第一章部分习题解答

合集下载

离散数学第一章部分课后习题参考答案

离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)0∨(0∧1) 0(2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10.(3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0(4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 117.判断下面一段论述是否为真:“是无理数。

并且,如果3是无理数,则也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: 是无理数 1q: 3是无理数0r: 是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(q→p)(5)(p∧r) (p∧q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q q p q→p (p→q)→(q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) (p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)(p→(q∧r))(4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q)证明(2)(p→q)∧(p→r)(p∨q)∧(p∨r)p∨(q∧r))p→(q∧r)(4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q)(p∨p)∧(p∨q)∧(q∨p) ∧(q∨q)1∧(p∨q)∧(p∧q)∧1(p∨q)∧(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(p→q)→(q∨p)(2)(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(p→q)→(q p)(p q)(q p)(p q)(q p)(p q)(q p)(q p)(p q)(p q)(p q)(p q)(p q)∑(0,2,3)主合取范式:(p→q)→(q p)(p q)(q p)(p q)(q p)(p(q p))(q(q p))1(p q)(p q) M1∏(1)(2) 主合取范式为:(p→q)q r(p q)q r(p q)q r0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p(q r))→(p q r)(p(q r))→(p q r)(p(q r))(p q r)(p(p q r))((q r))(p q r))1 11所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p q,(q r),r结论:p(4)前提:q p,q s,s t,t r结论:p q证明:(2)①(q r) 前提引入②q r ①置换③q r ②蕴含等值式④r 前提引入⑤q ③④拒取式⑥p q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③q s 前提引入④s t 前提引入⑤q t ③④等价三段论⑥(q t)(t q) ⑤置换⑦(q t)⑥化简⑧q ②⑥假言推理⑨q p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p(q r),s p,q结论:s r证明①s 附加前提引入②s p 前提引入③p ①②假言推理④p(q r) 前提引入⑤q r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p q,r q,r s结论:p证明:①p 结论的否定引入②p﹁q 前提引入③﹁q ①②假言推理④¬r q 前提引入⑤¬r ④化简律⑥r¬s 前提引入⑦r ⑥化简律⑧r﹁r ⑤⑦合取由于最后一步r﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为,在(a)中为假命题,在(b)中为真命题。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

管理会计教程习题与解答

管理会计教程习题与解答

第一部分习题与答案第一篇总论第一章管理会计的概念一、判断题:1.管理会计的前身是成本会计,管理会计最初萌生于20世纪上半叶。

( )2. 1952年在纽约举行的会计师国际代表大会上,正式将管理会计作为一门独立的学科,而与财务会计并列为会计学中的两大领域。

()3.管理会计的活动领域仅限于微观,即企业环境.()4.管理会计与财务会计是现代企业会计的两大分支。

()5.管理会计与财务会计同属现代会计的两大分支,因此,两者在信息特征及信息载体、方法体系及观念取向等方面是相一致的。

()6.管理会计与财务会计一样,在会计信息报告的格式、种类及报送时间上是基本相同的。

()7.会计主体是会计准则的前提之一。

因此,管理会计与财务会计在工作主体的层次上是相同的。

( ) 8.管理会计的作用时效不仅限于分析过去,而且还能控制现在和预测规划未来.()9.管理会计与财务会计同属企业信息系统,两者面临问题一样。

()10.管理会计与财务会计同属企业会计,故而两者遵循的原则、标准和依据是相同的.()二、单项选择题:1.在两方会计发展史上,第一次提出“管理会计”术语的是()年。

A.1902B.1912C. 1922D. 19322.管理会计引入中国的时间是20世纪()。

A.40年代末50年代初B.50年代末60年代初C. 60年代末70年代初D. 70年代末80年代初3.下列哪项不属于管理会计与财务会计区别的内容。

()A.工作主体的层次B.作用时效C.职能目标D.工作侧重点4.下列对管理会计与财务会计两者的联系的归纳哪种讲法是不正确的。

()A.两者服务对象相互交织B.两者职能目标一致C.两者方法体系基本相同D.两者会计信息同源合流5.从工作侧重点的角度而言,管理会计被称之为()。

A.经营型会计B.报账型会计C.内部会计D.外部会计三、多项选择题:1.狭义的管理会计,就其内容而言更集中地体现了下列哪些会计的内在功能。

( ) A.预测经营前景B.参与经营决策C.规划经营方针D.控制经济过程E.考核评价责任业绩2.我国会计学界对管理会计定义提出的主要观点有()。

习题解答(第1章)

习题解答(第1章)

习题解答 第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用。

答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。

应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。

(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c 3×108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:v=c/n(1) 光在水中的速度:v=3×108/1.333=2.25×108 m/s (2) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (3) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (4) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (5) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。

3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。

解:706050=+l l l =300mm4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

《电子电路基础》习题解答第1章

《电子电路基础》习题解答第1章

第一章习题解答题1.1 电路如题图1.1所示,试判断图中二极管是导通还是截止,并求出AO两端的电压UAO。

设二极管是理想的。

解:分析:二极管在外加正偏电压时是导通,外加反偏电压时截止。

正偏时硅管的导通压降为0.6~0.8V 。

锗管的导通压降为0.2~0.3V 。

理想情况分析时正向导通压降为零,相当于短路;反偏时由于反向电流很小,理想情况下认为截止电阻无穷大,相当于开路。

分析二极管在电路中的工作状态的基本方法为“开路法”,即:先假设二极管所在支路断开,然后计算二极管的阳极(P 端)与阴极(N 端)的电位差。

若该电位差大于二极管的导通压降,该二极管处于正偏而导通,其二端的电压为二极管的导通压降;如果该电位差小于导通压降,该二极管处于反偏而截止。

如果电路中存在两个以上的二极管,由于每个二极管的开路时的电位差不等,以正向电压较大者优先导通,其二端电压为二极管导通压降,然后再用上述“开路法”法判断其余二极管的工作状态。

一般情况下,对于电路中有多个二极管的工作状态判断为:对于阴极(N 端)连在一起的电路,只有阳极(P 端)电位最高的处于导通状态;对于阳极(P 端)连在一起的二极管,只有阴极(N 端)电位最低的可能导通。

图(a )中,当假设二极管的VD 开路时,其阳极(P 端)电位P U 为-6V ,阴极(N 端)电位N U 为-12V 。

VD 处于正偏而导通,实际压降为二极管的导通压降。

理想情况为零,相当于短路。

所以V U AO 6-=;图(b )中,断开VD 时,阳极电位V U P 15-=,阴极的电位V U N 12-=, ∵ N PUU < ∴ VD 处于反偏而截止∴ VU AO 12-=; 图(c ),断开VD1,VD2时∵ V U P 01= V U N 121-= 11N P U U > V U P 152-= V U N 122-= 22N P U U<∴ VD1处于正偏导通,VD2处于反偏而截止V U AO 0=;或,∵ VD1,VD2的阴极连在一起∴ 阳极电位高的VD1就先导通,则A 点的电位V U AO 0=,而 A N P U UV U =<-=2215∴ VD2处于反偏而截止 图(d ),断开VD1、VD2,∵ V U P 121-= V U N 01= 11N P U U < V U P 122-= VU N 62-= 22N P U U <;∴ VD1、VD2均处于反偏而截止。

电工部分习题解答(1,2,3)

电工部分习题解答(1,2,3)

第一章 习题解答1-1 在图1-39所示的电路中,若I 1=4A ,I 2=5A ,请计算I 3、U 2的值;若I 1=4A ,I 2=3A ,请计算I 3、U 2、U 1的值,判断哪些元件是电源?哪些是负载?并验证功率是否平衡。

解:对节点a 应用KCL 得 I 1+ I 3= I 2 即4+ I 3=5, 所以 I 3=1A 在右边的回路中,应用KVL 得6⨯I 2+20⨯I 3= U 2,所以U 2=50V 同理,若I 1=4A ,I 2=3A ,利用KCL 和KVL 得I 3= -1A ,U 2= -2V 在左边的回路中,应用KVL 得20⨯I 1+6⨯I 2= U 1,所以U 1=98V 。

U 1,U 2都是电源。

电源发出的功率:P 发=- U 1 I 1- U 2 I 3=-98⨯4-2=-394W 负载吸收的功率:P 吸=2021I +622I +2023I =394W 二者相等,整个电路功率平衡。

1-2 有一直流电压源,其额定功率P N =200W ,额定电压U N =50V ,内阻R o =0.5Ω,负载电阻R L 可以调节,其电路如图1-40所示。

试求:⑴额定工作状态下的电流及负载电阻R L 的大小;⑵开路状态下的电源端电压;⑶电源短路状态下的电流。

解:⑴A U P I N N N 450200===Ω===5.12450N N L I U R ⑵ =⨯+==0R I U U U N N S OC 50+4⨯0.5 = 52V ⑶ A R U I S SC 1045.0520===图1-39 习题1-1图 图1-40 习题1-2图1-9 求图1-44所示电路中电阻的电流及其两端的电压,并求图1-44a 中电压源的电流及图1-44 b 中电流源的电压,判断两图中的电压源和电流源分别起电源作用还是负载作用。

解:图1-44a 中,A I R 2=,V U R 2=,电压源的电流A I 2=。

物理初二第一章练习题答案

物理初二第一章练习题答案

物理初二第一章练习题答案1. 速度和加速度的关系根据物理学的基本概念,速度是物体运动的一个重要参量,而加速度则表示物体速度变化的快慢。

在初二的物理学习中,我们常常需要研究速度和加速度之间的关系。

以下是第一章练习题的答案:题目1:一个从静止开始的物体以恒定的加速度3 m/s²沿着一条直线运动,求它在5秒后的速度是多少?答案:根据物理学中的加速度公式v = u + at,其中v是末速度,u是初速度,a是加速度,t是时间。

给定初速度u=0,加速度a=3 m/s²,时间t=5秒。

代入公式计算可得v = 0 + 3 × 5 = 15 m/s。

题目2:一辆汽车在道路上以25 m/s的速度匀速行驶,经过10秒后它的位置是多少?答案:根据物理学中的位移公式s = ut,其中s是位移,u是速度,t 是时间。

给定速度u=25 m/s,时间t=10秒。

代入公式计算可得s = 25 ×10 = 250 m。

题目3:一个物体的速度从10 m/s增加到20 m/s,经过2秒的时间,求它的加速度是多少?答案:根据物理学中的加速度公式a = (v - u) / t,其中a是加速度,v是末速度,u是初速度,t是时间。

给定初速度u=10 m/s,末速度v=20 m/s,时间t=2秒。

代入公式计算可得a = (20 - 10) / 2 = 5 m/s²。

2. 动量守恒定律在物理学中,动量守恒定律是一个重要的原理,它指出在一个系统内,所有物体的总动量在没有外力作用的情况下保持不变。

以下是第一章练习题中涉及到动量守恒定律的答案:题目1:一辆质量为1000 kg的小轿车以20 m/s的速度向东行驶,和一辆质量为1500 kg的卡车以15 m/s的速度向东行驶发生碰撞,碰撞后两车结合在一起,求结合后的速度是多少?答案:根据动量守恒定律,碰撞前的总动量等于碰撞后的总动量。

小轿车的动量为mv1,卡车的动量为mv2,碰撞后的总动量为(m1 +m2)v。

电路原理部分习题解答

电路原理部分习题解答

电路原理部分习题解答部分习题解答第⼀章部分习题1-1在题图1-1中,已知i=2+t A,且t=0时,,试求=?电场储能W C=?(其中C=1uF )题图1-1解:1-2题图1-2是⼀个简化的晶体管电路,求电压放⼤倍数,再求电源发出的功率和负载吸收的功率。

题图1-2解:,电源发出的功率:负载吸收的功率:1-4题图1-4电路中,=0.5A,=1A,控制系数r=10,电阻R=50。

⽅框内为任意电路(设不短路),试求电流I ?题图1-4解:,1-5电路各参数如题图1-5所⽰,试求电流I为多少?题图1-5解:如图,共有3个节点,6条⽀路,由KCL得:由得:,,节点,,解得:,,,,,1-15在题图1-15所⽰电路中,已知电流源=2A,=1A,R=5,=1,=2,试求电流I、电压U及电流源的端电压和各为多少?题图1-15解:由:1-16题图1-16所⽰电路中,电压源分别为=6V,=8V,R=7,试求电流I。

题图1-16解:,1-17如题图1-17所⽰电路中,发出功率为36W,电阻消耗的功率为18W,试求、、的值。

题图1-17解:,1-18题图1-18所⽰电路中,电压源E=12V,电流源=100mA,电压控制电压源的控制系数=1,=20,=100,试求和电流源发出的功率。

题图1-18解:,1-19题图1-19所⽰电路中,电压源E=20V,电阻==10,R=50,控制系数=5,试求I和。

题图1-19解:,,第⼆章部分习题2-1、题图2-1所⽰电路中,给定=1,=2,=3,=4,=5A,=6A,试⽤回路电流法求各⽀路电流。

题图2-1解:以R1 , R3 , R4所在⽀路为树,各⽀路电流:,2-2、题图2-2电路中,已知==2,==1,==3,=4,=6A,=1A,以,,,,⽀路为树,试求连⽀电流和。

题图2-2解:2-4、在题图2-4所⽰电路中,已知=2,=3,=4,=5,==2,=4V,试⽤⽹孔电流法求和。

题图2-4解:列写⽹孔电流⽅程:,代⼊数据解得:2-5、电路如题图2-5所⽰,已知=4,=5,=6,=7A,=8A, =9A,试⽤⽹孔电流法求各⽀路电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章部分习题解答
1.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2

z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于
1321===z z z ,知321z z z Δ的三个顶点均在单位圆上。

因为 3
33
31z z z ==
()[]()[]212322112121z z z z z z z z z z z z +++=+−+−=
21212z z z z ++=
所以, 12121−=+
z z z z ,
又 )())((1221221121212
21z z z z z z z z z z z z z z +−+=−−=−
()322121=+−=z z z z
故 321=−z z ,
同理
33231=−=−z z z z ,知321z z z Δ是内接于单位圆1=z 的一个正三角形。

2.证明:z 平面上的直线方程可以写成C z a z a =+(a 是非零复常数,C 是实常数) 证 设直角坐标系的平面方程为C By Ax =+将
)(i 21
Im ),(21Re z z z y z z z x −==+=
=代入,得
C z B A z B A =−+−)i (21
)i (21

)
i (2
1
B A a +=,则
)
i (2
1B A a −=,上式即为C z a z a =+。

3.求下列方程(t 是实参数)给出的曲线。

(1)t z i)1(+=; (2)t b t a z sin i cos +=;
(3)
t t z i
+
=; (4)
22i
t t z +
=,
解(1)
⎩⎨
⎧∞<<−∞==⇔+=+=t t y t
x t y x z ,)i 1(i 。

即直线x y =。

(2)
π
20,
sin cos sin i cos i ≤<⎩

⎧==⇔+=+=t t b y t
a x t
b t a y x z ,即为椭圆1
22
22=+b y a x ;
(3)
⎪⎩⎪⎨⎧=
=⇔+=+=t y t x t t y x z 1
i
i ,即为双曲线1=xy ; (4)⎪⎩⎪
⎨⎧==⇔+=+=22221i
i t y t x t t y x z ,即为双曲线1=xy 中位于第一象限中的一支。

4.函数
z w 1
=
将z 平面上的下列曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,?
(1)
x y =; (2)()1122
=+−y x 解
222211
y x y
i
y x x iy x z
w +−+=+=
=

2222,y x y v y x x u +−=+=,可得 (1)
()v
y x y y x y y x x u −=+−−=
+=
+=
2
22
22
2是w 平面上一直线;
(2)
()212112
22222=
+⇔
=+⇔=+−y x x x y x y x ,
于是
21
=
u ,是w 平面上一平行与v 轴的直线。

19.试证)arg (arg ππ≤<−z z 在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。

证 设z z f arg )(=,因为f (0)无定义,所以f (z )在原点z =0处不连续。

当z 0为负实轴上的点时,即)0(000<=x x z ,有


⎧−=⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎟⎠⎞⎜⎝⎛−⎟⎠⎞
⎜⎝⎛+=−+
→→→→→ππππx y x y z y x x y x x z z arctan lim arctan lim arg lim 00000
所以
z
z z arg lim 0
→不存在,即z arg 在负实轴上不连续。

而argz 在z 平面上的其它点处
的连续性显然。

5. 设
()⎪⎩⎪⎨⎧+=,0,623y x xy z f
00
=≠z z 求证()z f 在原点处不连接。

证 由于
()01lim lim lim 42
0624
00=+=+=→→=→x x x x x z f x x x
y z
()2
1lim
lim 6
660
03
=
+=→=→y y y z f y y x z
可知极限()
z f z 0
lim →不存在,故()z f 在原点处不连接。

6.如果it
e z =,试证明
(1)
nt
z
z n
n cos 21
=+
; (2)
nt
z
z n
n sin i 21
=−
解 (1)
nt
e e e e z z n n sin 21
int int int int =+=+=+

(2)nt
e e e e z
z n
n sin i 21
int int int int =−=−=−

7.设iy x z +=,试证
y
x z y
x +≤≤+2。

证 由于
y
x y x y x y x z +=++≤
+=22
222

()
22
22
2222
22
2
y
x y
x y x y x y x z +=
++≥+=
+=
有 y
x z y
x +≤≤+2
8.试证:复数z 1,z 2,z 3,z 4在同一圆周上或同一直线上的条件是
Im 43232141=⎟⎟⎠⎞
⎜⎜⎝⎛−−⋅−−z z z z z z z z
证明 设z 1,z 2,z 3,z 4四点共圆或共线,可知若记
θ=−−2
14
1arg
z z z z

θπ−=−−2
34
3arg
z z z z ,于是
π=⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−=⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−2343214143232141arg arg z z z z z z z z z z z z z z z z
即432
32141z z z z z z z z −−⋅−−=实常数,从而0Im 43232141=⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−z z z z z z z z 。

相关文档
最新文档