形中位线定理解决问题。 2.过程与方法: 经历探索三角形中位线定理的过程,感受数学转化思想。 3.情感态度与价值观: 培养学生大胆猜想、合理论证、归纳结论的科学精神。 二、教学重点、难点 1.重点:探究三角形中位线定理并应用,应用三角形中位线定理解决有关问题。2.难点:三角形中位线定理的证明。 三、教具准备 多媒体、三角形纸片 四、教学过程 教 学 环 节 教学内容师生活动设计意图 一、情境设置 导入新课蚕丝吐尽春未老,烛泪成灰秋更稠。 春播桃李三千圃,秋来硕果满神州。 为感恩教师,七年级六班召开主题 班会,班长要求每个同学把手中的 三角形原料裁成四面完全相同的彩 旗装扮教室,应该怎么裁剪呢? 教师引 导学生观察 图片,思考问 题后出示课 题. 教育学生懂得感 恩,从学生的生活实际 出发,创设情境,提出 问题,激发学生强烈的 好奇心和求知欲.

环 节 教学内容师生活动设计意图 二、 动手操作 观察发现探究一:三角形中位线的概念 活动一:请同学们按要求画图: (1)画一个任意的△ABC; (2)取AB、AC的中点D、E; (3)连接DE 三角形中位线定义: 连接三角形两边中点的线段叫做三 角形的中位线。 问题1:一个三角形有几条中位线? 请学生画出三角形中所有中位线。 问题2:三角形的中位线和三角形 的中线有何异同? 教师引 导学生在练 习本上作图, 实践操作后 分析线段DE 的特征,独立 思考并总结 归纳出三角 形中位线的 定义. 教师 用红笔标出 定义的关键 词:“线段中 点”、“线段” 让学生在作图过 程中充分感知三角形 中位线并加深印象。 通过学生实践操 作把握概念的本质,有 利于学生今后更加准 确运用。 三、 探究性质定理 深化认知探究二:三角形的中位线定理 问题3:如图,DE是△ABC的中位 线,DE与BC有什么 关系? 通过拼图活动 寻求辅助线做法。 (1)把三角形 纸片沿中位线DE裁开。 (2)变换△ADE的位置,想办 法去构造一条线段等于2DE, (3)画出变换后的图形,并把 △ADE移动后的对应的位置用虚线 画出来。 (4)请仔细观察哪条线段是 DE的2倍。 (5)我们只要证明哪两条线 段相等就可以。 (6)辅助线做法该怎么写? (7)请构思并书写证明过程。 教师引导 学生从2个 方面探究两 条线段之间 的关系。 学生独立 思考寻求方 法探究结论, 小组讨论交 流并根据探 究结果猜想 三角形的中 位线定理。 教师板书证 明过程,并用 展台展示其 他证明方法。 调动已有知识经 验,结合学生实践操作 感知思考、交流合作探 究三角形中位线的定 理。 通过学生亲自拼 图操作,进一步探究辅 助线做法,并为定理的 证明作好准备工作 经历这个探究的 过程让学生意识到讨 论、合作是学生完成学 习任务的一种手段,而 交流则促进学生智慧 成果共享。

三角形中位线定理模型应用的思维导图

三角形中位线定理模型应用的思维导图 三角形中位线定理是一个重要知识点,更是一种重要的解题工具,熟练掌握定理的两种模型,能助力数学解题效率,提升数学核心素养. 一、定理模型构建 1.双中点模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,点E 是边AC 的中点; 结论:12;2DE BC BC DE DE BC ?==????? ?数量关系:或位置关系:∥. 2.中点+平行线模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,DE ∥BC ; 结论:12;2.DE BC BC DE E AC ?==????? ?数量关系:或位置关系:点是的中点 证明:如图2,过点C 作CF ∥AB ,交DE 的延长线于点F.∵DE ∥BC ,CF ∥AB, ∴四边形BDFC 是平行四边形,∴BD=CF. ∵AD=BD ,∴AD=CF. ∵CF ∥AB, ∴∠A=∠ACF ,∠ADE=∠EFC ,∴△ADE ≌△CFE ,∴AE=EC ,∴点E 是AC 的中点, DE 是△ABC 的中位线,∴DE=1 2BC. 二、定理常用模型 1.双中点模型 此条件下,完全具备定理的条件,可以直接使用. 2.构造托底平行线型 如图3,在△ABC 中,点D 是边AB 的中点,点E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,则DE 是△ABF 的中位线,定理可用 .

3.构造中点平底线型 如图4,在△ABC 中,点D 是边AB 的中点,过点D 作DE ∥BC ,则DE 是△ABC 的中位线,定理可用. 三、应用剖析 1.平行四边形中构造使用定理 例1 (2020?陕西)如图5,在平行四边形ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是平行四边形ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G .若EF ∥AB ,则DG 的长为 ( ) A. 5 2 B .32 C . 3 D .2 解析:如图5,延长CD ,交BF 的延长线于点H ,∵E 是边BC 的中点,∠BFC=90°,∴EB=EF=EC=1 2BC=4,∵EF ∥AB ,CD ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是三角形BCH 的中位线, ∴CH=8,DH=5,易证△ABF ≌△GHF ,∴AB=GH=5,∴AH=CG=BH-BA=BC-BA=8-5=3, ∴DG=GH-DH=5-3=2,∴选D. 点评:解答时,把握三个关键,一是直角三角形斜边中线原理;二是三角形中位线定理;三是构造中点型全等三角形法,这些都是解题的核心要素. 例2(2020?凉山州)如图6,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交

三角形中位线定理 优秀教案

三角形中位线定理 【教学目标】 1.本节课的认知目的是使学生了解三角形的中位线概念及其性质定理,重点是熟悉和掌握三角形中位线定理,并能正确地运用这个定理去解决一些简单的几何问题。 2.本节课利用几何画版平台,动态演示了例题几何图形的多种变化,使学生初步认识事物的动与静、变与不变这一矛盾的对立与统一的辩证唯物主义思想。 【教学重难点】 重点:掌握定理的实质和定理的应用。 难点:定理的证明。 【教学过程】 教 学 过 程 设计思路及应用分析 导读 1.概括这节课的学习内容和认知目标; 2.引入三角形的中位线概念。 连结三角形两边中点的线段叫三角形的中位线 注意:三角形的中位线和三角形的中线不同。 C B A E D C B A E D 对比:三角形有三条中位线,它们组成一个三角形; 三角形有三条中线,它们相交于一点。 C B A E D C B A E D F F 特别强调了本节课的制作特色是动态演示,学习方法是探索研究。 这里用动态连结并配上音 乐,以引起学生的注意。 这里的三条中位线和三条 中线使用闪烁的手法,加 强对比的效果。

三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半 定理表达式 证明:延长DE 到F ,使EF=DE ,连结CF 。 演示:打开几何画板 1.依次拖动三角形的三个顶点,注意DE 和 BC 长度的变化,观察它们的数量关系。 2.自点 D 作 BC 的平行线 FG ,再拖动三个顶点,观察 DE 与 BC 的位置关系。 定理表达式更能清楚地反 映定理的题设和结论。 中位线定理的证明方法较多,因为不作为本节课的重点,所以这里只选用了一种学生比较熟悉的直接证法。 也可以先演示再证明,通过 演示,使学生更直观地了解三角形的中位线和第三边的数量关系以及位置关系。 说明:关闭几何画板时,选择“不保存”。 本例题选自课本,证法一与课本相同。 引导学生分析为什么要连辅助线。 C B A E D A B C D E F

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

《三角形中位线定理》教案

4.5三角形中位线定理 【教案背景】 1、面向学生:初二学生 2、课时:1课时 3、学科:数学 4、学生准备:提前预习本节课的内容,2张三角形纸,剪刀. 【教材分析】 1、教材的地位和作用: 本节教材是浙江教育出版社的八年级数学下册第四章第五节的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习等腰三角形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。 2、教学目标 (一)知识目标 (1)理解三角形中位线的概念 (2)会证明三角形的中位线定理 (3)能应用三角形中位线定理解决相关的问题; (二)过程与方法目标 进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。 (三)情感目标 通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 3.重点与难点 重点:理解并应用三角形中位线定理。 难点:三角形中位线定理的证明和运用。 【教学方法】 学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地参与教学全过程。

【教学过程】 本节课分为五个环节:设景激趣,引入新课概念学习,感悟新知拼图活动,探索定理巩固练习,强化新知小结归纳,作业布置 (一)设景激趣,导入新课 动手实践探索(请您做一做:让学生拿出自己预先准备好的三角形纸板) 1、找出三边的中点 2、连接6点中的任意两点 3、找找哪些线是你已经学过的,哪些是未曾学过的 设计意图: 在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角形的中线和三角形中位线 (二)概念学习,感悟新知 三角形中位线的定义: 连接三角形两边中点的线段,叫做三角形的中位线 如图,DE、EF、DF是三角形的3条中位线。 跟踪训练: ①如果D、E分别为AB、AC的中点,那么DE为△ABC的; ②如果DE为△ABC的中位线,那么D、E分别为AB、AC的。设计意图: 学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。 (三)拼图活动、探索定理 C B A F E D C B E D

《三角形的中位线定理》教学设计 (表格版)

《三角形的中位线定理》教学设计 【教学目标】 1.知识与技能目标: (1)知道三角形中位线的概念,明确三角形中位线与中线的不同; (2)理解三角形中位线定理,并能运用它解决有关问题。 2.能力与过程目标: 借助动手操作及动画变换等形式的直观演示,引导学生通过观察、实验、猜测、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。经历探索三角形中位线定理的过程,发展合情推理能力,掌握三角形中位线定理; 3.德育目标: 对学生进行事物之间相互转化的辩证的观点的教育。 4.情感目标: 利用多媒体课件,创设问题情境,激发学生的学习热情和兴趣,激活学生的思维。 【教学重点与难点分析】 1、教学重点:掌握和运用三角形中位线性质; 2、教学难点:三角形中位线定理的证明及应用。 【教学方法】 对于三角形中位线的引入采用发现法,在教师的指导下,学生通过观察、探索、猜测、联想等自主探究的方法先获得结论,再去证明。在此过程中,注重对证明思路的启发和数学方法的渗透,提倡证明方法的多样性。课堂教学中,始终以“教师为主导,学生为主体、探究为主线”的教学思想,充分发挥主体地位的作用。 【教学用具】 教师:三角尺、剪刀、三角形纸片、计算机多媒体课件 学生:基本学具、导学案 【设计理念】 本节课我设计故事和问题情境导入,以学案导学,变静态、封闭型课堂为动态、开放性的知识互动交流和探究。借助动手操作演示,配合PowerPoint、几何画板等多媒体手段的动态辅助演示,用以突出教学重点,突破教学难点。力求遵循学生学习数学的认知规律,注意让学生经历知识的生成和发展过程,通过悬而未决的问题、简单的操作活动引起学生的注意,培养其分析问题、解决问题的能力,让学生在学习过程中不断构建各种数学模型,总结数学思想和规律,以便更好地运用所学的知识、方法去解决问题,真正体现“以学生为本”的理念。教学过程中选用的习题练习又易到难,梯度递升,贯穿了转化、一题多解、方程、倍分等数学思想和方法,融知识生成与解决途径于其中,体现了新课标的思想内涵。

九年级数学上册中位线应用三角形中位线定理“四会”素材新版华东师大版

应用三角形中位线定理“四会” 三角形中位线定理在一个题设下,有两个结论:一是线段的位置关系,另一个是线段之间的数量关系.这个定理在证明、计算、作图中都有广泛的应用,是三角形的最重要的性质之一,当三角形中有中点时,往往借助三角形中位线来解决相关问题.那么在学习了三角形中位线定理后,我们应该会解决哪些问题呢?本文所要阐述的就是这个问题. 一、会求值 例1:如图1,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果2EF =,那么ABCD 的周长是( ). A .4 B .8 C .12 D .16 析解:因为E 、F 分别是AB 、AC 的中点,所以EF 是 ABC ?的中位线,则12 EF BC =,24BC EF ==.故菱形ABCD 的周长为416BC =,选D . 二、会证明 例2:如图2,在ABC ?中,90BAC ∠=,延长BA 到点D ,使12 AD AB =,点E 、F 分别为边BC 、AC 的中点.求证DF BE =. 分析:由题意知点E 是Rt ABC ?斜边中点,作出斜边中线AE 后,有12AE BC = .另外,点F 又是AC 的中点,所以EF 是ABC ?的中位线,EF ∥AB 且12 EF AB =.这样,就可证得四边形AEFD 是平行四边形,从而有12 DF AE BC BE ===,问题得证. 证明:连接AE ,则12AE BC BE = =. ∵E 、F 分别为边BC 、AC 的中点, ∴EF 是ABC ?的中位线, ∴EF ∥AB ,12EF AB = . 又∵12 AD AB =, ∴EF AD =. 而EF ∥AD , ∴四边形AEFD 是平行四边形,

三角形中位线定理的应用2

三角形中位线定理的应用 三角形中位线定理是平面几何中十分重要的性质,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何题,如:1.说明线段的倍分关系 例1如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F, AF=1 3 AC.试说明EF= 1 4 BF. 解:取CF的中点H,联结DH,则DH为△CBF的中位线. 又因为AF=1 3 AC,即F为AH的中点,则EF为△ADH的中位线,故DH= 1 2BF,EF= 1 3 DH,所以EF= 1 4 BF. 2.说明两线平行 例2如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为 垂足.试说明DE∥BC. 解:延长AE、AD交BC与BC的延长线于N、M.由∠1=∠2,BD⊥AM,可得AD=DM.同理可得AE=EN.故DE为△ANM的中位线.所以DE∥MN,即DE∥BC.

3.说明线段相等 例3如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD的中点,直线MN分别交AB、AC于P、Q.试说明AP=AQ. 解:取BC中点F,联结MF与NF. 因为BM=ME,BF=FC. 所以MF∥CE,且MF=1 2 CE. 同理可得NF∥BD,且NF=1 2 BD.且又BD=CE,所以MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3,所以∠1=∠2,故AP=AQ. 4.说明两角相等 例4如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E 分别为MN与BC的中点,AP∥DE交BC于P.试说明∠BAP=∠CAP. 解:联结BN并取中点Q,联结DQ与EQ,则DQ∥BM,且DQ=1 2 BM, EQ∥CN,且EQ=1 2 CN,又BM=CN,所以DQ=EQ,故∠1=∠2,因为AB∥DQ, DE∥AP,所以∠1=∠BAP.因为QE∥NC,DE∥AP,所以∠2=∠CAP,所以∠BAP=∠CAP.

三角形的中位线及定理

《§18.1.2 平行四边形的判定(3)----三角形的中位线及定理》 教学设计 新疆维吾尔自治区克孜勒苏柯尔克孜州阿合奇县同心中学 王全才 课题:§18.1.2 平行四边形的判定----三角形的中位线及定理 一、教材版本:义务教育教科书人民教育出版社出版八年级(下册)第18章p47—49页,§18.1 平行四边形中§18.1.2 平行四边形的 判定中的第3课时的内容。 二、教材分析: 三角形中位线是继三角形的角平分线、中线、高线后的第四条 重要线段,是三角形、平行四边形知识的进一步应用和深化.采用由 特殊的点——“中点”入手来研究,显示了其独到之处. 三角形中位 线定理的证明更是与三角形的全等紧密相连,作为一种暗线贯穿于整 个的平行四边形的知识中。三角形中位线定理为解决直线平行和线段 的倍分关系,提供了新的依据,拓宽了学生的证题思路.三角形中位 线定理的证明和应用,对于培养学生的合情推理能力、发散思维能力 以及探索、体验数学思维规律和用数学知识解决实际问题的能力方面 起着重要的作用,因此地位非常重要. 三、教学目标: 1、理解三角形中位线的概念和三角形中位线定理,掌握它的性质,几何语言的表述,会用三角形中位线定理进行有关的论证和计算。 2、经历三角形中位线的概念和定理的探索、得出过程,培养学生

观察、分析、探索知识的能力及归纳总结能力。 3、通过学生亲自参与定理的发现和证明,培养学生的参与、探索的意识,激发学生的学习兴趣,获得成功的体验。 四、教学重点: (1)三角形中位线的性质的探究与证明方法; (2)三角形中位线的性质的应用. 五、教学难点: (1)猜想结论,实践探究,动手操作的效果与意义; (2)证明三角形中位线的性质的思维拓展与前后知识的贯穿联系,几何辅助线的添加画法。 六、难点的突破: (1)实践性的用动手剪,拼,度量以达验证; (2)证明思维中的拓展以联系平行四边形性的探讨方法,一题多解。 七、教学用具:多媒体、三角尺、学生作的三角形、学生用剪刀、彩 色粉笔。 八、教学方法:猜想法、动手演示实验法、类比法、归纳法、应用举 例法、自主探究有机结合。 教学过程: (一)引入: [问题1]1、什么是三角形的中线?一个三角形有几条中线? 动手画一画(让学生边画边回忆,同时为引入新知铺垫,通过

三角形中位线定理及逆定理的证明教学教材

定理 三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG

又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法四:

延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEF、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理

相关文档
最新文档