函数的定义域值域,解析式具体解法

合集下载

求解函数定义域、值域、解析式讲义(精华版)

求解函数定义域、值域、解析式讲义(精华版)

3. 已知函数 f( x 1) x 2 x ,求函数 f (x) 的解析式。
4. 方程组法
当关系式中同时含有 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1) 时,常将原式中的 x 用 x (或 1 )代替,
x
x
从而得到另一个同时含 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1 ) 的关系式, 将这两个关系式联立, 解方程组解出 f ( x) 。 x
出参数的范围。
【例 1】 ( 1)若函数 f ( x)
(a 2 1) x2 ( a 1) x 2 的定义域为 R,求实数 a 的取值范围。 a1
(2)判断 k 为何值时,函数 y
2kx 8 kx2 2kx
关于 x 的定义域为 1
R。
2. 函数值域的逆向应用
【例 2】 求使函数 y
x2 x2
ax x
2 的值域为 ( 1
【例 1】 求下列函数的定义域
( 1) y x 1
( 2) y
1
2x
( 3) y
1
( x 1)0
2x
【例 2】 求下列函数的定义域
(1) y
1; 11
1x
( 2) y
4 x2 ; x1
))))))
))))))))
( 3) y
1
3 x2 5
7 - x2 ;
(4) y
x2 3x 10 x11
【当堂检测】
( 3)若函数 f ( x) 是整式型函数,则定义域为全体实数。
( 4)若函数 f ( x) 是分式型函数,则定义域为使分母不为零的实数构成的集合。
( 5)若函数 f (x ) 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 ( 6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 ( 7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

函数解析式、定义域、值域

函数解析式、定义域、值域
解:当m=0时,函数的定义域为R; 当m≠0时,mx2-6mx+8+m≥0是二次不等式,其对一切实数x都成立
的充要条件是
m 0



(6m)2

4m(m

8)

0
0
m
1
综上可知0≤m≤1。 注:不少同学容易忽略m=0的情况,希望通过此例解决问
题。
例4 已知函数 f (x) kx 7 kx 2 4kx 3
三:换元法
• 通过代数换元法或者三角函数换元法, 把无 理函数化为代数函数来求函数值域的方法 (关注新元的取值范围).
• 例3 求函数 y=x- x-1 的值域:
注:换元法是一种非常重工的数学解题方法, 它可以使复杂问题简单化,但是在解题的 过程中一定要注意换元后新元的取值范围。
3、求下列函数的值:
是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。 例2 已知f(2x+1)的定义域为[1,2],求f(x)的定义域。
解:因为1≤x≤2, 2≤2x≤4,
3≤2x+1≤5. 即函数f(x)的定义域是{x|3≤x≤5}。
(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。 解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.
所以函数f(3x)的定义域是-1≤3x≤1即 {x|-1/3≤x≤1/3}。
例3 已知函数 y mx 2 6mx m 8
的定义域为R求实数m的取值范围。
分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R 都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。
不小于零。 4.零的零次幂没有意义,即f(x)=x0,x≠0。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

高一数学函数解析式、定义域、值域解题方法

高一数学函数解析式、定义域、值域解题方法
2、配方法
例12. 求函数y=2x2+4x的值域。
解:y=2x2+4x=2(x2+2x+1)-2=2(x+1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y=af2(x)+bf(x)+c。
解:Y=20-2X
Y>0,即20-2X>0,X<10,
两边之和大于第三边,
2X>Y,
即2X>20-2X
4X>20
X>5。
本题定义域较难,很容易忽略X>5。
∴5
4、二次函数y=x2-4x+4的定义域为[a,b](a<b),值域也是[a,b],则区间[a,b]是( )
A.[0,4]B. [1,4]C. [1,3]D. [3,4]
当x>2时,2/(2-x) 6≥2-x => x≥-4
∴定义域:[-4,2)
三. 解答题
10、求函数 的定义域。
11、已知 ,若f(a)=3,求a的值。
12、已知函数f(x)满足2f(x)-f(-x)=-x2+4x,试求f(x)的表达式。
解:2f(-x)-f(x)=-x2-4x 4f(x)-2f(-x)=-2x2+8x 相加得 f(x)=-x2+4x/3
2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例2. (1)已知 ,试求 ;
(2)已知 ,试求 ;
解:(1)由条件式,以 代x,则得 ,与条件式联立,消去 ,则得: 。
(2)由条件式,以-x代x则得: ,与条件式联立,消去 ,则得: 。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

3.1 函数定义域、值域和解析式求法小总结

3.1 函数定义域、值域和解析式求法小总结

函数定义域、值域和解析式求法小专题考点一:函数定义域的求法复合函数求定义域的题型:注意1:不管括号中的形式多复杂,定义域只是自变量x 的取值集合。

注意2:在同一函数f 作用下,括号内整体的取值范围相同。

题型1:已知)(x f 的定义域,求)]([x g f 的定义域;例1:已知)(x f 的定义域是]2,0[,求)12(-x f 的定义域。

1.解: )12(-x f 是由)(u f y =,12-=x u 复合而成,∴20≤≤u ,即2120≤-≤x ,∴2321≤≤x题型2:已知)]([x g f 的定义域,求)(x f 的定义域;例2:已知)12(-x f 的定义域是)(3,1-,求)(x f 的定义域。

2.解: )12(-x f 是由)(u f y =,12-=x u 复合而成,31<<-x ,∴5123<-<-x ,即53<<-u 。

题型3:已知)]([x g f 的定义域,求)]([x h f 的定义域;例3:已知)32(-x f 的定义域是]5,1[-,求)1(+x f 的定义域。

3.解: )32(-x f 是由)(u f y =,32-=x u 复合而成,51≤≤-x ,即7325≤-≤-x ,即75≤≤-u ,)1(+x f 是由)(v f y =,1+=x v 复合而成,∴75≤≤-v ,即715≤+≤-x ,即66≤≤-x 。

巩固练习:1.(1)已知函数f(x)的定义域为[1,4],则f (x +2)的定义域为______________。

(2)已知函数f(2x +1)的定义域为(-1,0),则f(x)的定义域为____________。

1:【解析】(1)∵1≤x +2≤4,∵-1≤x≤2 (2)∵-1<x <0,∵-2<2x <0,∵-1<2x +1<12.(1)已知函数f(x)的定义域为[-5,5],则f (3-2x)的定义域为_______。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

例1. 已知2211()x x x f x x +++=,试求()f x 。

解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。

故得:2()1,1f x x x x =-+≠。

说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。

例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。

(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。

【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域,值域,解析式
教学目标:掌握不同函数定义域和值域的求解方法,并且能够熟练使用。

重点、难点:不同类型函数定义域,值域的求解方法。

考点及考试要求:函数的考纲要求
教学内容:常见函数的定义域,值域,解析式的求解方法:
记作D x x f y ∈=),(,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做定义域,和x 值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域.
定义域的解法:
1.求函数的定义域时,一般要转化为解不等式或不等式组的问题,但应注意逻辑连结词的运用;
2.求定义域时最常见的有:分母不为零,偶次根号下的被开方数大于等于零,零次幂底数不为零等。

3.定义域是一个集合,其结果必须用集合或区间来表示
值域的解法:
1. 分析法,即由定义域和对应法则直接分析出值域
2. 配方法,对于二次三项式函数
3. 判别式法,分式的分子与分母中有一个一元二次式,可采用判别式法,但因考虑二次项
系数是否为零只有二次项系数不为零时,才能运用判别式
4. 换元法,适合形如y ax b =+此外还可以用反函数法等求函数的值域,数形结合法,有界性法等求函数的值域 函数解析式的求法:
1. 换元法
2. 解方程组法
3. 待定系数法
4.特殊值法
求函数的定义域
一、 基本类型:
1、 求下列函数的定义域。

(1)12)(-+=x x x f (2)x
x x x f -+=0)1()(
(3) 111--=
x y (4)()f x =
二、复合函数的定义域
1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域
2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2)()1
f x
g x x =
-的定义域
2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域
3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是
求函数的值域
一、二次函数法
(1)求二次函数2
32y x x =-+的值域
(2)求函数225,[1,2]y x x x =-+∈-的值域.
二、换元法:
(1) 求函数y x =+
三.
部分分式法 求2
1+-=x x y 的值域。

解:(反解x 法)
四、判别式法
(1)求函数22221
x x y x x -+=++;的值域
2)已知函数21
ax b y x +=
+的值域为[-1,4],求常数b a ,的值。

五:有界性法: (1)求函数
1e 1e y x x +-=的值域
六、数形结合法---扩展到n 个相加
(1)|1||4|y x x =-++(中间为减号的情况?)
求解析式
换元法
已知23,f x =-求 f (x ).
解方程组法
设函数f (x )满足f (x )+2 f (
x
1)= x (x ≠0),求f (x )函数解析式.
一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数,x y ,总有2()()(21),f x f x y x y y
+=+++求()f x 。

令x=0,y=2x
待定系数法
设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).
课堂练习:
1.函数1211)(22+-+++=
x x x x x f 的定义域为
2.函数()f x =
的定义域为
3.已知)2(x f 的定义域为[0,8],则(3)f x 的定义域为
4.求函数542+-=x x y ,]4,1(∈x 的值域
5.求函数)(x f =x x
213+-(x ≥0)的值域
6.求函数322
322-++-=x x x x y 的值域
7已知f (x +1)= x+2x ,求f (x )的解析式.
8已知 2f (x )+f (-x )=10x , 求 f (x ).
9已知f {f [f (x )]}=27x +13, 且f (x )是一次式, 求f (x ).
三、回家作业:
1.求函数y =()022x x -+
要求:选择题要在旁边写出具体过程。

2.下列函数中,与函数y x =相同的函数是
( C )
()A 2
x y x =()B 2y =()C lg10x y =()D 2log 2x
y =
3.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( C )
A .]1,25[--
B .[-1,2]
C .[-1,5]
D .]2,2
1
[ 4,设函数⎩⎨⎧<≥-=)1(1
)1(1)(x x x x f ,则)))2(((f f f =( B ) A .0 B .1 C .2
D .2 5.下面各组函数中为相同函数的是( D )
A .1)(,)1()(2-=-=x x g x x f
B .11)(,1)(2-+=-=x x x g x x f
C .22)1()(,)1()(-=-=x x g x x f
D .2
1)(,21)(22+-=+-=x x x g x x x f 6.若函数)(},4|{}0|{1
13)(x f y y y y x x x f 则的值域是≥⋃≤--=
的定义域是(B) A .]3,31[ B .]3,1()1,31[⋃ C .),3[]3
1,(+∞-∞或 D .[3,+∞) 7.若函数3
412++-=
mx mx mx y 的定义域为R ,则实数m 的取值范围是( C ) A .]43,0( B .)43,0( C .]43,0[ D .)43,0[ 8、已知函数322
+-=x x y 在区间[0,m]上有最大值3,最小值2,则m 的取值范围是( D )
A 、[ 1,+∞)
B 、[0,2]
C 、(-∞,2]
D 、[1,2]
9.已知函数的值域12
79,4322+--=-+=x x x y x x y 分别是集合P 、Q ,则( C ) A .p ⊂Q B .P=Q
C .P ⊃Q
D .以上答案都不对 10.求下列函数的值域: ①)1(3553>-+=
x x x y ②y=|x+5|+|x-6| ③242++--=x x y
④x x y 21-+=⑤422+-=x x x y 3{|}5
[11,)
5[,4]2
[1,)
11[,]62
y y ≠+∞+∞- 11、已知函数)0(1
2)(22<+++=b x c bx x x f 的值域为]3,1[,求实数c b ,的值。

12.已知f (x
x 1+)= x x x 1122++,求f (x )的解析式.
13.若 3f (x -1)+2f (1-x )=2x , 求 f (x ).
14.设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.
家庭作业答案:
1.4
(,)(0,2)(2,)3-∞-+∞
2.—9:C,C,B,D,B,D,C 10.3{|}5y y ≠,[11,)+∞,5
[,4]2,[1,)+∞,11[,]62-
11.c=2,b=-1
12.2()1f x x x =-+ 13.17()55f x x =+
14.2()1f x x x =++。

相关文档
最新文档