椭圆与双曲线性质有关性质推论归纳共92条

椭圆与双曲线性质有关性质推论归纳共92条
椭圆与双曲线性质有关性质推论归纳共92条

椭圆与双曲线的对偶性质92条

椭 圆

1.12||||2PF PF a +=

2.标准方程:22

221x y a b

+=

3.11

||1PF e d =<

4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

6.以焦点弦PQ 为直径的圆必与对应准线相离.

7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).

9.椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆

于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

10.若000(,)P x y 在椭圆22

22

1x y a b

+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点

弦P 1P 2的直线方程是00221x x y y

a b +=.

12.AB 是椭圆22

221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则

2

2OM AB b k k a

?=-.

13.若000(,)P x y 在椭圆22

221x y a b

+=内,则被Po 所平分的中点弦的方程是22

00002222x x y y x y a b a b

+=+. 14.若000(,)P x

y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y

x y a b a b +=+. 15.若PQ 是椭圆22

221x y a b

+=(a >b >0)上对中心张直角的弦,则

122222

121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22

221x y a b

+=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

则(1) 22

2211A B a b +=+;(2) 2222

L a A b B

=+. 17.给定椭圆1C :22

2

2

22

b x a y a b +=(a >b >0), 2C :222

2

2

2

2

22

()a b b x a y ab a b

-+=+,则(i)对1C 上任意给定的点000(,)P x y ,它的任一直角弦必须经过2C 上一定点

M(2222

002

222(,)a b a b x y a b a b

---++. (ii)对2C 上任一点'''000(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'

0P 点. 18.设000(,)P x y 为椭圆(或圆)C:22221x y a b

+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,

且弦P 0P 1, P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2

12211m b k k m a

+?=-?-.

19.过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆

于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =(常数).

20.椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,

则椭圆的焦点角形的面积为

122

tan 2F PF S b γ

?=,2

tan )2b P c γ .

21.若P 为椭圆22

221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22a c co a c αβ

-=+. 22.椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

23.若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当

0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

24.P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则

2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

25.椭圆22

221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是

2222

0222

()a b x a b k

-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

28.P 是椭圆cos sin x a y b ?

?=??=?

(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是

22

1

1sin e ?

=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22

221x y a b

+=相交于

,P Q ,则AP BQ =.

30.在椭圆22221x y a b +=中,定长为2m (o <m ≤a )的弦中点轨迹方程为2222222221()

cos sin x y a b m a b

αα

-+=+,其中2222tan b x a y

α=-,当0y =时, 90α=

.

31.设S 为椭圆22

221x y a b

+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,

记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20max ()2a l x c e

=-222

(c a b =-,c e a =);当

l S <Φ

时,有0max ()x =0min ()0x =.

32.椭圆22221x y a b

+=与直线0Ax By C ++=有公共点的充要条件是22222

A a

B b

C +≥.

33.椭圆

22

0022

()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.

34.设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意

一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12

F F P γ∠=,则有sin sin sin c

e a

αβγ==+. 35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任

一点的切线相交于P 1和P 2,则2

12||||PA PA b ?=.

36.已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.

(1)22

221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2

的最大值为22224a b a b +;(3)OPQ S ?的最小值是22

22

a b a b +.

37.MN 是经过椭圆22

2

2

22

b x a y a b +=(a >b >0)过焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2

||2||AB a MN =.

38.MN 是经过椭圆22

2

2

22

b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦

OP MN ⊥,则

222

2111

||||a MN OP a b +=+.

39.设椭圆22

221x y a b

+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,

过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N

在直线l :2a x m =(或2

b y m

=)上.

40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和

AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

42.设椭圆方程22

221x y a b

+=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭直

线'

y k x =上,而且2'2b kk a

=-.

43.设A 、B 、C 、D 为椭圆22

221x y a b

+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线

AB 与CD 相交于P ,且P 不在椭圆上,则22222

222

||||cos sin ||||cos sin PA PB b a PC PD b a ββ

αα

?+=?+. 44.已知椭圆22

221x y a b

+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外

(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(2222222{[()()]}()[()]b y a ce x c x y cx ce x c +-+?++=+).

45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.

46.过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的

垂直平分线交x 轴于P ,则

||||2

PF e

MN =. 47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为21

21

b x a y -的直

线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A

ab =.

48.已知椭圆22221x y a b +=( a >b >0)和22

22x y a b

λ+=(01λ<< ),一直线顺次与它们相

交于A 、B 、C 、D 四点,则│AB │=|CD │.

49.已知椭圆22

221x y a b

+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与

x 轴相交于点0(,0)P x , 则2222

0a b a b x a a ---<<. 50.设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记

12F PF θ∠=,则(1)2122||||1cos b PF PF θ

=

+.(2) 122

tan 2PF F S b γ?=. 51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶

点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则

90MBN ∠=

2

2

2

()

a m a a m

b n a -?=++. 52.L 是经过椭圆22

221x y a b

+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两

个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且

仅当||ab

PH c

=时取等号).

53.L 是椭圆22

221x y a b

+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离

心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当

且仅当||ab

PH c

=时取等号).

54.L 是椭圆22

221x y a b

+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点

P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且

仅当||PH =时取等号). 55.已知椭圆22

221x y a b

+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,

将A 、B 与椭圆左焦点F 1连结起来,则2222

112

(2)||||a b b F A F B a -≤?≤(当且仅当AB ⊥x 轴时右

边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).

56.设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |

||s ab PA a c co αγ

=-.(2)

2

tan tan 1e αβ=-.(3) 222

2

2cot PAB a b S b a γ?=-. 57.设A 、B 是椭圆22

221x y a b

+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的

两点,且A x 、B x 的横坐标2

A B x x a ?=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则

PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PBA QBA ∠+∠= .

58.设A 、B 是椭圆22

221x y a b

+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的

两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2

A B x x a ?=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PBA QBA ∠+∠=

,则点A 、B 的横坐标满足2

A B x x a ?=.

59.设'

,A A 是椭圆22221x y a b

+=的长轴的两个端点,'QQ 是与'

AA 垂直的弦,则直线AQ 与

''

AQ 的交点P 的轨迹是双曲线22221x y a b

-=.

60.过椭圆22

221x y a b

+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则

22222

82()

||||ab a b AB CD a b a

+≤+≤+. 61.到椭圆22

221x y a b

+=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M

的轨迹是姊妹圆222()x a y b ±+=.

62.到椭圆22

221x y a b

+=( a >b >0)的长轴两端点的距离之比等于a c b -(c 为半焦距)的

动点M 的轨迹是姊妹圆22

2()()a b x y e e

±+=.

63.到椭圆22

221x y a b

+=( a >b >0)的两准线和x 轴的交点的距离之比为a c b -(c 为半焦

距)的动点的轨迹是姊妹圆22

222()()a b x y e e ±+=(e 为离心率).

64.已知P 是椭圆22

221x y a b

+=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且

AQ AP ⊥,''

AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a

+=.

65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长

的比例中项.

66.设椭圆22

221x y a b

+=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率

为21

21

b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则

(1)''

2||||AM AM b =.(2)四边形'

'

MAA M 面积的最小值是2ab .

67.已知椭圆22

221x y a b

+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直

线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

68.OA 、OB 是椭圆22

2

2()1x a y a b

-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2

2

2

2(,0)ab a b

+.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是22222

2222()()ab ab x y a b a b

-+=++(0)x ≠.

69.(,)P m n 是椭圆22

2

2()1x a y a b

-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,

则(1)直线AB 必经过一个定点222222222

2()()

(,)ab m a b n b a a b a b

+--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是

22224222222222222

[()]

()()()ab a m b n a b n a b x y a b a b a b ++--+-=

+++(x m ≠且y n ≠). 70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧?直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧?直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧?直线L 和椭圆相交.

71.AB 是椭圆22

221x y a b

+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B

的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是22241(0)x a y y +=≠. 72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22

221x y a b

+=过

定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2

()

(||||)a b a y b x PA PB b -+?=.当弦AB 垂直于长轴所在直线时,

22222200min 2

()

(||||)a b a y b x PA PB b -+?=.

73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c. 77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). 注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.

78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.

81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.

82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.

83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.

84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.

85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.

86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.

88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.

89. 已知椭圆22

221(0,0)x y a b a b

+=>>(包括圆在内)上有一点P ,过点P 分别作直线

b y x a =

及b

y x a

=-的平行线,与直线OP 分别交于,R Q ,O 为原点,则:. (1)222||||OM ON a +=;(2)222||||OQ OR b +=.

90. 过平面上的P 点作直线1:b l y x a =及2:b

l y x a

=-的平行线,分别交x 轴于,M N ,交y

轴于,R Q .(1)若222

||||OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b

+=>>.(2)若

222

||||OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b

+=>>.

91. 点P 为椭圆22

221(0,0)x y a b a b

+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引

x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b

y x a

=-于,Q R ,记 OMQ ?与ONR

?的面积为12,S S ,则:122

ab

S S +=.

92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ?与ONR ?的面积为12,S S ,已知122ab S S +=,则P 的轨迹方程

是22

221(0,0)x y a b a b +=>>.

双曲线

1.12||||||2PF PF a -=

2.标准方程:22

221x y a b

-=

3.11

||1PF e d =>

4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

6.以焦点弦PQ 为直径的圆必与对应准线相交.

7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.

8.设A 1、A 2为双曲线的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).

9.双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交

双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

10.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程是

00221x x y y

a b

-=.

11.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点

为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

12.AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,

则2

2OM AB b k k a

?=.

13.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 14.若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002

222x x y y x y a b a b

-=-. 15.若PQ 是双曲线22

221x y a b

-=(b >a >0)上对中心张直角的弦,则

122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22

221x y a b -=(b >a >0)上中心张直角的弦L 所在直线方程为

1Ax By +=(0)AB ≠,则(1) 22

2211A B a b -=+

;(2) 2222||

L a A b B =-.

17.给定双曲线1C :22

2

2

22

b x a y a b -=(a >b >0), 2C :22

2

2

2

2

22

2

()a b b x a y ab a b

+-=-,则(i)对1C 上任意给定的点000(,)P x y ,它的任一直角弦必须经过2C 上一定点

M(2222

02

222(,)a b a b x y a b a b

++---. (ii)对2C 上任一点'''000(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'

0P 点. 18.设000(,)P x y 为双曲线22221x y a b

-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦P 0P 1,

P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2

122

11m b k k m a +?=?-.

19.过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交

双曲线于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =-(常数).

20.双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点

12F PF γ∠=,则双曲线的焦点角形的面积为122t 2

F PF S b co γ

?=

,2

cot )2

b P

c γ . 21.若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,

12PF F α∠=, 21PF F β∠=,则

tan t 22c a co c a αβ-=+(或tan t 22

c a co c a βα

-=+). 22.双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--.

23.若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当

1<e

1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

24.P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则

21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立. 25.双曲线22

221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件

是2222

0222

()a b x a b k +>-.

26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

28.P 是双曲线sec tan x a y b ?

?

=??=?(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要

条件是2

2

1

1tan e ?

=

-. 29.设A,B 为双曲线22

22x y k a b

-=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线

22

22

1x y a b -=相交于,P Q ,则AP BQ =. 30.在双曲线22221x y a b

-=中,定长为2m (m )0)的弦中点轨迹方程为2222222

221()

cos sin x y a b m a b

αα--=-,

其中2222tan b x a y

α=-,当0y =时, 90α=

.

31.设S 为双曲线22

221x y a b

-=(a >0,b >o )的通径,定长线段L 的两端点A,B 在双曲线上

移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min ()2a l x c e

=+222

(c a b =+,c e a =);

当l S <Φ时,有0min ()x =32.双曲线22

221x y a b

-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是

22222A a B b C -≤.

33.双曲线22

0022

()()1x x y y a b

---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.

34.设双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上

任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

s i n (s i n s i n )c

e a αγβ==±-.

35.经过双曲线22

221x y a b

-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一

点的切线相交于P 1和P 2,则2

12||||PA PA b ?=. 36.已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.

(1)22

221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2

的最小值为22224a b b a -;(3)OPQ S ?的最小值是22

22

a b b a

-. 37.MN 是经过双曲线22

221x y a b

-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过

双曲线中心O 且平行于MN 的弦,则2

||2||AB a MN =.

38.MN 是经过双曲线22

221x y a b -=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O

的半弦OP MN ⊥,则22

22111

||||a MN OP a b -=-. 39.设双曲线22

221x y a b

-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,

过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N 在直线l :

2

a x m

=上.

40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结

AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

42.设双曲线方程22

221x y a b -=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭

直线'

y k x =上,而且2'2b kk a

=.

43.设A 、B 、C 、D 为双曲线22

221x y a b

-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分

别为,αβ,直线AB 与CD 相交于P ,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββ

αα

?-=

?-. 44.已知双曲线22

221x y a b

-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12

F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨

迹方程是

222x y a +=(322224223222{()[()]}[()]()a b x c a b x b c a c x c y ab c y -+-+-=).

45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的

中点.

46.过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,

弦MN 的垂直平分线交x 轴于P ,则

||||2

PF e

MN =. 47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为21

21

b x a y 的

直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A

ab =.

48.已知双曲线22221x y a b -=(a >0,b >0)和22

22x y a b

λ-=(01λ<< ),一条直线顺次与

它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.

49.已知双曲线22

221x y a b

-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线

与x 轴相交于点0(,0)P x , 则220a b x a +≥或22

0a b x a

+≤-.

50.设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记

12F PF θ∠=,则(1)2122||||1cos b PF PF θ

=

-.(2) 122

cot 2PF F S b γ?=. 51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴

的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则

90MBN ∠=

2

2

2

()

a m a a m

b n a -?=-++.

52.L 是经过双曲线22

221x y a b

-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线

实轴的两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且1sin e α≤或1

sin

arc e

α≤(当且仅当||ab

PH c

=时取等号).

53.L 是经过双曲线22

221x y a b

-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F 是

双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,

则α是锐角且1sin e α≤或1sin arc e α≤(当且仅当||ab

PA c =时取等号).

54.L 是双曲线22

221x y a b

-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线

与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐

角且21sin e α≤或21sin arc e α≤(当且仅当1||PF =

时取等号). 55.已知双曲线22

221x y a b

-=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、

B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222

112

(2)||||a b F A F B a +?≥(当且仅当AB ⊥x

轴时取等号).

56.设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,

PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos |

|||s |

ab PA a c co αγ=-.(2)

2

tan tan 1e αβ=-.(3) 222

2

2cot PAB a b S b a γ?=+. 57.设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区

域)、外部的两点,且A x 、B x 的横坐标2A B x x a ?=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则

180PBA QBA ∠+∠= .

58.设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区

域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足

2A B x x a ?=;

(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=

,则点A 、B 的横坐标满足2

A B x x a ?=.

59.设'

,A A 是双曲线22221x y a b

-=的实轴的两个端点,'

QQ 是与'AA 垂直的弦,则直线AQ

与''

AQ 的交点P 的轨迹是双曲线22

221x y a b

+=.

60.过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则

2

22

8||||||

ab AB CD a b ≤+-. 61.到双曲线22

221x y a b

-=(a >0,b >0)两焦点的距离之比等于c a b -(c 为半焦距)的动点

M 的轨迹是姊妹圆222()()x ec y eb ±+=.

62.到双曲线22

221x y a b

-=(a >0,b >0)的实轴两端点的距离之比等于c a b -(c 为半焦距)

的动点M 的轨迹是姊妹圆222

()x a y b ±+=.

63.到双曲线22

221x y a b

-=(a >0,b >0)的两准线和x 轴的交点的距离之比为c a b -(c 为半

焦距)的动点的轨迹是姊妹圆22

2()()b x a y e

±+=(e 为离心率).

64.已知P 是双曲线22221x y a b

-=(a >0,b >0)上一个动点,'

,A A 是它实轴的两个端点,且

AQ AP ⊥,''

AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a

-=.

65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之

长的比例中项.

66.设双曲线22221x y a b

-=(a >0,b >0)实轴的端点为'

,A A ,11(,)P x y 是双曲线上的点过P

作斜率为21

21

b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则

(1)'

'

2

||||AM AM b =.(2)四边形'

'

MAA M 面积的最小值是2ab .

67.已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F

的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的

中点.

68.OA 、OB 是双曲线

22

22()1x a y a b

--=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2

2

2

2(,0)ab b a

-.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是22222

2222()()ab ab x y b a b a -+=--(0)x ≠.

69.(,)P m n 是双曲线

22

22()1x a y a b

--=(a >0,b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点222222222

2()()

(,)ab m b a n a b b a b a

+-+--.(2)以P A 、P B 为直径

的两圆的另一个交点Q 的轨迹方程是

22224222222222222

[()]

()()()

ab a m b n a b n a b x y b a b a b a -++-+-=---(x m ≠且y n ≠). 70.如果一个双曲线虚半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧?直线L 和双曲线相切,或L 是双曲线的渐近线.(2)212d d b >,

且F 1、F 2在L 同侧?直线L 和双曲线相离,(3)212d d b <,或F 1、F 2在L 异侧?直线L 和双曲线相交.

71.AB 是双曲线22

221x y a b

-=(a >0,b >0)的实轴,N 是双曲线上的动点,过N 的切线与

过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是22241(0)x a y y -=≠.

72.设点00(,)P x y 为双曲线22

221x y a b

-=(a >0,b >0)的内部((含焦点的区域))一定点,

AB 是双曲线过定点00(,)P x y 的任一弦.

(1)如a b ≥,则当弦AB 垂直于双曲线实轴所在直线时

222222

00min 2

()(||||)b x a y a b PA PB a --?=.

(2)如a b <,则当弦AB 平行(或重合)于双曲线实轴所在直线时,

222222

00min 2

()(||||)b x a y a b PA PB b --?=.

73.双曲线焦三角形中,以焦半径为直径的圆必与以双曲线实轴为直径的圆相外切. 74.双曲线焦三角形的内切圆必切长轴于非焦顶点同侧的实轴端点. 75.双曲线两焦点到双曲线焦三角形内切圆的切线长为定值a+c 与a-c. 76.双曲线焦三角形的非焦顶点到其内切圆的切线长为定值a-c.

77.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.

78.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 79.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

80.双曲线焦三角形中,双曲线中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.

81.双曲线焦三角形中,半焦距、外点与双曲线中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.

82.双曲线焦三角形中,过任一焦点向非焦顶点的内角平分线引垂线,则双曲线中心与垂足连线必与另一焦半径所在直线平行.

83.双曲线焦三角形中,过任一焦点向非焦顶点内角平分线引垂线,则双曲线中心与垂足的距离为双曲线实半轴的长.

84.双曲线焦三角形中,过任一焦点向非焦顶点的内角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和双曲线实轴为直径的圆的切点.

85.双曲线焦三角形中,非焦顶点的内角平分线与焦半径、实轴所在直线的夹角的余弦的比为定值e.

86.双曲线焦三角形中,非焦顶点的法线即为该顶角的外角平分线. 87.双曲线焦三角形中,非焦顶点的切线即为该顶角的内角平分线.

88.双曲线焦三角形中,过非焦顶点的切线与双曲线实轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.

89. 已知双曲线22

221(0,0)x y a b a b

-=>>上有一点P ,过P 分别引其渐近线的平行线,分别

交x 轴于,M N ,交y 轴于,R Q , O 为原点,则:

(1)2||||OM ON a ?=; (2)2||||OQ OR b ?=.

90. 过平面上的P 点作直线1:b l y x a =及2:b

l y x a

=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若2

||||OM ON a ?=,则P 的轨迹方程是22221(0,0)x y a b a b

-=>>.(2)若

2

||||OQ OR b ?=,则P 的轨迹方程是22221(0,0)x y a b a b

-=>>.

91. 点P 为双曲线22

221(0,0)x y a b a b

-=>>在第一象限的弧上任意一点,过P 引x 轴、y 轴

的平行线,交y 轴、x 轴于,M N ,交直线b

y x a

=-于,Q R ,记 OMQ ?与ONR ?的面积为

12,S S ,则:12||2

ab S S -=. 92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ?与ONR ?的面积为12,S S ,已知12||2ab S S -=,则P 的轨迹方

程是22221(0,0)x y a b a b -=>>或22

221(0,0)y x a b b a

-=>>.

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

双曲线的标准方程及其性质

双曲线的标准方程及其性质 一、双曲线的定义 1、已知双曲线22 1916 x y -=上一点P 到双曲线的一个焦点的距离为3,则P 到另一个焦点的距离为__________________. 2、若双曲线22 221x y a b -=的两个焦点为F 1、F 2,12F F =10,P 为双曲线上一点,122PF PF =,12PF PF ⊥,求此双曲线的方程. 3、在相距1400m 的A ,B 两哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340m/s ,问炮弹爆炸点在怎样的曲线上? 4、已知双曲线16x 2-9y 2=144,(1)设P 为双曲线上一点,且|PF 1|?|PF 2|=32,求12F PF S ?; (2)设P 为双曲线上一点,且∠ F 1PF 2=120?,求12F PF S ?. 二、双曲线的标准方程 1、已知3,4a c ==的双曲线的标准方程是__________________. 2、已知双曲线方程为22 1205 x y -=,它的焦距是__________________. 3、设m 为常数,若点(0,5)F 是双曲线22 19 y x m -=的一个焦点,则m =__________________. 4、若R ∈k ,则“3>k ”是“方程13 322 =+--k y k x 表示双曲线”的( ) (A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件. 5、双曲线22 2x y k -=的焦距是6,则实数k 的值是__________________. 三、双曲线的性质 1、已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是__________________. 2、双曲线的虚轴长是实轴长的2倍,则m =__________________. 3、若双曲线的渐近线方程为 ,它的一个焦点是,则双曲线的标准方程是__________________. (3,0)5:4221mx y +=

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

双曲线的简单几何性质总结归纳(人教版)教学教材

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中 22b a c +=a PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

椭圆与双曲线的对偶性质92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭 圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

双曲线的几何性质(习题)

双曲线的几何性质 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ — 一、选择题(共34题,题分合计170分) ) 1.双曲线9y 2-x 2 -2x -10=0的渐近线方程是 =±3(x +1) =±3(x -1) =±31(x +1) =±31 (x -1) 2.若双曲线x 2-y 2 =1右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值是 A.-21 B.21 C.-21或21 或-2 ( 3.过(0,3)作直线 L ,若L 与双曲线 342 2y x =1,只有一个公共点,则L 共有

条 条 条 条 4.双曲线2mx 2 -my 2 =2,有一条准线方程是y =1,则m 应等于 是 21 34 5.双曲线15)1(422=--y x ,经过第一象限内的点) 217 , (m P ,则P 点到双曲线右焦点的距离是__________. 6.双曲线11692 2=-y x 的一个焦点到一条渐近线的距离等于 A.3 7.已知双曲线中心在原点且一个焦点为 )0,7(F ,直线y =x -1与其相交于M ?N 两点,MN 中点的横坐标为, 32 -则此双曲线的方程是 … A.14322=-y x B.13422=-y x C.12522=-y x D.1522 2=-y x 8.双曲线虚轴的一个端点为M,两个焦点为F,F ,∠FMF =120°则双曲线的离心率为 A.3 B.26 C.36 D.33 9.双曲线的渐近线方程为y =±2(x -1),一焦点坐标为(1+25,0),则该双曲线的方程是 A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(42 2=--y x 10.过双曲线1 22 2 =-y x 的右焦点F 作直线l 交双曲线于A ?B 两点,若|AB |=4,则这样的直线l 有 条 条 条 条 11.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 / A. 91022=+-+x y x B. 91022=--+x y x C. 091022=-++x y x

椭圆性质及详细证明

椭圆性质的证明与证明: 性质1、 椭圆上一点P 处的切线平分焦点三角形外角的证明: 题目:已知12,F F 为椭圆22 221(0)x y a b a b +=>>的焦点,P 为椭圆上一点。求证:点P 处的切线PT 必 平分12PF F ?在P 处的外角.在解答此题之后,我们还得到一个重要的定理. 证法1 设1200(,0),(,0),(,)F c F c P x y -. 对椭圆方程22221x y a b +=两边求导得,22 22.0x y y a b ' += ∴ 22b x y a y '=- ∴ 0020(,) 20 pT x y b x k k y a y '===- 又1010pF y k k x c == +,20 20pF y k k x c ==-, 由到角公式知 2002002 2002 200tan 211. b x y a y x c k k b x y kk a y x c ----∠== +-- 22222 000222 000 () ()b cx b x a y a b x y a cy -+=-- 222222 00222000000()()b cx a b b cx a b c x y a cy cy cx a cy --=== --, 同理200 22 0012 00 10 200 tan 111.y b x x c a y k k b y b x k k cy x c a y ++-∠===+-+. ∵ 1,2(0,)π∠∠∈, ∴ 12∠=∠, 又14∠=∠, ∴ 24∠=∠

证法2 设1(,0)F c -,2(,0)F c ,00(,)P x y ,如图1,过1F 、2F 作切线PT 的垂线,垂足分别为M 、N. ∵ 切线PT 的方程为 00221x x y y a b +=,则点1F 、2F 到PT 的距离为 1F M = , 2F N = ∴ 0 22 012 01021 1cx cx a F M a cx F N cx a a ----==-- 001002ex a a ex PF ex a a ex PF --+===-- ∴ 1PMF ?∽2PNF ? ∴ 12∠=∠, 又∵14∠=∠ ∵ 24∠=∠. 两种证法都是由12∠=∠导出,如图,设PD 为法线(即PD ⊥切线PT ),则PD 平分12F PF ∠,故得如下重要定理. 定理 在椭圆上任意一点P 的法线,平分该点两条焦半径的夹角. (到角公式) 把直线L1依逆时针方向旋转到与L2重合时所转的角,叫做L1到L2的角,简称到角.tan θ=(k2-k1)/(1+k1·k2) 性质2.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

双曲线的性质及应用

双曲线的性质及应用 教学目标 (一)知识教学点 使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. (二)能力训练点 在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题. 教学重点:双曲线的几何性质及初步运用. (解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 教学难点:双曲线的渐近线方程的导出和论证. (解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.) 教学疑点:双曲线的渐近线的证明. (解决办法:通过详细讲解.) 活动设计 提问、类比、重点讲解、演板、讲解并归纳、小结. 教学过程 (一)复习提问引入新课 1.椭圆有哪些几何性质,是如何探讨的? 请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么? 再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标 下面我们类比椭圆的几何性质来研究它的几何性质. (二)类比联想得出性质(性质1~3) 引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页> (三)问题之中导出渐近线(性质4) 在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计 仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想. 接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么? 下面,我们来证明它:

椭圆和双曲线的方程、性质(学生)

第二讲椭圆和双曲线的方程、性质 教学目标:熟练运用椭圆、双曲线定义和性质解题。 1.一圆形纸片的圆心为O ,点Q 是圆内异于O 的一点,点A 在圆周上.把纸片折叠使点 A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点,当点A 运动时,点P 的轨迹 是 ( ). 2.已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A . 2214536x y += B .2213627x y += C .2212718x y += D .22 1189x y += 3.椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ??????, B .3384??????, C .112??????, D .314?? ???? , 4.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :122 2 222=+b y a x (022>>b a )的焦 点相同且12a a >.给出如下四个结论: ① 椭圆1C 和椭圆2C 一定没有公共点; ② 11 22 a b a b >; ③ 2 2212221b b a a -=-; ④1212a a b b -<-. 其中,所有正确结论的序号是( ) A.①③ B①③④ C .①②④ D .②③④ 5.过椭圆14 162 2=+y x 上一点P 作圆222=+y x 的两条切线,切点为B A ,,过B A ,的直线与两坐标轴的交点为N M ,,则MON ?的面积的最小值为( ) A. 23 B. 32 C. 2 1 D. 2 6.已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准 线分别交于A , B 两点, O 为原点. 若双曲线的离心率为2, △AOB 的面积

椭圆性质总结

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结 知识点精讲 一、双曲线的定义 平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为 {})20(22121F F a a MF MF M <<=-. 注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支. (2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线. (3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点: ①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用. 二、双曲线的方程、图形及性质 双曲线的方程、图形及性质如表10-2所示.

题型归纳及思路提示 题型1 双曲线的定义与标准方程 思路提示 求双曲线的方程问题,一般有如下两种解决途径: (1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程. (2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程. 例10.11 设椭圆1C 的离心率为 13 5 ,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( ) A. 13422 22=-y x B. 151322 22=-y x C. 14322 22=-y x D. 112 1322 22=-y x 解析 设1C 的方程为)0(122 22>>=+b a b y a x , 则?????==13 5262a c a ,得???==513c a .

椭圆与双曲线的经典性质100条

椭圆与双曲线的对偶性质100条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线 交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. ☆ 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. ☆ 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则 切点弦P 1P 2的直线方程是00221x x y y a b +=. ★ 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 16.若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为 1Ax By +=(0)AB ≠,则(1) 22 2211A B a b +=+ ;(2) L =

双曲线的定义及其基本性质

双曲线的定义及其基本性质 一、双曲线的定义: (1)到两个定点F 1与F 2的距离之差的绝对值等于定长(< 2 1F F )的点的轨迹。两定点叫双曲线的焦点。 a PF PF 221=-<2 1F F (2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。 二、双曲线的方程: 双曲线标准方程的两种形式: ① 12 222=-b y a x ,2 2b a c +=,焦点是 F 1(-c,0),F 2(c,0) 12222=-b x a y , 22b a c +=, 焦点是F 1(0, -c),F 2(0, c) 三、双曲线的性质: (1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长2b,且a 2+b 2=c 2 (2)双曲线的离心率为e= a c ,e>1恒成立。 (3)焦点到渐近线的距离:虚半轴长b ,通径长EF = a b 2 2 (4)有两条准线,c a x l 21:- =c a x l 2 2:= 四、双曲线的渐近线: (1)若双曲线为12222=-b y a x ?渐近线方程为x a b y ±=, (2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22 22b y a x , (3)特别地当a=b 时?2=e ?两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线 五、共轭双曲线: 双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11 122=+B A e e 。 K 2 O F 1 F 2 x y O F 1F 2 x y

椭圆与双曲线二级结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴 为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

相关文档
最新文档