人教版七年级下数学期中复习(无答案)
人教版数学七年级下学期《期中考试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。
人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。
人教版七年级数学下学期期中试卷五(含解析)

人教版七年级数学第二学期期中数学试卷一、选择题(共10小题).1.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.下列各式中,正确的是()A.B.C.D.3.在下列各数3.1415、、0.2060060006…、、0.、﹣π、、、无理数的个数是()A.2B.3C.4D.54.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)5.如图,给出下列条件,①∠1=∠3;②∠2=∠4;③∠B=∠DCE;④∠D=∠DCE.其中能推出AD∥BC的条件为()A.②③④B.②④C.②③D.①④6.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(3,4)B.(4,3)C.(﹣1,﹣2)D.(﹣2,﹣1)7.已知x,y是实数,并且(x+3)2+=0,则x+2y的值是()A.﹣B.0C.D.28.八块相同的长方形地砖拼成一个长方形,每块长方形地砖的长等于()A.15cm B.30cm C.40 cm D.45 cm9.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140°B.130°C.120°D.110°10.有一个数值转换器,原理如下:当输入的x为16时,输出的y是()A.B.C.4D.8二、填空题(每题4分,共24分)11.的算术平方根为,﹣27立方根为.12.已知方程2x a﹣5﹣(b﹣2)y|b|﹣1=4是关于x,y的二元一次方程,则a﹣2b=.13.将命题“同角的补角相等”改写成“如果…那么…”形式为.14.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来住店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人.可列方程组为:.15.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=.16.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为.三、解答题(一)(共2小题,满分18分)17.计算:(1)﹣×.(2)+|3﹣|﹣(﹣)2+3.18.解方程(组)(1)2(x﹣1)2=32.(2).四、解答题(二)(共3小题,满分21分)19.已知2a﹣1的算术平方根是3,a﹣b+2的立方根是2,求a﹣4b的平方根.20.已知方程组与方程组的解相同.求(2a+b)2020的值.21.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC 中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.(3)求△A′B′C′的面积.五、解答题(三)(共3小题,满分27分)22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?23.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?24.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.参考答案一、选择题(每小题3分,共30分)1.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.2.下列各式中,正确的是()A.B.C.D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.解:A、=|﹣3|=3;故A错误;B、=﹣|3|=﹣3;故B正确;C、=|±3|=3;故C错误;D、=|3|=3;故D错误.故选:B.3.在下列各数3.1415、、0.2060060006…、、0.、﹣π、、、无理数的个数是()A.2B.3C.4D.5【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:3.1415是有限小数,属于有理数;,是整数,属于有理数;是分数,属于有理数;0.是循环小数,属于有理数;无理数有:0.2060060006…、、﹣π、、共5个.故选:D.4.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.5.如图,给出下列条件,①∠1=∠3;②∠2=∠4;③∠B=∠DCE;④∠D=∠DCE.其中能推出AD∥BC的条件为()A.②③④B.②④C.②③D.①④【分析】利用平行线的判定方法判断即可得到正确的选项.解:①∵∠1=∠3,∴AB∥DC,本选项不符合题意;②∵∠2=∠4,∴AD∥CB,本选项符合题意;③∵∠B=∠DCE,∴AB∥CD,本选项不符合题意;④∵∠D=∠DCE,∴AD∥BC,本选项符合题意,则符合题意的选项为②④.故选:B.6.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(3,4)B.(4,3)C.(﹣1,﹣2)D.(﹣2,﹣1)【分析】各对应点之间的关系是横坐标加2,纵坐标加3,那么让点B的横坐标加2,纵坐标加3即为点B′的坐标.解:由A(﹣4,﹣1)的对应点A′的坐标为(﹣2,2 ),得坐标的变化规律为:各对应点之间的关系是横坐标加2,纵坐标加3,所以点B′的横坐标为1+2=3;纵坐标为1+3=4;即所求点B′的坐标为(3,4).故选:A.7.已知x,y是实数,并且(x+3)2+=0,则x+2y的值是()A.﹣B.0C.D.2【分析】直接利用非负数的性质得出x,y的值进而得出答案.解:∵(x+3)2+=0,∴x+3=0,3﹣2y=0,解得:x=﹣3,y=,故x+2y=3﹣3=0.故选:B.8.八块相同的长方形地砖拼成一个长方形,每块长方形地砖的长等于()A.15cm B.30cm C.40 cm D.45 cm【分析】就从右边长方形的宽60cm入手,找到相对应的两个等量关系:4×小长方形的宽=60;一个小长方形的长+一个小长方形的宽=60.解:设每块长方形地砖的长为xcm,宽为ycm.依题意得,解得.即:长方形地砖的长为45cm.故选:D.9.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140°B.130°C.120°D.110°【分析】直接利用平行线的性质得出∠B=∠BCG,∠GCD=90°,进而得出答案.解:过点C作CG∥AB,由题意可得:AB∥EF∥CG,故∠B=∠BCG,∠GCD=90°,则∠BCD=40°+90°=130°.故选:B.10.有一个数值转换器,原理如下:当输入的x为16时,输出的y是()A.B.C.4D.8【分析】把x=16代入数值转换器中计算确定出y即可.解:由题中所给的程序可知:把16取算术平方根,结果为4,因为4是有理数,所以把4取算术平方根,结果为2,因为2是有理数,所以把2取算术平方根,结果为,因为结果为无理数,所以y=.故选:A.二、填空题(每题4分,共24分)11.的算术平方根为2,﹣27立方根为﹣3.【分析】根据算术平方根与立方根的性质即可求出答案.解:∵=4,∴4的算术平方根为2,﹣27立方根为﹣3,故答案为:2;﹣312.已知方程2x a﹣5﹣(b﹣2)y|b|﹣1=4是关于x,y的二元一次方程,则a﹣2b=10.【分析】利用二元一次方程的定义判断即可.解:∵方程2x a﹣5﹣(b﹣2)y|b|﹣1=4是关于x,y的二元一次方程,∴a﹣5=1,|b|﹣1=1,b﹣2≠0,解得:a=6,b=﹣2,则a﹣2b=6+4=10.故答案为:10.13.将命题“同角的补角相等”改写成“如果…那么…”形式为如果两个角是同一个角的补角,那么这两个角相等.【分析】“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.据此即可写成所要求的形式.解:“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.则将命题“同角的补角相等”改写成“如果…那么…”形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案是:如果两个角是同一个角的补角,那么这两个角相等.14.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来住店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人.可列方程组为:.【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.解:设该店有客房x间,房客y人;根据题意得:,故答案为:.15.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=130°.【分析】据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.解:∵长方形纸片ABCD的边AD∥BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°﹣2∠3=180°﹣2×65°=50°,又∵AD∥BC,∴∠2=180°﹣∠1=180°﹣50°=130°.故答案为:130°.16.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为(505,505).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,点P2020在第一象限,且横、纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.解:由规律可得,2020÷4=505,∴点P2020在第一象限,∵点P4(1,1),点P8(2,2),点P12(3,3),∴点P2020(505,505),故答案为:(505,505).三、解答题(一)(共2小题,满分18分)17.计算:(1)﹣×.(2)+|3﹣|﹣(﹣)2+3.【分析】(1)原式利用算术平方根、立方根性质计算即可求出值;(2)原式利用算术平方根、立方根性质,绝对值的代数意义,完全平方公式计算即可求出值.解:(1)原式=4﹣4×(﹣2)=4+8=12;(2)原式=﹣3+3﹣﹣(3﹣2)2+3=﹣3+3﹣﹣1+3=2﹣1.18.解方程(组)(1)2(x﹣1)2=32.(2).【分析】(1)把方程整理得(x﹣1)2=16,再根据平方根的定义解答即可;(2)原方程组整理后,利用加减消元法解答即可.解:(1)2(x﹣1)2=32,(x﹣1)2=16,,x﹣1=±4,x=5或x=﹣3;(2)方程组整理为,①﹣②得:6y=﹣18,解得y=﹣3,将y=﹣3代入①得:3x﹣6=﹣12,解得x=﹣2,所以方程组的解为.四、解答题(二)(共3小题,满分21分)19.已知2a﹣1的算术平方根是3,a﹣b+2的立方根是2,求a﹣4b的平方根.【分析】利用算术平方根、立方根性质求出a与b的值,即可确定出所求.解:∵2a﹣1=32,∴a=5,∵a﹣b+2=22,∴b=﹣1,∴±=±=±=±3.20.已知方程组与方程组的解相同.求(2a+b)2020的值.【分析】由方程组可求出x、y的值,代入可得两个含有a、b的方程,组成方程组求出a、b的值,代入求值即可.解:由题意得:,解得将得代入得,解得,∴(2a+b)2020=(2﹣3)2020=1.21.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC 中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.(3)求△A′B′C′的面积.【分析】(1)根据△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)可知△ABC应向右平移6个单位,向上平移4个单位,由此作出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′、C′的坐标即可;(3)根据△A′B′C′的面积等于长方形的面积减去三个角上三角形的面积即可.解:(1)如图所示;(2)由图可知,A′(2,3)、B′(1,0)、C′(5,1);(3)S△A′B′C′=3×4﹣×1×3﹣×1×4﹣×2×3=12﹣﹣2﹣3=.五、解答题(三)(共3小题,满分27分)22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG 是∠ADC的平分线可得出∠ADC的度数,由此得出结论.解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.23.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?【分析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.24.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC =∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠AKE ﹣∠CKE=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据角平分线的定义,得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,进而得到∠AKC=∠APC.解:(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC.理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.。
第6章 实数练习题(重庆地区专用)2021-2022学年下学期重庆市各地人教版七年级数学期中复习

第6章 实数练习题一、单选题1.(2021·重庆·七年级期中)下面说法正确的是( )A .4是2的平方根B .2是4的算术平方根C .0的算术平方根不存在D .-1的平方的算术平方根是-12.(2021·重庆·七年级期中)16的算术平方根是( )A .4B .-4C .±4D .23.(2021·重庆·字水中学七年级期中)若|a +3|+(b ﹣2)2=0,则ab 的值为( )A .﹣8B .8C .﹣9D .94.(2021·重庆南开中学七年级期中)若3m -=-,24n =,且m n n m -=-,则m n +的值为( ) A .-1 B .-1或5 C .1或-5 D .-1或-55.(2021·重庆·七年级期中)若x 、y 21124x x y --=,则xy 的值为( ) A .12 B .2 C .-12 D .不能确定6.(2021·重庆巴南·99225315x 3.15,则x =( )A .9.9225B .0.99225C .0.099225D .0.00992257.(2021·重庆·字水中学七年级期中)按照如图所示的计算程序,若输入x ,经过第二轮程序计算之后,输出的值为116-,则输入的x 的值为( )A .12±B .12-C .14±D .14- 8.(2021·重庆·七年级期中)下列各组数互为相反数的是( )A 222(2)-B .38-38-C .2(2)2(2)-D 3838-9.(2021·重庆巴蜀中学七年级期中)3的倒数是( )A .3B .3-C .13D .13- 10.(2021·重庆·七年级期中)实数a 22(4)(11)--a a ( )A .7B .-7C .215a -D .无法确定11.(2021·重庆·七年级期中)在227,3.1478,1.010010001…3893π中,无理数的个数有( )A .2个B .3个C .4个D .5个12.(2021·7在下列哪两个连续自然数之间( )A .5 和6B .4 和5C .3 和4D .2和313.(2021·重庆·七年级期中)下列实数中,在3与4之间的数是( )A 2B 8C 17D 33214.(2021·重庆·七年级期中)下列命题是真命题的是( )A .无理数的相反数是有理数B .如果0ab >,那么0a >,0b >C .两直线平行,同位角的角平分线也平行D .若||1a =,则1a =15.(2021·2,1-,3-,0这四个实数中,最小的是( )A 2B .1-C .3-D .016.(2021·重庆·7在整数a 和1a +之间,则a 等于( )A .1B .2C .3D .4 二、填空题17.(2021·重庆巴蜀中学七年级期中)16的平方根是 .18.(2021·重庆·9________19.(2021·20.21 4.495202.114.2162021________.(保留小数点后两位)20.(2021·重庆巴南·七年级期中)125的算术平方根是___. 21.(2021·重庆市璧山区青杠初级中学校七年级期中)9的平方根是_________ ;0的平方根是______ ;4=___________.22.(2021·重庆·510a b ++-+=∣,则3a b -的值为_________.23.(2021·重庆市两江中学校七年级期中)己知4m +15的算术平方根是3,2﹣6n 的立方根是﹣2,则64n m -___.24.(2021·重庆九龙坡·364-.25.(2021·382=3800020=30.0080.2=38000000=________.26.(2021·重庆巴南·143最接近的整数是___.27.(2021·重庆·七年级期中)定义新运算“※”,a※b=13a-4b ,如:9※4=13×9-4×4=3-16=-13,则12※(-1)=_________.28.(2021·重庆巴蜀中学七年级期中)计算3222(8)(3)--=_______.29.(2021·重庆巴蜀中学七年级期中)定义运“#”运法则为:x #y =y ﹣2,则(4#2)#(﹣3)=___. 30.(2021·重庆·七年级期中)定义一种运算()a b a a b *=⨯-,则35*=______.31.(2021·重庆·七年级期中)计算:532.(2021·重庆巴南·19﹣5(填“>”或“<”号)三、解答题33.(2021·重庆九龙坡·七年级期中)计算:(1)23(3)258--(2)2021(1)323-34.(2021·重庆巴南·七年级期中)计算:(1)4x 2﹣81=0;(2)8(x +3)3=﹣27.35.(2021·重庆巴南·七年级期中)计算:(1232764(3)-(25(1)2(22)5+. 36.(2021·重庆·七年级期中)(1(327643213-; (2)求x 的值:281(1)40x +-=. 37.(2021·重庆·忠县花桥镇初级中学校七年级期中)对于有理数a 、b ,规定运算“*”如下:a *b =a ×b ﹣a ﹣b ﹣2(1)计算:(﹣3)*2的值(2)求(﹣2*4)*(﹣1)的值.38.(2021·重庆·七年级期中)(1)表示实数a ,b 的点在数轴上的位置如图所示,化简代数式()212a a b --+的值.(27a 13b ,求7a b +39.(2021·重庆巴蜀中学七年级期中)已知:a 与2b 互为相反数,-a b 的算术平方根是3.(1)求a 、b 的值;(2)若20a c b d +-,求13c d +-的立方根. 40.(2021·重庆·七年级期中)计算: 22332738(1)--(2)已知21x +和1x -是m 的平方根,求m 的值.41.(2021·重庆·七年级期中)解答题: (1)331363284- (2)求x 的值()21250x --=.42.(2021·重庆市璧山区青杠初级中学校七年级期中)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c 13a+2b-c 的平方根.43.(2021·重庆市璧山区青杠初级中学校七年级期中)阅读下面的文字,解答问题: 2是无221来2 21,将这个数减去其整数部分,差就是小数部分.又例如:※2272<32,即273,7的整数部分为27-2).请解答:(110__________,小数部分是__________(25a37的整数部分为b,求a+b544.(2021·重庆巴蜀中学七年级期中)阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数.例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;所以:357和413223都是等差数.(1)判断:148 等差数,514335等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T.45.(2021·重庆·七年级期中)(阅读材料)459253,※152.51的整数部分为1.515291我们还可以用以下方法求一个无理数的近似值.107107,其中0<x<1,则107=(10+x)2,即107=100+20x+x2.因为0<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.3510710.35.970.01).46.(2021·重庆·七年级期中)老师在学习了本章的内容后设计了如下问题:定义:把形如a ma b m a -,b 为有理数,且0b ≠,m 为正整数,且开方开不尽)的两个数,称为共轭实数.(1)请你列举一对共轭实数: . (2)3223是共轭实数吗? ;23-23是共轭实数吗? ;(填“是”或“不是” )(3)共轭实数a m +a m -是有理数还是无理数?为什么?(4)若有理数a ,b 满足232a b =+a b +的值.47.(2021·重庆十八中七年级期中)我们知道,任意一个正整数x 都可以进行这样的分解:x m n=⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=n f x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:※()22357f ⨯⨯⨯= ;※()42357f ⨯⨯⨯= ; 48.(2021·重庆·七年级期中)【发现】 ()3388220-=+-=; ()3311110-=+-=; ()331000100010100-=+-=; 3311110646444⎛⎫-+-= ⎪⎝⎭;; 根据上述等式反映的规律,请再写出一个等式:________.【归纳】等式※,※,※,※,所反映的规律,可归纳为一个真命题:对于任意两个有理数a ,b ,若330a b ,则0a b +=;【应用】332x-35x+2x参考答案:1.B【解析】解:4是2的平方,故A 不符合题意;2是4的算术平方根,故B 符合题意;0的算术平方根是0,故C 不符合题意;-1的平方为1,1的算术平方根为1,故D 不符合题意.故选B .2.A【解析】根据算术平方根的定义即可求出结果.解:1616=4故选:A【点睛】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.3.D【解析】根据绝对值的非负性、平方的非负性分别解出a =﹣3,b =2,再计算积的乘方即可.解:根据题意得,a +3=0,b ﹣2=0,解得a =﹣3,b =2,※ab =(﹣3)2=9,故选:D .【点睛】本题考查代数式求值,涉及绝对值与平方的非负性,是基础考点,掌握相关知识是解题关键. 4.D【解析】先根据绝对值运算、平方根的定义分别求出,m n 的值,再代入计算即可得. 解:3m -=-,即3m =,3m ∴=±,24n =,又m n n m -=-,0m n ∴-<,即m n <,32m n =-⎧∴⎨=⎩或32m n =-⎧⎨=-⎩, 则321m n +=-+=-或3(2)5m n +=-+-=-,故选:D .【点睛】本题考查了绝对值、平方根,熟练掌握绝对值运算是解题关键.5.B【解析】由于2x -1与1-2x 互为相反数,要使根式有意义,则被开方数为非负数,由此即可求出x 、y 的值,最后求xy 的值.解:要使根式有意义,则2x -1≥0,1-2x ≥0,解得x =12,※y =4,※xy =2.故选:B .【点睛】本题主要考查算术平方根,利用了算术平方根的被开方数必须为非负数,比较简单.6.A【解析】直接利用算术平方根的定义将原式变形得出答案.解:99225, 9.9225100009.922510000⨯=,x ,※x =9.9225,故选:A .本题主要考查了算术平方根,正确掌握相关定义是解题关键.7.A【解析】根据题意可得每轮程序计算后所得结果是非正数,设第一轮程序计算后结果为a ,即可求出a 的值,从而求出结论.解:※20x ≥※20x -≤,即每轮程序计算后所得结果是非正数设第一轮程序计算后结果为a 由题意可得2116a -=- 解得:14a =-或14a =(不符合已得结论,故舍去) ※14a =-,且符合小于18- 则输入的x 应满足214-=-x 解得:12x =± 故选A .【点睛】此题考查的是解含平方的方程的应用,掌握程序框中的运算顺序是解题关键.8.D【解析】 22()22-,3838-,然后对各选项进行判断. 解:A 2222(2)2-222(2)-B 、382=-382--,则3388=-C 、2(2)2=2(2)2-,则()2222=-D 382=382-=-3838-故选:D .【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键.也考查了立方根和相反数.9.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.A【解析】由数轴可得5<a <10,然后确定a -4和a -11的正负,最后根据二次根式的性质化简计算即可. 解:由数轴可得5<a <10※a -4>0,a -11<0 22(4)(11)--a a =a -4-(a -11)=7.故选A .【点睛】 ()()20=0a a a a a ⎧-⎪⎨≥⎪⎩< 是解答本题的关键. 11.B【解析】根据无理数的定义求解即可.227是分数,属于有理数; 3.14是有限小数,属于有理数;﹣8382=93=都是整数,属于有理数; 7,1.010010001…,3π共3个.故选:B .【点睛】本题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.12.C【解析】 77的范围即可.※273,※37<4, 7+1在3和4之间,故选C .【点睛】本题考查了无理数的估算,灵活应用“夹比法”进行估算是解题的关键.13.D【解析】分别对各个选项的无理数的大小进行估算,依次判断.解:12<221和2之间,故选项A 不符合题意;28382和3之间,故选项B 不符合题意;4175<17在4和5之间,故选项C 不符合题意;5336<<,则333<433在3和4之间,故选项D 符合题意;故选D .【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.14.C【解析】利用无理数的定义、不等式的性质、平行线的性质及绝对值的意义分别判断后即可确定正确的选项. 解:A 、无理数的相反数是无理数,故原命题错误,是假命题,不符合题意;B 、如果0ab >,那么0a >,0b >或0a <,0b <,故原命题错误,不符合题意;C 、两直线平行,同位角的角平分线也平行,正确,是真命题,符合题意;D 、若||1a =,则1a =±,故原命题错误,是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解无理数的定义、不等式的性质、平行线的性质及绝对值的意义,难度不大.15.C【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数比较大小绝对值大的反而小,据此判断即可. 根据实数大小比较的方法,可得3120-<-<<3-.故选:C【点睛】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.16.B【解析】利用”夹逼法“7的范围,继而也可得出a 的值.解:※27<3, 7的值在整数2与3之间,※a =2.故选:B .【点睛】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.17.±4【解析】由(±4)2=16,可得16的平方根是±4,故答案为:±4.183【解析】根据算术平方根的定义,即可得到答案.解:93=,933【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19.44.95【解析】直接利用算术平方根的性质化简得出答案.解:20.21 4.495≈,202120.21100≈⨯≈4.495×10=44.95.故答案为:44.95.【点睛】此题主要考查了算术平方根,正确理解算术平方根的意义是解题关键.20.1 5【解析】直接利用算术平方根的定义计算得出答案.解:12511255=.故答案为:15.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.21.3±02【解析】(1)9的平方根是3±;(2)0的平方根是0;(34=2.22.-8【解析】直接利用非负数的性质得出a ,b 的值,进而得出答案.解:510a b +-+=∣,※a +5=0,-b +1=0,解得:a =-5,b =1,※a -3b =-5-3=-8.故答案为:-8.【点睛】此题主要考查了非负数的性质,正确得出a ,b 的值是解题关键.23.4【解析】利用算术平方根,立方根定义求出m 与n 的值,代入原式计算即可求出值.由题意可得:4159m +=,268n -=-, 解得:32m =-,53n =, 5364=6416432n m ⎛⎫-⨯-⨯- ⎪⎝⎭. 故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,其中的正数叫做a 的算术平方根,.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.24.-4.【解析】根据立方根的定义求解即可. 3644--,故答案为:-4.【点睛】本题考查求一个数的立方根,熟练掌握立方根的定义是解题关键.25.200【解析】根据题意得出,当被开三次方数的小数点向左或向右移动3位,立方根的小数点则向左或向右移动1位,求解即可.解:3823800020=30.0080.2=,33800000081000000=200⨯,故答案为:200.【点睛】此题考查了立方根的实际应用,根据题意得出规律是解题的关键.26.1【解析】先根据无理数的估算可得3144<<143与414解:91416<<,914163144,143(414)143414--=-+2147=,2(14 3.5)=,2(1412.25)0=>,143414>144,143最接近的整数是431-=,故答案为:1.【点睛】本题考查了无理数的估算、实数的大小比较,熟练掌握无理数的估算方法是解题关键.27.8【解析】试题解析:根据题中的新定义得:原式=13×12-4×(-1)=4+4=8.【解析】直接利用有理数的乘方运算法则以及二次根式的性质分别化简得出答案.解:原式883=-+-3=-.-.故答案为:3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.29.5-【解析】-.根据新定义运算即可,先计算(4#2),再计算0#(3)x#y=y﹣2,∴(4#2)220=-=∴(4#2)#(﹣3)=()0#3-325=--=-故答案为:5-.【点睛】本题考查了新定义下的有理数运算,理解题意是解题的关键.30.6【解析】根据新定义的运算,把3、5代入计算即可.*=⨯=3×2=6,由题意得,3533-5故答案为:6.【点睛】本题考查了新定义中的有理数计算,绝对值的计算,掌握有理数的运算是解题的关键.315【解析】根据负数的绝对值是它的相反数,可得答案.解:|555【解析】根据5-20-19、20的大小关系,即可判断出19-25-大小关系.解:5-20-※19<20,1920※195-故答案为:>.【点睛】本题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.33.(1)-4;(2)-3【解析】(1)根据乘方,算术平方根,立方根的运算法则及定义求解即可;(2)根据乘方,化简绝对值,实数的混合运算法则计算即可.解:(1)原式=3524--=-;(2)原式=12333---.【点睛】本题主要考查实数的运算,乘方,化简绝对值,算术平方根,立方根的知识点,熟知定义及运算法则是解题的关键.34.(1)92x=±;(2)92x=-.【解析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用立方根的定义求解即可.解:(1)24810x-=,整理得:281 4x=,解得:92x=±;(2)38327x +=-. 整理得:32738x +=-, 解得:332x +=-, ※92x =-. 【点睛】本题考查了平方根与立方根,熟记相关定义是解答本题的关键.35.(1)8;(2521.【解析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用乘法的分配律计算,合并即可得到结果.解:(1232764(3)-383=+-8=;(25(1)2(22)5+ 15222=-5221=.【点睛】本题考查了实数的运算,涉及平方根、立方根定义,熟练掌握运算法则是解本题的关键.36.(1)-4;(2)x =79-或119- 【解析】(1)首先计算开方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)根据平方根的含义和求法,求出x 的值是多少即可.解:(1(327643213- 33=-4;(2)※81(x +1)2-4=0,※(x +1)2=481,※x +1=±29,解得:x =79-或119-. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.37.(1)7-(2)1-【解析】(1)根据新定义的内容直接代入即可求解;(2)根据新定义的内容直接代入.(1)解:()()32323227-*=-⨯----=-;(2)解:()()241-**-()()242421=-⨯---*-⎡⎤⎣⎦()01=*-()()01012=⨯-----1=-.【点睛】本题考查新定义运算,理解新定义的内容是解题的关键,注意运算顺序.38.(1)1b -;(2)71a b +-=【解析】(1)根据数轴上a 的位置,判断出a ,b 的取值范围,然后代入所求的式子中进行化简;(2713a 、b 的值,然后代入计算即可.解:(1)由数轴知a -1>0,a -2<0,b <0, ()212a a b --+12a a b =-+--1b =-;(2)※273<,3134<, ※72a =,3b =, ※772371a b +=+.【点睛】本题考查了估算无理数的大小及实数与数轴,熟练掌握估算无理数的方法以及会根据数轴判定实数的大小是解题的关键.39.(1)6a =,3b =-;(2)-2【解析】(1)根据题意列出方程组可得答案;(2)根据非负数的性质得到c ,d 的值,代入计算,再求立方根即可.解:(1)由题意得:209a b a b +=⎧⎨-=⎩, 解得:6a =,3b =-.(2)由非负数的性质可得:200a c b d +=⎧⎨-=⎩, 即12030c d +=⎧⎨--=⎩, 12c ∴=-,3d =-. ∴143183c d +-=---=-, ∴13c d +-的立方根是-2. 【点睛】本题考查立方根和算术平方根,掌握求立方根和算术平方根的方法是解题关键.40.(1)5-;(2)m 的值为1或9【解析】(1)直接根据实数的运算法则计算即可;(2)根据正数的两个平方根互为相反数列方程求出x ,然后求解即可.(1)解:原式33215=--+-=-;(2)解:※当2110x x ++-=时,解得:0x =,则()211m x =-=;※当211+=-x x 时,解得:2x =-,则()()221219M x =-=--=;综上所述,m 的值为1或9.【点睛】本题考查实数的运算,平方根的定义,掌握其概念及运算法则是解题的关键.41.(1)9(2)6x =或4x =-.【解析】(1)先求平方根和立方根,再计算即可;(2)利用平方根的概念解方程即可.(1) 解:原式33622=++ 9=.(2)解:()21250x --=, ()2125x -=则15x -=±,解得:6x =或4x =-.【点睛】本题考查了平方根和立方根,解题关键是明确求一个数平方根和立方根的方法,准确进行计算.42.a+2b-c的平方根为6【解析】试题分析:先根据算术平方根及平方根的定义得出关于,a b的方程组,求出,a b13值范围求出c的值,代入所求代数式进行计算即可.试题解析:※2a−1的算术平方根是3,3a+b−1的平方根是±4,※219 3116 aa b-=⎧⎨+-=⎩,解得52 ab,=⎧⎨=⎩※9<13<16,※3134,<<133,即c=3,※原式5223 6.=+⨯-=6的平方根是6,43.(1)3103;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(110的整数部分是3,103;(2)※ 4595a= 52,36374937的整数部分为:6b=,※5a b+52654+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.44.(1)不是,是;(2)见解析;(3)432或456或840或864或888【解析】(1)根据等差数的定义判定即可;(2)设这个三位数是M ,10010M a b c =++,根据等差数的定义可知2a cb +=,进而得出()3352M a c =+即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a 的值,再根据是8的倍数可确定c 的值,又因为2a cb +=,所以可确定a 、c 为偶数时b 才可取整数有意义,排除不符合条件的a 、c 值,再将符合条件的a 、c 代入2a c b +=求出b 的值,即可求解. 解:(1)※4184-≠- ,※148不是等差数,※435135438-=-=- ,※514335是等差数;(2)设这个三位数是M ,10010M a b c =++,※b a c b -=- , ※2a cb += , ※()10010105633522ac M a c a c a c +=+⨯+=+=+ , ※这个等差数是3的倍数;(3)由(2)知()3352,2a c T a c b +=+=, ※T 是24的倍数,※352a c + 是8的倍数,※2c 是偶数,※只有当35a 也是偶数时352a c +才有可能是8的倍数,※2a =或4或6或8,当2a =时,3570a = ,此时若1c =,则35272a c += ,若5c = ,则35+280a c = ,若9c = ,则35+288a c =,大于70又是8的倍数的最小数是72,之后是80,88当35+296a c =时10c > 不符合题意;当4a =时,35140a =,此时若2c =,则352144a c +=,若6c =,则352152a c +=,(144、152是8的倍数),当6a =时,35210a =,此时若3c =,则352216a c +=,若7c =,则352224a c +=,(216、244是8的倍数),当8a =时,35280a =,此时若0c ,则352280a c +=,若4c =,则352288a c +=,若8c =,则352296a c +=,(280,288,296是8的倍数), ※2a cb +=, ※若a 是偶数,则c 也是偶数时b 才有意义,※2a =和6a =是c 是奇数均不符合题意,当4,2a c ==时,423,4322b T +=== , 当4,6a c ==时,465,4562b T +===, 当8,0a c ==时,804,8402b T +===, 当8,4a c ==时,846,8642b T +===, 当8,8a c ==时,888,8882b T +===, 综上,T 为432或456或840或864或888.【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.459191979.89.【解析】 91 97x ,其中0<x <1,求出97≈81+18x ,求出x ,即可得出答案.解决问题:8191100<99110<<, 919, 9191-9. 97x ,其中0<x <1,则97=(9+x )2,即97=81+18x +x 2,※0<x <1,※0<x 2<1,※97≈81+18x ,解之得x ≈0.89979.89.【点睛】 9746.(1)825-85+(2)不是,是;(3)共轭实数a m +a m - 是无理数,见解析(4)4a b +=【解析】(1)根据题意写出一对共轭实数即可;(2)利用新定义判断即可;(3)根据新定义得共轭实数是无理数;(4)由a 22a -3=(b -12(1) 解:85-825+是一对共轭实数, 故答案为:85-825+(2) 解:3223不是共轭实数,3-与3是共轭实数,故答案为:不是,是;(3) 解:共轭实数a b m +a b m -是无理数,※a 是开方开不尽的数, m b 是不等于0的有理数, ※b m a 加上或减去一个无理数a(4)解:由232a b +(312a b -=-※a 、b 为有理数,※3a -为有理数,※(12b -必为有理数方能与3a -相等,而1b -为有理数,※b -1=0,30a -=,※a +b =4.【点睛】本题考查的是实数的运算,掌握新概念是解决此题关键.47.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)※2021;※2021 【解析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.解:(1)61623=⨯=⨯,※6132->-,※()263f =; 161162844=⨯=⨯=⨯※1618244->->-,※()161f =, 故答案为:23;1;(2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=, ※6b a -=,※19a b ≤≤≤,※93b a ==,或82b a ==,或71b a ==,,※t 为39,28,17;※39=1×39=3×13,※()33913f =; 28=1×28=2×14=4×7,※()28f =47; 17=1×17,※()11717f =; ※()f t 的最大值47. (3)※※223572021⨯⨯⨯=⨯※()220235721f ⨯⨯⨯=; ※423574042⨯⨯⨯=⨯※()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键. 48.[发现3327273(3)0-+-=;[应用]-4【解析】[发现]根据题目给出的规律解答;[应用]根据题意列出方程,解方程求出x ,根据算术平方根的概念解答即可.解:[发现3327273(3)0-+-=,符合上述规律, 3327273(3)0-+-=;[应用]由题意得,3250x x -++=,解得,8x =, 则2164x -=-.【点睛】本题考查的是立方根和算术平方根的概念,根据题意正确找出规律是解题的关键.。
2022--2023学年人教版七年级下册数学期中复习卷

人教版七年级下册数学期中复习卷姓名:得分:日期:一、选择题(本大题共 10 小题)1、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.2、已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是( )A. (-2,1)B. (2,1)C. (2,-1)D. (-2,-1)3、下列数中与√19−1最接近的是()A.2B.3C.πD.44、点P在第二象限,且到x轴的距离为5,到y轴的距离为3,则点P的坐标是()A.(-5,3)B.(3,-5)C.(-3,5)D.(5,-3)5、如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°6、如图,AB//CD,EF交AB、CD于点E、F、EG平分∠BEF,交CD于点G.若∠1=40∘,则∠EGF=()A. 20∘B. 40∘C. 70∘D. 110∘7、如图,已知AB//CD,若∠A=25∘,∠E=40∘,则∠C等于( )A. 40∘B. 65∘C. 115∘D. 25∘8、在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个C. 5个D. 4个9、下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个10、如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y 轴上一点P(0,2)绕点A旋转180∘得点P1,点P1绕点B旋转180∘得点P2,点P2绕点C旋转180∘得点P3,点P3绕点D 旋转180∘得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )A. (2010,2)B. (2012,-2 )C. (0,2)D. (2010,-2 )二、填空题(本大题共 11 小题)11、我们知道√10是一个无理数,那么√10+1在两个整数与之间12、用“※”定义新运算:对于任意实数a、b,都有a※ b=2a2+b.例如3※ 4=2×32+4=22,那么√3※ 2=______.13、如图,直线AB、CD、EF相交于点O,CD⊥EF,OG平分∠BOF.若∠FOG=29°,则∠BOD的大小为______度.14、如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(4,1)和(-2,3),那么“卒”的坐标为______.15、如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC//x轴,若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为 ______ .16、如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转______度.17、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…用含自然数n的代数式表示上述式子为______ .18、在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为 ______ ,点A2015的坐标为 ______ .19、已知△ABC的各顶点坐标分别为A(-1,2),B(1,-1),C(2,1),将它进行平移,平移后A移到点(-3,a),B移到点(b,3),则C移到的点的坐标为.20、如图,在数轴上方作一个2×2的方格(每一方格的边长为1个单位),依次连结四边中点A,B,C,D得一个阴影正方形,点A落在数轴上,用圆规在点A左侧的数轴上取点E,使AE=AB,若点A表示的数为2,则点E表示的数为21、将点A(-1,3)先沿x轴向左平移5个单位,再沿y轴向下平移2个单位,则平移后,所得点的坐标是______.三、计算题(本大题共 6 小题)22、计算:√81+√−273+√(−23)2.23、求下列各式中的 x .(1)4x 2=81(2)(x −1)3−64=024、比较下列各数的大小.(1)√3与1.732;(2)√22与√33; (3)√5−22与√5−3.25、 求下列各式的值:(1)√64;(2)±√614;(3)−√9+16.26、已知一个正数的两个平方根分别是a 和2a-9,求a 的值,并求这个正数.27、如图,a 、b 、c 分别是数轴上A 、B 、C 所对应的实数,试化简:√b 2-|a-c|+√(a +b)33.四、解答题(本大题共 6 小题)28、如图,在平面直角坐标系中,已知点A(-3,4),B(-4,2),C(-2,0),且点P(a,b)是三角形ABC 边上的任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P(a,b)的对应点P1(a+6,b-3).(1)直接写出A1的坐标______;(2)在图中画出三角形A1B1C1;(3)求出三角形ABC的面积.29、已知AB//DE,∠B=60∘,且CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.30、阅读下面的文字,解答问题,例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7-2).请解答:(1)√17的整数部分是______,小数部分是______.(2)已知:9-√17小数部分是m,9+√17小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值31、如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是______;(3)在你所建的直角坐标系中,如果C同学家的坐标为(-150,100),请你在图中描出表示C同学家的点.32、已知下面四个图中AB//CD,试探讨四个图形中∠APC与∠PAB﹑∠PCD的数量关系.(1)图(1)中∠APC与∠PAB﹑∠PCD的关系是 ______ .(2)图(2)中∠APC与∠PAB﹑∠PCD的关系是 ______ .(3)请你在图(3)和图(4)中任选一个,说出∠APC与∠PAB﹑∠PCD的关系,并加以证明.(提示:可过P点作PE//AB)33、(1)用“ < ”,“ > ”,“=”填空:√1______√2______√3______√4______√5(2)由上可知:①∣1−√2∣=______;②∣√2−√3∣=______;③∣√3−√4∣=______;(3)计算(结果保留根号):∣1−√2∣+∣√2−√3∣+∣√3−√4∣+∣√4−√5∣+⋯+∣√2018−√2019∣7/7。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版

七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
2022-2023学年人教版七年级下册数学期中复习试题
2022-2023学年人教版七年级下学期数学期中复习试题一、选择题(每小题3分,共30分)1.(3分)下列各数中,是无理数的是( )A .0B .12C .√2D .﹣22.(3分)如图,下列条件中,能推出AB ∥DC 的条件( )A .∠1=∠2B .∠3=∠4C .∠D =∠DCE D .∠BAD+∠ABC =180°3.(3分)在平面直角坐标系中,点(2,﹣3)所在的象限是( )象限.A .第一B .第二C .第三D .第四4.(3分)下列图案是由图中所示的图案通过平移后得到的是( )A .B .C .D .5.(3分)如图,工人师傅移动角尺在工件上画出直线CD ∥EF ,其中的道理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .以上结论都不正确6.(3分)如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标是(3,1),表示“天安门”的点的坐标是(0,0),则表示“人民大会堂”的点的坐标是( )A .(0,0)B .(﹣1,0)C .(﹣1,﹣1)D .(1,1)7.(3分)实数a 、b 在数轴上对应的点的位置如图所示,则化简√a 2−|a ﹣b|+√a 2得( )A .0B .2aC .2bD .﹣2b8.(3分)如图,将一张长方形纸条ABCD 沿EF 折叠,点A ,B 分别折叠至点A ′,B ′,若∠AEF =130°,则∠B ′FC 的度数为( )A .80°B .70°C .65°D .50°9.(3分)如图,一块长为am ,宽为bm 的长方形草地上,有一条弯曲的小路,小路左边线向右平移tm 就是它的边线.若a :b =5:3,b :t =6:1,则小路面积与绿地面积的比为( )A .19B .110C .211D .21310.(3分)如图,E 在线段BA 的延长线上,∠EAD =∠D ,∠B =∠D ,EF ∥HC ,连FH 交AD 于G ,∠FGA 的余角比∠DGH 大16°,K 为线段BC 上一点,连CG ,使∠CKG =∠CGK ,在∠AGK 内部有射线GM ,GM 平分∠FGC ,则下列结论:①AD ∥BC ;②GK 平分∠AGC ;③∠E+∠EAG+∠HCK =180°;④∠MGK 的角度为定值且定值为16°,其中正确结论的个数有( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.(3分)比较下列各组数的大小(填“>”、“=”、“<”).(1)3.14 π; (2)√73 2; (3)√5−3 √5−42. 12.(3分)如图,AB ∥CD ,∠ABE =148°,FE ⊥CD 于E ,则∠FEB 的度数是 度.13.(3分)点A 向右平移3个单位长度,再向下平移2个单位长度后,得到点B (0,2),则点A 坐标为 .14.(3分)已知点O (0,0),B (1,2),点A 在x 轴的正半轴上,且S 三角形OAB =2,则A 点的坐标为 .15.(3分)如图,直线AB ,CD 相交于点O ,若OE ⊥AB ,且∠COE :∠BOD =7:2,则∠DOE 的度数是 .16.(3分)若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B = 度.17.(3分)如图,雷达探测器测得A ,B ,C 三个目标.如果A ,B 的位置分别表示为(4,60°),(2,210°).则目标C 的位置表示为 .18.(3分)将一组数√3,√6,3,√12,√15,……,√90按下面的方式进行排列:√3,√6,3,√12,√15;√18,√21,√24,√27,√30;若√12的位置记为(1,4),√24的位置记为(2,3),则这组数中最大的有理数的位置记为 .三、解答题(共66分)17.(6分)计算:(1)√9+√−13−√0+√14; (2)3√6+√2−(2√6−√2).18.(6分)求下列各式中的x的值.(1)(x﹣2)2=16;(2)(x+1)3﹣27=0.19.(6分)在下面解答中填空.如图,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠=90°(垂直的定义).∴AB∥CD().∵∠1=∠2(已知),∴AB∥EF().∴CD∥EF(平行于同一条直线的两条直线互相平行).∴∠3=∠E().20.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.21.(6分)如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线交MN于G,作射线GF∥AB.(1)求证:AB∥CD;(2)若∠CAB=66°,求∠CGF的度数.22.(8分)如图,AB∥CD,E是直线FD上的一点,∠ABC=140°,∠CDF=40°.(1)求证:BC∥EF;(2)连接BD,若BD∥AE,∠BAE=110°,则BD是否平分∠ABC?请说明理由.23.(8分)如图,在平面直角坐标系中,三角形各顶点都在网格线的交点上,叫做格点三角形,格点三角形ABC经过某种变换后得到格点三角形A′B′C′(A、B、C的对应点分别是A′,B′,C′).(1)写出点C、C′的坐标:C(),C′();(2)若第一象限内有一点D,且以A、B、C、D为顶点的四边形为平行四边形,则点D的坐标是;(3)三角形ABC内任意一点M(x,y)经过此变换得到的对应点M′的坐标是(用含有x、y 的代数式表示).24.(10分)已知AD和BE相交于点C,∠BAC=∠ACB,∠EDC=∠DCE.(1)如图(1),求证:AB∥DE;(2)如图(2),点P是线段BC上一点,连结AP.①求证:∠APE=∠BAP+∠CED;②若∠APE=∠BAD=2∠CED,请直接写出∠CED的度数;(3)如图(3),若点M是射线BA上一点,作MH⊥直线AD于点H,∠ADE与∠AMH的角平分线相交于点N,请直接写出∠DNM的度数.25.(10分)在平面直角坐标系中,点A(0,a),B(b,b)的坐标满足:|a﹣3|+(b+1)2=0,将线段AB 向右平移到DC的位置(点A与D对应,点B与C对应).(1)求点A、B的坐标:(2)①若原点O恰好在线段CD上,则四边形ABCD的面积=;②S△AOB、S△COD分别表示三角形AOB、三角形COD的面积,若S△AOB+S△COD=10,则AD长为.(3)点P(m,n)是四边形ABCD所在平面内一点,且三角形ABP的面积为4,求m,n之间的数量关系.。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
【人教版】数学七年级下册《期中考试试卷》(含答案)
x=-3.
(2)(x-1)2=4,
x-1=±2,
解得:x1=3,x2=-1.
【点睛】本题考查了立方根、平方根,解决本题的关键是熟记立方根、平方根的定义.
17.完成下面推理过程:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(______________________),
故选B.
【点睛】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.
三、解答题
15.计算:
(2) + - ;
【答案】(1) ;(2)
【解析】
【分析】
(1)首先利用绝对值的性质和二次根式的性质化简,然后再计算加减即可.
(2)首先利用二次根式的性质、三次根式的性质化简,然后再计算负一的偶数次幂,最后加减即可.
答案与解析
一、填空题
1. 的立方根为______;
【答案】2
【解析】
【分析】
根据算术平方根、立方根的意义计算即可.
【详解】解: =8,
8的立方根为 2,
故答案为:2.
【点睛】本题考查了算术平方根、立方根 意义和计算方法,理解算术平方根、立方根的意义是解决问题的关键.
2.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.
∴∠2=∠CGD(等量代换).
∴CE∥BF(___________________________).
11.如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()
A. ∠1=∠4B. ∠2=∠3C. ∠C=∠CDED. ∠C+∠CDA=180°
12.点A(﹣3,﹣5)向左平移3个单位,再向上平移4个单位到点B,则点B的坐标为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学期中复习讲义动点问题一、坐标系内的动点1.(12分)如图,点B的坐标为(-2,4),点D从点O按O→C→B方向运动,速度为每秒1个单位长度,设运动时间为t秒.(1)当t=5时,求点D的坐标.(2)当点D在运动的过程中,是否存在一点D,使得直线AD将长方形ABCO的面积分成1:2两部分,若存在,请求出点D的坐标;若不存在,请说明理由.2.(本题满分12分)如图1,已知点A(0,a),点B(b,0),其中a,b满足2a-4+|a-b+6|=0,第一象限点C(4,4).(1)直接写出A,B两点的坐标;(2)如图2,延长BC交y轴于D点,求点D的坐标;(3)如图3,作CE⊥y轴,点P从点A出发以每秒1个单位长度沿折线A→E→C的路线往返(到点C后立即掉头)做匀速运动,同时点Q也从点A出发以每秒1个单位长度沿A→O→B的路线做匀速运动.当点Q运动到点B 时,两动点均停止运动.设运动的时间为t秒,三角形CPQ的面积为S.当S=6,求t的值.图1 图2 图33. (12分)在平面直角坐标系中,点O 为坐标原点,点A (3a ,2a )在第一象限,过点A 向x 轴作垂线,垂足为点B ,连接OA ,S △AOB =12,点M 从O 出发,沿y 轴的正半轴以每秒2个单位长度的速度运动,点N 从点B 出发以每秒3个单位长度的速度向x 轴负方向运动,点M 与点N 同时出发,设点M 的运动时间为t 秒,连接AM ,AN ,MN . (1)求a 的值;(2)若OM =ON ,请求出t 的值.(3)设四边形AMON 的面积为S ,试用含t 的代数式表示S :若S ≤27,求t 的取值范围. (请自行画出平面直角坐标系的示意图)4.(本题满分12分)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,a ),点B 的坐标为(b ,0),点C 的坐标为(c ,0),a ,b ,c 满足⎩⎪⎨⎪⎧a -2b -3c =-12a -3b -5c =-4(1)分别用含有c 的代数式表示a ,b ;(2)若a +c =3,动点P 从C 点开始在x 轴以每秒2个单位向左运动,同时,动点Q 从A 点开始在y 轴以每秒1个单位向上运动,问经过多少秒,S △ABP =S △BAQ .二、动态综合应用问题【课堂演练】例1.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值. (3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.例2.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积;(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于点E,交AC于点F,求证:∠CEF=∠CFE;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值∠H∠ABC是否变化?若不变,求出其值;若变化,求出变化范围.lOCDBAlEFOCDBAlHDOCBA①②③练1.如图:AB ∥CD ,直线l 交AB 、CD 分别于点E 、F ,点M 在EF 上,N 是直线CD 上的一个动点(点N 不与F 重合)(1)当点N 在射线FC 上运动时,∠FMN +∠FNM =∠AEF ,说明理由;(2)当点N 在射线FD 上运动时,∠FMN +∠FNM 与∠AEF 有什么关系并说明理由.练2.在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且|2a +b +1|+ 21240a b a b ++++-= (1)求a 、b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标; ②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立?若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上的一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时, OPDDOE∠∠的值是否会改变?若不变,求其值;若改变,说明理由.练3.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路的两旁安置了两座可旋转探照灯。
如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视。
若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒一度。
假定主道路是平行的,即PQ ∥MN ,且∠BAM :∠BAN =2:1. (1)填空:∠BAN = °;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相 平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前。
若射出的光束交于点AC ,过C 作∠ACD 交PQ 于点D ,且∠ACD =120°,则在转动过程中,请探究∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由。
QPNM BA图1DCQPNM BA图2三、动态找规律问题例1.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方 形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是_____________________xy(2,0)A OB CD E练习1.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2019的坐标是 .xyP 14P 13P 12P 11P 10P 9P 8P 7P 6P 5P 4P 3P 2P 1O2.如图,在平面直角坐标系上有个点P (1,0),点P 第一次向上跳动1个单位至点P 1(1,1),紧接着第2次向右跳动2个单位至点P 2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,...依此规律跳动下去,点P 第8次跳动至P 8的坐标为____________;则点P 第256次跳动至P 256的坐标是__________3.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫作点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到点A 1,A 2,A 3,A 4…,若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a +b 的取值范围_______________.4.已知关于m 和n 的方程组⎩⎪⎨⎪⎧m -n +1=04m -3n +k =0.的解满足3m -2n =1,则2m -n +8k =________.5.(本小题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”。
在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,2a ),点C (-12,a -1),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F . (1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;(2)若点F 刚好落在直线l 上,F 的纵坐标为a +b ,点E 落在x 轴上,且三角形MFD 的面积为112,试判断点B是否是直线l 的“伴侣点”?请说明理由.6.如图,△ABC 的面积是60,AD :DC =1:3,BE :DE =4:1,EF :FC =4:5,则△BEF 的面积是( )A .15B .16C .20D .367.(10分)阅读下列材料并填空:在平面直角坐标系xOy 中,点P (x ′,y ′),变换记作ϕ(x ,y )=(x ′,y ′),其中⎩⎪⎨⎪⎧x ′=ax +byy ′=ax -by (a ,b 为常数).例如,当a =1,且b =1时,ϕ(-2,3)=(1,-5). (1)当a =2,b =1时,ϕ(1,2)=_____________.(2)ϕ(-3,-1)=(3,1),则a =__________,b =__________.(3)设点P (x ,y )的坐标满足y =2x (x ≠0),点P 经过变换ϕ得到点P ′(x ′,y ′),若点P 到点P ′重合,求a 和b 的值.几何问题1.(9分)如图,五边形ABCDE中,BC∥DE,∠C=∠E.(1)猜想AE与CD之间的位置关系,并说明理由.(2)延长AB至F,连接BD,若∠1=∠2,∠CBF=2∠3,求证:∠CBA=∠E.DD。