函数的定义域值域及解析式
函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
求解函数定义域、值域、解析式讲义(精华版)

3. 已知函数 f( x 1) x 2 x ,求函数 f (x) 的解析式。
4. 方程组法
当关系式中同时含有 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1) 时,常将原式中的 x 用 x (或 1 )代替,
x
x
从而得到另一个同时含 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1 ) 的关系式, 将这两个关系式联立, 解方程组解出 f ( x) 。 x
出参数的范围。
【例 1】 ( 1)若函数 f ( x)
(a 2 1) x2 ( a 1) x 2 的定义域为 R,求实数 a 的取值范围。 a1
(2)判断 k 为何值时,函数 y
2kx 8 kx2 2kx
关于 x 的定义域为 1
R。
2. 函数值域的逆向应用
【例 2】 求使函数 y
x2 x2
ax x
2 的值域为 ( 1
【例 1】 求下列函数的定义域
( 1) y x 1
( 2) y
1
2x
( 3) y
1
( x 1)0
2x
【例 2】 求下列函数的定义域
(1) y
1; 11
1x
( 2) y
4 x2 ; x1
))))))
))))))))
( 3) y
1
3 x2 5
7 - x2 ;
(4) y
x2 3x 10 x11
【当堂检测】
( 3)若函数 f ( x) 是整式型函数,则定义域为全体实数。
( 4)若函数 f ( x) 是分式型函数,则定义域为使分母不为零的实数构成的集合。
( 5)若函数 f (x ) 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 ( 6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 ( 7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有
函数解析式、定义域、值域

的充要条件是
m 0
(6m)2
4m(m
8)
0
0
m
1
综上可知0≤m≤1。 注:不少同学容易忽略m=0的情况,希望通过此例解决问
题。
例4 已知函数 f (x) kx 7 kx 2 4kx 3
三:换元法
• 通过代数换元法或者三角函数换元法, 把无 理函数化为代数函数来求函数值域的方法 (关注新元的取值范围).
• 例3 求函数 y=x- x-1 的值域:
注:换元法是一种非常重工的数学解题方法, 它可以使复杂问题简单化,但是在解题的 过程中一定要注意换元后新元的取值范围。
3、求下列函数的值:
是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。 例2 已知f(2x+1)的定义域为[1,2],求f(x)的定义域。
解:因为1≤x≤2, 2≤2x≤4,
3≤2x+1≤5. 即函数f(x)的定义域是{x|3≤x≤5}。
(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。 解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.
所以函数f(3x)的定义域是-1≤3x≤1即 {x|-1/3≤x≤1/3}。
例3 已知函数 y mx 2 6mx m 8
的定义域为R求实数m的取值范围。
分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R 都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。
不小于零。 4.零的零次幂没有意义,即f(x)=x0,x≠0。
2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。
求函数定义域、值域、对应关系(知识点+例题)pdf版

2
2
综上 1 y 1 .
2
2
答案:[ 1 , 1 ] 22
(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域.
例 17 求函数 y 4x 1 3x 的值域.
解析:由解析式知1 3x 0 ,即 x 1 3
4x 单调递增, 1 3x 也递增,则 y 4x 1 3x 在定义域内单调递增
x3
x3
答案:{y | y 2}
(5)判别式法:把函数转化为关于 x 的二次方程,通过方程有实根,判别式 0 ,从而 求得原函数的值域.
例 15
求函数
y
3x x2
4
的值域.
解析:将函数化为 yx2 3x 4y 0
原函数有意义,等价于此方程有解
y 0 时, x 0 有解符合题意
y 0 时,判别式 9 16y2 0 ,解得 3 y 0或0 y 3
{x | x 0}
R 决定 [1,1] [1,1]
R (, 2 k ) (2 k , )
2.函数的定义域的求法
函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合.
(1)求定义域注意事项:★
①分式分母不为 0;
②偶次根式的被开方数大于等于 0;
③零次幂底数不为 0;
④对数的真数大于 0;
例 21 已知 f ( 2 1) lg x ,求 f (x) 的解析式. x
解析:令 2 1 t ,则 x 2 且 t 1
x
t 1
带入原式得 f (t) lg 2 (t 1) t 1
f (x) lg 2 (x 1) . x 1
答案: f (x) lg 2 (x 1) x 1
例 22 已知 f ( x 1) x 2 x ,求 f (x) 的解析式.
常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。
函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。
定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。
常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。
下面将逐个介绍这些函数解析式的定义域和值域的求法。
1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。
2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。
对于一般的二次函数,定义域是实数集,即(-∞, +∞)。
值域则取决于二次函数的开口方向和开口点的位置。
-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。
-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。
3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。
指数函数的定义域是实数集,即(-∞,+∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,指数函数的值域为(0,+∞)。
-当a>1时,指数函数的值域为(0,+∞)。
-当a=1时,指数函数的值域为{1}。
4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。
对数函数的定义域是正实数集,即(0, +∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,对数函数的值域为(-∞,+∞)。
-当a>1时,对数函数的值域为(-∞,+∞)。
5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的定义域是实数集,即(-∞,+∞)。
值域则取决于具体的三角函数类型。
-正弦函数的值域为[-1,1]。
-余弦函数的值域为[-1,1]。
函数的定义域、解析式、值域

函数的定义域一、几类函数的定义域(1)如果f(x )是整式,那么函数的定义域是实数集R ;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。
(4)如果2[()]f x ,那么函数的定义域是使f(x)不等于0的实数的集合。
(5)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数的集合(即求各集合的交集)(6)满足实际问题的意义。
二、例题讲解例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例2 求下列函数的定义域: ①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x 11111++ ④x x x x f -+=)1()( ⑤373132+++-=x x y例3 若函数a ax ax y 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
练习:设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域例7已知f(2x -1)的定义域为[0,1],求f(x)的定义域已知f(x 2)的定义域为[-1,1],求f(x)的定义域若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是 () A.[]1,1- B⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡1,21 D.10,2⎡⎤⎢⎥⎣⎦已知函数()11xf x x +=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则( )A.A B B = B.B A ∈ C.A B B = D. A B =例8、若函数f (x )=x -4mx 2+4mx +3的定义域为R ,求实数m 的取值范围练习、若函数222(1)(1)1y a x a x a =-+-++的定义域为R ,求实数a 的取值范围例9、(1)设二次函数f (x )满足f (x-2)=f (-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f (x )的解析式;(2)已知,2)1(x x x f +=+求f (x )(3)已知f (x )满足x xf x f 3)1()(2=+,求f (x )例10、若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是_______________________例11. 已知函数m mx mx y ++-=862的定义域为R.(1)求实数m 的取值范围;(2)当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.例12. 若函数y=x 2-6x-16的定义域为[0,m],值域为[-25,-16],则m 的取值范围( )A.(0,8]B.[3,8]C.[3,6]D.[3,+∞)例13. 已知1()1f x x =+,则函数(())f f x 的定义域是( ). A .{|1}x x ≠- B .{|2}x x ≠-C .{|12}x x x ≠-≠-且D .{|12}x x x ≠-≠-或函数的解析式我们知道,把两个变量的函数关系用一个等式表示,这个等式就叫做函数的解析表达式,简称解析式.下面我们通过例题来说明求函数解析式的几种常用方法(一)待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结
一、常见函数解析式
1、二次函数
解析式:y=ax2+bx+c
定义域:全实数集
值域:ax2+bx+c的值
2、三角函数
解析式:y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
定义域:全实数集
值域:[-1,1]
3、反三角函数
解析式:y=arcsinx,y=arccosx,y=arctanx,y=arccotx,
y=arcsecx,y=arccscx
定义域:-[1,1],(-∞,+∞)
值域:[-π/2,π/2]
4、双曲函数
解析式:y=sinhx,y=coshx,y=tanhx,y=cothx,y=sechx,y=cschx 定义域:全实数集
值域:[-1,1]
5、对数函数
解析式:y=lgx,y=lnx
定义域:x>0
值域:(-∞,+∞)
6、指数函数
解析式:y=ex
定义域:全实数集
值域:(0,+∞)
二、定义域和值域的求法
1、函数的定义域
定义域的求法:一般取出函数的变量,求出它所在的域,如果有多个变量,一般要满足多个变量的取值范围,才能满足函数的定义域,比如:函数f(x,y)=x2+y2,则它的定义域就是x,y取得所有实数
2、函数的值域
值域的求法:一般取定义域,将变量取不同的值,将函数求出不同的值并且收集,得到函数的值域,比如:函数f(x)=x2+x+2,值域就是1,3,5,7……。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域值域及解析式GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数的定义域、值域及解析式【教学目标】1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
2.了解对应关系在刻画函数概念中的作用。
3.了解构成函数的三要素,会求一些简单函数的定义域和值域【教学重难点】函数定义域、值域以及解析式的求法。
【教学内容】1.定义高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.2.构成函数的三要素:定义域、对应关系和值域函数解析式定义域值域一次函数y=ax+b(a≠0)二次函数y=ax2+bx+c(a≠0)反比例函数(k为常数,k≠0)注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 例. 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = (√x )2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x 2-2x+2, g ( x )=t 2-2t+2 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。
注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.练习、请用区间表示(1){|12}x x <<=____________, {|01}x x ≤≤=____________,{|10}x x -≤<=____________, {|23}x x <≤=____________, (2){|}x x a ≥=____________, {|}x x a >=____________,{|}x x b ≤=____________, {|}x x b <=____________.定义域能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(4)实际问题中的函数的定义域还要保证实际问题有意义 含分式的函数:在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。
题型一:常规函数型例:求函数 的定义域.例:求函数y =23-x +3323-+x x )(的定义域.练习求下列函数的定义域。
x x x f -++=211)(⑴y=x x -||1(2)2143)(2-+--=x x x x f题型二:抽象函数型(一)、已知的定义域,求的定义域, 其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。
例. 设函数的定义域为,则(1)函数的定义域为________。
(2)函数的定义域为__________。
练习1已知f(x)的定义域为[1,3],求f(x-1)的定义域.2已知函数)x (f 的定义域为(0,1),则函数)1x 21(f -的定义域是________。
(二)、已知的定义域,求的定义域。
其解法是:若的定义域为,则由确定的范围即为的定义域。
例. 已知函数的定义域为,则的定义域________。
练习、已知函数)42(f 的定义域为(0,1),求函数)x(f的定义域。
x(三)、已知的定义域,求的定义域。
其解法是:可先由定义域求得的定义域,再由的定义域求得的定义域。
例. 函数定义域是,则的定义域是()A. B. C. D.练习1.函数f(2x-1)的定义域为[1,3],求函数f(x2+1)的定义域.运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集。
例. 已知函数的定义域是,求的定义域。
练习若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域。
逆向型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。
例 已知函数的定义域为R 求实数m 的取值范围。
练习. 已知函数的定义域是R ,求实数k 的取值范围。
求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. 例题 求函数值域1)观察法 2)图象法 3)分式分离常数法 4)换元法 5)判别式法 6)配方法 7)函数单调性法 8)反函数法 (1)335-+=x x y (2) 22++-=x x y(3)132222++++=x x x x y (4)x x y 314--=(6)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. 例题 求函数解析式(1)配凑法; (2)换元法; (3)待定系数法; (4)方程组法.(1)已知3311()f x x x x+=+,求()f x ;(2)已知f (x -1)=3x -1,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .【课后作业】1、设x 取实数,则f(x)与g(x)表示同一个函数的是 ( )A 、x )x (f =,2x )x (g = B 、x )x ()x (f 2=,2)x (x )x (g =C 、1)x (f =,0)1x ()x (g -= D 、3x 9x )x (f 2+-=,3x )x (g -=2、函数6542-+--=x x x y 的定义域是( )(A ){x|x>4} (B)}32|{<<x x(C){x | x<2 或 x>3} (D) }32|{≠≠∈x x R x 且 3、集合{|25}x x <≤可以写成 ( ) A .[]2,5 B .(]2,5 C .()2,5 D .[)2,54、求下列函数的定义域:(1)1()43f x x =+ (2)11()2f x x x=+-5、求下列函数的值域(用区间表示): (1)322--=x x y ;①R x ∈,②]4,1(-∈x ,③]4,1(∈x(2)22++-=x x y ; (3)2845xy x x =-+.6、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f7、已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式8、已知x x x f 2)1(+=+,求)1(+x f9、设,)1(2)()(x xf x f x f =-满足求)(x f。