初中数学代数与几何综合题

合集下载

初中数学几何图形综合题

初中数学几何图形综合题

初中数学几何图形综合题必胜中学2018-01-30 15:15:15题型专项几何图形综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型1操作探究题1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA.①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.解:(1)证明:由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°.∴∠BAC=∠BAD=45°.∵∠ACB=90°,∴∠ABC=45°.∴AC=BC.(2)①AF=BE.理由:由旋转得AD=AB,∴∠ABD=∠ADB.∵∠DAF=∠ABD,∴∠DAF=∠ADB.∴AF∥BD.∴∠BAC=∠ABD.∵∠ABD=∠FAD,由旋转得∠BAC=∠BAD.∴∠FAD=∠BAC=∠BAD=1/3×180°=60°.由旋转得,AB=AD.∴△ABD是等边三角形.∴AD=BD.在△AFD和△BED中:1.∠F=.∠BED=90°;2.AD=BD; 3.∠FAD=∠EBD,∴△AFD≌△BED(AAS).∴AF=BE.②如图由旋转得∠BAC=∠BAD.∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得AD=AB,∴∠ABD=∠ADB=2∠BAD.∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°.∴∠BAD=36°.设BD=a,作BG平分∠ABD,∴∠BAD=∠GBD=36°.∴AG=BG=BD=a.∴DG=AD-AG=AD-BG=AD-BD.∵∠BDG=∠ADB,∴△BDG∽△ADB.∴BD/AD=DG/DB.∴BD/AD=(AD-BD)/BD∴AD/BD=(1+根号5)/2。

新课标九年级数学中考复习强效提升分数精华版中考数学复习专题 代数、三角、几何综合问题

新课标九年级数学中考复习强效提升分数精华版中考数学复习专题 代数、三角、几何综合问题

中考数学复习专题 代数、三角、几何综合问题概述:代数、三角与几何综合题是较复杂与难度较大的问题,其中包括方程、函数、三角与几何等,内容基本上包含所有的初中数学知识,必须把以前的函数观念、方程思想、数形结合思想、转化与化归思想进行综合来解题.典型例题精析 例1.有一根直尺的短边长2cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm ,如图1,将直尺的矩边DE 放置与直角三角形纸板的斜边AB 重合,且点D 与点A 重合,将直尺沿AB 方向平移如图2,设平移的长度为xcm (•0≤x ≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm 2.(1)当x=0时(如图),S=________;当x=10时,S=___________; (2)当0<x ≤4时(如图2),求S 关于x 的函数关系式;(3)当4<x<10时,求S 关于x 的函数关系式,并求出S 的最大值(同学可在图3、•图4中画草图)解析:(1)2;2.(2)在Rt △ADG 中,∠A=45°, ∴DG=AD=x .同理EF=AE=x+2,∴S 梯形DEGF =12(x+x+2)×2=2x+2, ∴S=2x+2.(3)①当4<x<6时,(如图5) GD=AD=x ,EF=EB=12-(x+2)=10-x , 则S △ADG =12x -2,S △BEF =12(10-x )2, 而S △ABC =12×12×6=36,∴S=36-12x 2-12(10-x )2=-x 2+10x-14,S=-x 2+10x-14=-(x-5)2+11,∴当x=5(4<5<6)时,S 最大值=11.②当6≤x<10时(如图6), BD=BG=12-x ,BE=EF=10-x ,S=12(12-x+10-x )×2=22-2x , S 随x 的增大而减小,所以S ≤10.由①、②可得,当4<x<10时,S 最大值=11.例2.如图所示,点O 2是⊙O 1上一点,⊙O 2与⊙O 1相交于A 、D 两点,BC⊥AD,垂足为D ,分别交⊙O 1、⊙O 2于B 、C 两点,延长DO 2交⊙O 2于E ,交BA 的延长线于F ,BO 2交AD 于G ,连结AG .•(1)求证:∠BGD=∠C ;(2)若∠DO 2C=45°,求证:AD=AF ;(3)若BF=6CD ,且线段BD 、BF 的长是关于x 的方程x 2-(4m+2)x+4m 2+8=0•的两个实数根,求BD 、BF 的长.解析:(1)∵BC ⊥AD 于D , ∴∠BDA=∠CDA=90°,∴AB 、AC 分别为⊙O 1、⊙O 2的直径.∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°, ∴∠BGD=∠C .(2)∵∠DO 2C=45°,∴∠ABD=45°,∵O 2D=O 2C ,∴∠C=∠O 2DC=12(180°-∠DO 2C )=67.5°, ∴∠4=22.5°, ∵∠O 2DC=∠ABD+∠F , ∴∠F=∠4=22.5°,∴AD=AF .(3)∵BF=6CD ,∴设CD=k ,则BF=6k . 连结AE ,则AE ⊥AD ,∴AE ∥BC ,∴AE AFBD BF∴AE ·BF=BD ·AF . 又∵在△AO 2E 和△DO 2C 中,AO 2=DO 2 ∠AO 2E=∠DO 2C , O 2E=O 2C ,∴△AO 2E≌△DO 2C ,∴AE=CD=k,∴6k2=BD·AF=(BC-CD)(BF-AB).∵∠BO2A=90°,O2A=O2C,∴BC=AB.∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,解得:BC=3k或BC=4k.当BC=3k,BD=2k.∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根.∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.整理,得:4m2-12m+29=0.∵△=(-12)2-4×4×29=-320<0,此方程无实数根.∴BC=3k(舍).当BC=4k时,BD=3k.∴3k+6k=4m+2,18k2=4m2+8,整理,得:m2-8m+16=0,解得:m1=m2=4,∴原方程可化为x2-18x+72=0,解得:x1=6,x2=12,∴BD=6,BF=12.中考样题训练1.已知抛物线y=-x2+(k+1)x+3,当x<1时,y随着x的增大而增大,当x>1时,y 随x的增大而减小.(1)求k的值及抛物线的解析式;(2)设抛物线与x轴交于A、B两点(A在B的左边),抛物线的顶点为P,试求出A、•B、P三点的坐标,并在直角坐标系中画出这条抛物线;(3)求经过P、A、B三点的圆的圆心O′的坐标;(4)设点G(0,m)是y轴上的动点.①当点G运动到何处时,直线BG是⊙O′的切线?并求出此时直线BG的解析式.②若直线BG与⊙O相交,且另一个交点为D,当m满足什么条件时,点D在x轴的下方?2.如图,已知圆心A(0,3),⊙A与x轴相切,⊙B的圆心在x轴的正半轴上,且⊙B与⊙A外切于点P,两圆的公切线MP交y轴于点M,交x轴于点N.(1)若sin ∠OAB=45,求直线MP 的解析式及经过M 、N 、B 三点的抛物线的解析式; (2)若⊙A 的位置大小不变,⊙B 的圆心在x 轴的正半轴上移动,并使⊙B 与⊙A 始终外切,过M 作⊙B 的切线MC ,切点为C ,在此变化过程中探究: ①四边形OMCB 是什么四边形,对你的结论加以证明;②经过M 、N 、B 三点的抛物线内是否存在以BN 为腰的等腰三角形?若存在,•表示出来;若不存在,说明理由.3.如图,已知直线L 与⊙O 相交于点A ,直径AB=6,点P 在L•上移动,连结OP 交⊙O 于点C ,连结BC 并延长BC 交直线L 于点D .(1)若AP=4,求线段PC 的长;(2)若△PAO 与△BAD 相似,求∠APO 的度数和四边形OADC 的面积.(•答案要求保留根号)LyM CBA xPO N考前热身训练1.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 为以点A 为旋转中心,AM 边从与AO•重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP•上同时以不同的速度向右平行移动.设OM=x ,ON=y (y>x ≥0),△AOM 的面积为S ,若cos α、OA•是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离;(2)求证:AN 2=ON ·MN ; (3)求y 与x 之间的函数关系式及自变量量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.2.如图,已知P 、A 、B 是x 轴上的三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),•且PA :AB=1:2,以AB 为直径画⊙M 交y 轴的正半轴于点C . (1)求证:PC 是⊙M 的切线;(2)在x 轴上是否存在这样的点Q ,使得直线QC 与过A 、C 、B•三点的抛物线只有一个交点?若存在,求点Q 的坐标,若不存在,请说明理由;(3)画⊙N ,使得圆心N 在x 轴的负半轴上,⊙N 与⊙M 外切,且与直线PC 相切于D ,•问将过A 、C 、B 三点的抛物线平移后,能否同时经过P 、D 、A 三点?为什么?M A Q P O N答案:中考样题看台1.(1)k=1,抛物线解析式y=-x2+2x+3(2)A(-1,0),B(3,0),C(1,4)(3)∵⊙O′过A、B两点,∴O′在AB的垂直平分线上,即在抛物线的对称轴上,设抛物线的对称轴交x轴于M,交⊙O′于N,则有MP×MN=MA×MB,4MN=2×2,∴MN=1,•PN=5,O′P=52<PM,∴O′点在x轴上方,∴O′M=32,∴O′(1,32).(4)①过B点作⊙O′的切线交y轴于点G,直线BO′交y轴于点E,可求出直线BO•′的解析式为,y=-34x+94,∴E(0,94),∵BG是⊙O′的切线,BO⊥EG,∴BO=OE×OG,∴OG=4,•∴G(0,-4),求出直线BG的解析式为y=43x-4.②-4<m<0.2.(1)在Rt△AOB中,∵OA=3,sin∠OAB=45,cos∠OAB=35,∴AB=5,OB=4,BP=5-3=2.•在Rt△APM中,APAM=cos∠OAB=35,∴AM=5,OM=2,∴点M(0,-2),又△NPB∽△AOB,∴BN AB BP OB,∴BN=52,•∴ON=32,∴点B(32,0),设MP的解析式为y=kx+b,∵MP经过M、N两点,∴MP的解析式为y=43x-2,设过M、N、B的抛物线解析式为y=a(x-32)(x-4)且点M(0,-2)在其上,可得a=-13,即y=-13x2+116x-2.(2)①四边形OMCB是矩形.证明:在⊙A不动,⊙B运动变化过程中,恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=90°,∴△AOB≌△APM,∴OB=PM,AB=AM,∴PB=OM ,而PB=BC ,∴OM=BC ,由切线长定理知MC=MP ,∴MC=OB , ∴四边形MOBC 是平行四边形, 又∵∠MOB=90°,∴四边形MOBC 是矩形.②存在,由上证明可知,Rt △MON ≌Rt △BPN , ∴BN=MN .因此在过M 、N 、B 三点的抛物线内有以BN 为腰的等腰三角形MNB 存在,• 由抛物线的轴对称性可知,在抛物线上必有一点M ′与M 关于其对称轴对称, ∴BN=BM ′,这样得到满足条件的三角形有两个,△MNB 和△M ′NB . 3.(1)∵L 与⊙O 相切于点A ,∴∠4=90°,∴OP 2=OA 2+AP 2, ∵OB=OC=12AB=3,AP=4, ∴OP 2=32+42,∴OP=5, ∴PC=5-3=2.(2)∵△PAO ∽△BAD ,且∠1>∠2,∠4=90°, ∴∠2=∠APO ,∴OB=OC ,∴∠2=∠3 ∵∠1=∠2+∠3,∴∠2=2∠2=2∠APO ∴∠4=90°,∴∠1+∠APO=90° ∴3∠APO=90°,∴∠APO=30°. 在Rt △BAD 中,∠2=∠APO=30°.∴AD=6sin30°=6×3. 过点O 作OE ⊥BC 于点E ∵∠2=30°,BO=3,∴OE=32,BE=3×cos30°=2,∴∴S 四边形OADC =S △BAD -S △BOC =12AB ·AD=12BC ·OE=12×6×12×3294154.考前热身训练1.(1)易知OA=2,cos α=12,∠POQ=∠MAN=60°, ∴初始状态时,△AON 为等边三角形,•∴ON=OA=2,当AM 旋转到AM ′时,点N 移动到N ′, ∵∠OAM ′=30°,∠POQ=∠M ′AN•′=60°,∴∠M ′N ′A=30°,在Rt △OAN 中,ON ′=2AO=4, ∴NN ′=ON ′-ON=2,∴点N 移动的距离为2.(2)易知△OAN ∽△AMN ,∴AN 2=ON ·MN .(3)∵MN=y-x ,∴AN 2=y 2-xy ,过A 点作AD ⊥OP ,垂足为D ,可得OD=1, ∴DN=ON-OD=y-1,在Rt △AND 中,AN 2=AD 2+DN 2=y 2-2y+4, ∴y 2-xy=y 2-2y+4,即y=42x-. ∴y>0,∴2-x>0,即x<2,又∵x ≥0,∴x 的取值范围是:0≤x<2.(4)S=12·OM ·x ,∵S 是x 的正比例函数,且比例系数2>0,∴0≤S<2·2.即0≤ 2.(1)易知⊙M 半径为2,设PA=x ,则x :4=1:2⇒x=2,由相交弦定理推论得OC=OA .OB=1×3,2=PO 2+OC 2=32+2=12,PM 2=42=16,MC 2=22=4,∴PM 2=PC 2+MC 2,∴∠PCM=90°.(2)易知过A 、C 、B 三点的抛物线的解析式为(x+1)(x-3),•假设满足条件的Q 点存在,坐标为(m ,0),直线QC 的解析式为y=-m, ∵直线QC 与抛物线只有一个公共点,∴方程(x+1)(x-3)∴(2+3m)2=0,∴m=-32,即满足条件的Q 点存在,•坐标为(-32,0);(3)连结DN ,作DH ⊥PN ,垂足为H ,设⊙N 的半径为r ,则∵ND ⊥PC , ∴ND ∥MC ,∴DN PN MC PM =,∴224r r -=, ∴r=23,∵DN 2=NH ·NP ,∴(23)2=NH·(2-23),∴NH=13,∴,∴D(-2).∵抛物线y=-3(x+1)(x-3)平移,使其经过P、A两点的抛物线的解析式为y=-3(x+•1)(x+3)又经验证D是该抛物线上的点,∴将过A、C、B三点的抛物线平移后能同时经过P、D、A三点.。

初中数学几何综合-含答案

初中数学几何综合-含答案

一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.45.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或27.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE ⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有(填番号).16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=.三.解答题(共24小题)17.如图,在直线l上将正方形ABCD和正方形ECGF的边CD和边CE靠在一起,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中FH交DG于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=4,求DM的长.18.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD 于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.19.如图示,正方形ABCD的对角线交于点O,点E、F分别在AB,BC的延长线上,且∠EOF=90°,OE与BC交于点M,连接EF,G是EF的中点,连接OG.(1)求证:OE=OF(2)若∠BOG=65°,求∠BOE的度数;(3)是否存在点M是BC中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.20.如图,正方形ABCD中,AB=,在边CD的右侧作等腰三角形DCE,使DC=DE,记∠CDE为α(0°<α<90°),连接AE,过点D作DG⊥AE,垂足为G,交EC的延长线于点F,连接AF.(1)求∠DEA的大小(用α的代数式表示);(2)求证:△AEF为等腰直角三角形;(3)当CF=时,求点E到CD的距离.21.如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD 于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.22.在正方形ABCD中,点E是DC上一点,连结AC,AE.(1)如图1,若AC=8,AE=10,求△ACE的面积.(2)如图2,EF⊥AC于点F,连结BF.求证:AE=BF.23.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若,求BG的长.24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C 重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.25.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF 的周长等于BC的长.(1)若AB=24,BE=6,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.26.如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠BAG=∠CBF;(2)求证:AG=FG;(3)若GF=2BG,CF=,求AB的长.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.29.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.30.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE的某一边上时,直接写出正方形PRQS的面积.31.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.32.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.33.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.34.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.35.如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.36.如图,平行四边形ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,点M为AB的中点,连接CM.(1)求证:四边形ADEC是矩形;(2)若CM=5,且AC=8,求四边形ADEC的周长.37.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD =BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.38.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.39.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE=3,则AF的长为.40.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连结AE,交OD于点F,连结CF,若CF=CE=1,求AC长.2021年01月06日杨莲莲的初中数学组卷参考答案与试题解析一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④【分析】根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AC⊥BD,AO=AC,BO=BD,AC=BD,∴AO=BO,∠OAN=∠OBM=45°,∠AOB=90°,∵CN⊥DM,∴∠MCN+∠CMD=∠CMD+∠CDM=90°,∴∠CDM=∠BCN,∵CD=BC,∠DCM=∠CBN,∴△CDM≌△BCN(AAS),∴CM=BN,∴AN=BM,∴△AON≌△BOM(SAS),∴S△AON=S△BOM,∴S四边形ONBM=S△AOB=S正方形ABCD,∴S四边形ABCD=4S四边形ONBM;故①正确;∵△AON≌△BOM,∴ON=OM,∠AON=∠BOM,∴∠NOM=∠AOB=90°,∴△NOM是等腰直角三角形,∴MN2=2ON2,∵BN2+BM2=MN2,∴CM2+BM2=2ON2,故②正确;∵∠MON=∠COD=90°,∴∠NOC=∠MOD,∵OD=OC,ON=OM,∴△CON≌△DOM(SAS),故③正确;∵AB=2,∴S正方形ABCD=4,∵△AON≌△BOM,∴四边形BMON的面积=△AOB的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x=﹣(x﹣1)2+,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故④不正确,故选:A.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质,二次函数的最值以及勾股定理的综合应用,解题时注意二次函数的最值的运用.2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.【分析】作以BD为对称轴作N的对称点N',连接MN',PN',根据PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,再证得△MCN'∽△BCA,从而推得△MCN'为等腰直角三角形,结合BM=3.正方形的边长为4,求得CM,即为MN',问题可解.【解答】解:如图所示,∵对角线BD平分∠NPM,∴作以BD为对称轴N的对称点N',连接MN',PN',根据轴对称性质可知,PN=PN',∠NPO=N′PO,NO=N′O∵在正方形ABCD中,AB=4∴AC=AB=4,∵O为AC中点∴OA=OC=2∵N为OA的中点∴ON=∴ON'=CN'=∴AN'=3∵BM=3∴CM=4﹣3=1∴==∵∠MCN'=∠BCA∴△MCN'∽△BCA∴∠CMN'=∠ABC=90°∵∠MCN'=45°∴△MCN'为等腰直角三角形∴MN'=CM=1∴PM﹣PN的值为1.故选:A.【点评】本题主要考查了正方形的性质,明确正方形的相关性质及相似三角形的判定、勾股定理等知识点,是解题的关键.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据正方形的性质、全等三角形的判定和性质、勾股定理等知识逐项判断即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∵CF⊥CE,∴∠ECF=∠BCD=90°,∴∠BCE=∠DCF,在△BCE与△DCF中,,∴△BCE≌△DCF(SAS),故①正确;∵△BCE≌△DCF,∴∠CBE=∠CDF,∴∠DFB=∠BCD=90°,∴BF⊥DF,故②正确,过点D作DM⊥CF,交CF的延长线于点M,∵∠ECF=90°,FC=EC=1,∴∠CFE=45°,∵∠DFM+∠CFB=90°,∴∠DFM=∠FDM=45°,∴FM=DM,∴由勾股定理可求得:EF=,∵DE=,∴由勾股定理可得:DF=2,∵EF2+BE2=2BE2=BF2,∴DM=FM=,故③错误,∵△BCE≌△DCF,∴S△BCE=S△DCF,∴S四边形DECF=S△DCF+S△DCE=S△ECF+S△DEF=+,故④错误,故选:B.【点评】本题考查四边形的综合问题,涉及正方形的性质、全等三角形的性质与判定、勾股定理、三角形面积公式等知识内容,综合程度高,需要学生灵活运用知识解答.5.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD =90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;过点M作MN⊥AB于N,由相似三角形的性质得出==,解得MN=a,AN=a,得出NB=AB﹣AN=2a﹣a=a,根据勾股定理得BM=a,求出ME+MF=+a=a,MB=a,得出ME+MF=MB,故④正确.于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF===a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则MN∥BC,∴△AMN∽△AFB,∴==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理得:BM===a,∵ME+MF=+a=a,MB=a,∴ME+MF=MB,故④正确.综上所述,正确的结论有①③④共3个.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识;仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或2【分析】利用直角三角形斜边上的中线等于斜边的一半,分别求得HO和OE的长后即可求得HE的长.【解答】解:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF,∵EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=AC,在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=,∴CF=3,又OE是等腰直角△CEF斜边上的高,∴OE=,∴HE=HO+OE=2.故选:C.【点评】本题考查了正方形的性质、直角三角形的性质及勾股定理的知识,综合性较强,难度较大.7.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°,∠ADB=45°,∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∴∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG,∴∠AHF+AHG=∠EHG+∠AHG,即∠FHG=∠AHE=90°,∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠F AH=∠GEH,∵∠BAF=CEG=90°,∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH,∴△EHF≌△AHD所以④正确.⑤如图,过点H作HM⊥AD于点M,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM=x,AM=x,∴AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.【点评】本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④【分析】①易证得△ABE≌△BCF(ASA),则可证得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得AE⊥BF,选项②正确;③证明△BCD是等腰直角三角形,求得选项③错误;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【解答】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE==BC,故③错误;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,∵,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:C.【点评】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【解答】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠F AD=90°,∴∠F AM=90°﹣30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,AN=x,DN=MN=x,∴AD=AB=x+x,∴DE=BF=AB﹣AF=x+x﹣2x=x﹣x,∴BF+MD=(x﹣x)+x=x,∵BC=AD=x+x x,故④错误;所以本题正确的有①②③;故选:A.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.【点评】此题考查的是正方形的性质,等腰直角三角形的性质和判定以及菱10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF =BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.形的判定与性质等知识.此题综合性较强,难度较大,注意掌握正方形的性质,注意数形结合思想的应用.11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC =22.5°,根据三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,∴∠P=180°﹣∠ACP﹣∠CAP=22.5°,故选:D.【点评】本题考查了正方形的性质,角平分线定义,正确的理解题意是解题的关键.12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】①正确.证明△ADE≌△ABF(ASA)可得结论.②正确.证明△AGF≌△AGE(SAS),推出∠AGF=∠AGE=90°﹣∠BAG,推出∠EGF =180°﹣2∠BAG可得结论.③正确.证明△GAF≌△GAE,推出GF=GE可得结论.④正确.过点H作HM⊥AD于M,HN⊥CD于N,证明△HMA≌△HNE(AAS),推出AM=EN,HM=HN,再证明四边形HMDN是正方形可得结论.⑤正确.当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,利用勾股定理构建方程求出x即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ABF=∠ADE=∠BAD=90°,∵AE⊥AF,∴∠EAF=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF(ASA),∴AE=AF,故①正确,∵AG平分∠EAF,∴∠GAF=∠GAE,∵AF=AE,AG=AG,∴△AGF≌△AGE(SAS),∴∠AGF=∠AGE=90°﹣∠BAG,∴∠EGF=180°﹣2∠BAG,∵∠EGF=180°﹣∠EGC,∴∠EGC=2∠BAG,故②正确,∵△ADE≌△ABF,∴DE=BF,∵△GAF≌△GAE,∴GF=GE,∵FG=BF+BG=DE+BG,∴EG=BG+DE,故③正确,过点H作HM⊥AD于M,HN⊥CD于N,∵AE=AF,∠EAF=90°,AH平分∠EAF,∴AH⊥EF,HF=HE,∴HA=HE=HF,∵∠ADE+∠AHE=180°,∴∠HAD+∠DEH=180°,∵∠DEH+∠HEN=180°,∴∠HAM=∠HEN,∵∠AMH=∠ENH=90°,∴△HMA≌△HNE(AAS),∴AM=EN,HM=HN,∵∠HMD=∠HND=∠MDN=90°,∴四边形HMDN是矩形,∵HM=HN,∴四边形HMDN是正方形,∴DM=DN=HM=HN,DH=DM,∴DA+DE=DM+AM+DN﹣EN=2DM=DH,故④正确,当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,在Rt△ECG中,∵EG2=EC2+CG2,∴(x+a)2=a2+(2a﹣x)2,解得x=a,∴CG=a,EG=a,∴CE:CG:EG=a:a:=3:4:5,故⑤正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】连接BD,先证明△BOC是等边三角形,得FO=FC,BO=BC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形故③正确,先判断出CM=,再由∠CBM=30°,判断出BC=2,进而判断出④,由此不难得到答案.【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∠AOE=∠FOC∴△AOE≌△COF(ASA),∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误;∵FO=FC=2,FM⊥OC,∠FCM=30°,∴CM=,∵∠CBM=30°,∴BC=2,∴BM=3,∴④错误.综上可知其中正确结论的个数是2个,故选:B.【点评】本题属于四边形的综合题,考查矩形的性质、等边三角形的判定和性质.全等三角形的判定和性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为110°.【分析】根据正方形性质和已知得:AD=DE,利用等腰三角形性质计算∠DAE=25°,由三角形的内角和定理得:∠AFD=110°,证明△ADF≌△CDF(SAS),∠DFC=∠AFD =110°.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADB=∠BDC=45°,∵DC=DE,∴AD=DE,∴∠DAE=∠DEA,∵∠ADE=90°+40°=130°,∴∠DAE==25°,∴∠AFD=180°﹣25°﹣45°=110°,在△ADF和△CDF中,∵,∴△ADF≌△CDF(SAS),∴∠DFC=∠AFD=110°,故答案为:110°.【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰三角形的性质、三角形内角和定理,属于基础题,熟练掌握正方形的性质是关键.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有②③(填番号).【分析】根据正方形的性质和已知推出四边形DECB是平行四边形,得到BD=CE,BD ∥CE,无法证出G为CE的中点;得到BD∥CE,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC,得到BC=CG=CD,求出∠CDG=∠DHG即可;根据三角形的面积公式推出△CDG和四边形DHGE的面积相等;可得有9个等腰三角形.【解答】解:∵正方形ABCD,DE=AD,∴AD∥BC,DE=BC,∠EDC=90°,∴四边形DECB是平行四边形,∴BD=CE,BD∥CE,∵DE=BC=AD,∴∠DCE=∠DEC=45°,要使CE=2DG,只要G为CE的中点即可,但DE=DC,DF=BD,∴EF≠BC,即△EFG和△BCG不全等,∴G不是CE中点,∴①错误;∵∠ADB=45°,DF=BD,∴∠F=∠DBH=∠ADB=22.5°,∴∠DHG=180°﹣90°﹣22.5°=67.5°,∵BD∥CE,∴∠DCG=∠BDC=45°,∵∠DHG=67.5°,∴∠HGC=22.5°,∠DEC=45°,∵∠BGC=180°﹣22.5°﹣135°=22.5°=∠GBC,∴BC=CG=CD,∴∠CDG=∠CGD=(180°﹣45°)=67.5°=∠DHG,∴②正确;∵CG=DE=CD,∠DCE=∠DEC=45,∠HGC=22.5°,∠GDE=90﹣∠CDG=90﹣67.5=22.5°,∴△DEG≌△CHG,要使△CDG和四边形DHGE的面积相等,只要△DEG和△CHG的面积相等即可,根据已知条件△DEG≌△CHG,∴③S△CDG=S四边形DHGE;正确,等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF;∴④错误;故答案为:②③.【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,正方形的性质,平行四边形的性质和判定等知识.综合运用这些性质进行推理是解此题的关键.16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=2.【分析】根据正方形的性质可得AB=AD,再求出∠BAE=∠DAF,∠ABE=∠ADF,然后利用“角边角”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等腰直角三角形,根据AE的长度求出EF,过点A作AH⊥EF于H,连接BH,根据等腰直角三角形的性质可得AH=EH=FH,利用“角边角”证明△APH 和△BPE全等,根据全等三角形对应边相等可得BE=AH,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质可得∠EHB=45°,然后求出∠AHB=∠FHB,再利用“边角边”证明△ABH和△FBH全等,根据全等三角形对应边相等可得AB=BF,再根据全等三角形对应边相等求出BE=DF,全等三角形对应角相等求出∠BAH=∠BFE,然后求出∠BFE=∠ADF,根据等角的余角相等求出∠EBF=∠FDC,再利用“边角边”证明△BEF和△DFC全等,根据全等三角形对应边相等可得FC=EF.【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,∵F A⊥AE,∴∠EAF=90°,∴∠BAE=∠DAF,∵∠ABE+∠BPE=∠ADF+∠APD=90°,∴∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∵F A⊥AE,∴△AEF是等腰直角三角形,∴EF=AE=2,过点A作AH⊥EF于H,连接BH,。

初中数学代数式经典测试题含答案

初中数学代数式经典测试题含答案
6.若 与 是同类项.则()
A. B. C. D.
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m和n的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
,解得 .
故选B.
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
【点睛】
本题考查了多项式乘多项式,熟练掌握其运算方法: 是解题的关键.
2.下列各运算中,计算正确的是( )
A.2a•3a=6aB.(3a2)3=27a6
C.a4÷a2=2aD.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
15.图为“ ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.
19.若(x+4)(x﹣1)=x2+px+q,则( )
A.p=﹣3,q=﹣4 B.p=5,q=4
C.p=﹣5,q=4 D.p=3,q=﹣4
【答案】D
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:∵(x+4)(x﹣1)=x2+3x﹣4

初中数学中考大题题型

初中数学中考大题题型

初中数学中考大题题型
初中数学中考大题题型主要包括以下几种:
1. 代数综合题:这类题目通常涉及到代数式、方程、不等式、函数等知识的综合运用,需要学生具备较强的逻辑思维和数学运算能力。

2. 几何综合题:这类题目主要考察学生的几何知识和空间思维能力,包括三角形、四边形、圆等图形的性质和判定,以及图形的平移、旋转、对称等变换。

3. 函数与图像题:这类题目主要考察学生对函数图像的理解和应用,通常涉及一次函数、二次函数、反比例函数等,需要学生通过数形结合的方法解决。

4. 实际应用题:这类题目通常以实际问题为背景,需要学生运用数学知识解决实际问题,例如概率统计、优化问题等。

5. 新题型:近年来,中考数学中出现了一些新题型,例如开放题、探究题、动手操作题等,这些题目注重对学生创新思维和实践能力的考察。

以上是初中数学中考大题的主要题型,学生可以通过多做真题和模拟题来熟悉这些题型,提高自己的数学成绩。

初中数学试卷大题题型

初中数学试卷大题题型

一、应用题1. 实际问题与方程(含一次方程、二元一次方程组)题目:某工厂生产一批产品,甲车间每天生产20个,乙车间每天生产30个。

问:如果甲车间每天生产15天,乙车间每天生产10天,两个车间一共能生产多少个产品?2. 实际问题与不等式题目:小明每天阅读时间为x小时,小华每天阅读时间为y小时。

已知x+y≥3,x <y,求x和y的取值范围。

3. 实际问题与函数题目:某商品原价为m元,打x折后的价格为y元。

已知m=100,x=0.8,求y的值。

二、几何题1. 平面几何题目:已知三角形ABC中,∠A=60°,AB=5cm,AC=8cm,求BC的长度。

2. 立体几何题目:长方体ABCD-A'B'C'D'的底面ABCD是正方形,AB=BC=4cm,高AD=6cm。

求长方体的体积。

3. 圆与扇形题目:半径为r的圆的面积是S,求圆的周长。

三、代数题1. 代数式化简题目:化简表达式:(a+b)^2 - (a-b)^22. 分式运算题目:计算分式的值:$\frac{3x^2-2x}{x^2-1}$3. 二次方程题目:解二次方程:x^2 - 5x + 6 = 0四、综合题1. 综合应用题题目:某市今年计划投资1000万元用于基础设施建设,其中道路建设占30%,绿化建设占20%,其他建设占50%。

求道路建设、绿化建设和其他建设各需要投资多少万元?2. 综合几何题题目:已知直角三角形ABC中,∠A=90°,AB=8cm,BC=15cm。

求斜边AC的长度。

3. 综合代数题题目:已知一次函数y=kx+b的图象经过点A(1,2)和B(3,4)。

求函数的解析式。

五、探究题1. 探究规律题目:观察下列数列:1, 3, 7, 13, 21,...。

请写出数列的通项公式。

2. 探究性质题目:已知正方形ABCD,E、F、G分别为AB、BC、CD的中点。

请探究三角形EFG 的面积与正方形ABCD的面积之间的关系。

改编代数与几何综合题的实践与思考

改编代数与几何综合题的实践与思考

改编代数与几何综合题的实践与思考
黄曦明
【期刊名称】《中国数学教育(初中版)》
【年(卷),期】2017(000)011
【摘要】代数与几何综合题是初中数学中覆盖面最广,综合性最强的题型.常以函数为背景,结合几何图形,探讨存在性问题,体现分类讨论思想.数学试题千千万,那么我们有没有必要每道题都做一遍呢?该怎样突破这类难题呢?改编典型题打通知识间的联系是很好的策略.
【总页数】3页(P44-46)
【作者】黄曦明
【作者单位】湖北省襄阳市第七中学
【正文语种】中文
【相关文献】
1.三、代数与几何综合题
2.中考代数几何综合题分析
3.行胜于言:命题研讨重在变式改编——以两道八年级期末几何综合题为例
4.代数与几何综合题
5.如何用代数法和几何法解析函数与几何综合题
因版权原因,仅展示原文概要,查看原文内容请购买。

初中数学代数式难题汇编及答案解析

初中数学代数式难题汇编及答案解析

初中数学代数式难题汇编及答案解析一、选择题1.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac ,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.2.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .223355=D 632=【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、22和33不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .10【答案】A【解析】【分析】 根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值.【详解】解:根据勾股定理可得a 2+b 2=9,四个直角三角形的面积是:12ab×4=9﹣1=8, 即:ab=4.故选A .考点:勾股定理.4.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y =【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.5.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.6.下列计算正确的是( )A .235x x x +=B .236x x x =C .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x = ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.7.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a)3=8a6,故选项C不合题意;3−2=19,故选项D不合题意.故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.13.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】 原式= ==.故选C .【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.14.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.15.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.16.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.17.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.18.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.19.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A.考点:坐标确定位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页共10 页初中数学代数与几何综合题
代数与几何综合题从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也融入了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。

经常考察的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式问题等。

解决代数与几何综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当地组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程与函数的思想、转化思想、数行结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。

第一类:与反比例函数相关
1.(09北京)如图,点C 为⊙O 直径AB 上一点,过点C 的直线交⊙O
于点D 、E 两点,且∠ACD=45°,DF
AB 于点F ,EG AB 于点G .当点C 在AB 上运动时,设
AF x ,DE y ,下列图象中,能表示y 与x 的函数关系的图象大致是(
)2.如图,在平面直角坐标系中,二次函数)0(22a a m ax y 的图象
经过正方形ABOC 的三个顶点A 、B 、C ,则m 的值为
.3.(09延庆)阅读理解:对于任意正实数a b ,,2
()0a b ≥,20a ab b ≥,2a b ab ≥,只有当a b 时,等号成立.
A B C D。

相关文档
最新文档