椭圆性质92条及证明

椭圆性质92条及证明
椭圆性质92条及证明

椭圆性质92条及其证明

椭圆性质及详细证明

椭圆性质的证明与证明: 性质1、 椭圆上一点P 处的切线平分焦点三角形外角的证明: 题目:已知12,F F 为椭圆22 221(0)x y a b a b +=>>的焦点,P 为椭圆上一点。求证:点P 处的切线PT 必 平分12PF F ?在P 处的外角.在解答此题之后,我们还得到一个重要的定理. 证法1 设1200(,0),(,0),(,)F c F c P x y -. 对椭圆方程22221x y a b +=两边求导得,22 22.0x y y a b ' += ∴ 22b x y a y '=- ∴ 0020(,) 20 pT x y b x k k y a y '===- 又1010pF y k k x c == +,20 20pF y k k x c ==-, 由到角公式知 2002002 2002 200tan 211. b x y a y x c k k b x y kk a y x c ----∠== +-- 22222 000222 000 () ()b cx b x a y a b x y a cy -+=-- 222222 00222000000()()b cx a b b cx a b c x y a cy cy cx a cy --=== --, 同理200 22 0012 00 10 200 tan 111.y b x x c a y k k b y b x k k cy x c a y ++-∠===+-+. ∵ 1,2(0,)π∠∠∈, ∴ 12∠=∠, 又14∠=∠, ∴ 24∠=∠

证法2 设1(,0)F c -,2(,0)F c ,00(,)P x y ,如图1,过1F 、2F 作切线PT 的垂线,垂足分别为M 、N. ∵ 切线PT 的方程为 00221x x y y a b +=,则点1F 、2F 到PT 的距离为 1F M = , 2F N = ∴ 0 22 012 01021 1cx cx a F M a cx F N cx a a ----==-- 001002ex a a ex PF ex a a ex PF --+===-- ∴ 1PMF ?∽2PNF ? ∴ 12∠=∠, 又∵14∠=∠ ∵ 24∠=∠. 两种证法都是由12∠=∠导出,如图,设PD 为法线(即PD ⊥切线PT ),则PD 平分12F PF ∠,故得如下重要定理. 定理 在椭圆上任意一点P 的法线,平分该点两条焦半径的夹角. (到角公式) 把直线L1依逆时针方向旋转到与L2重合时所转的角,叫做L1到L2的角,简称到角.tan θ=(k2-k1)/(1+k1·k2) 性质2.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

椭圆与双曲线性质有关性质推论归纳共92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 ||1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆 于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心张直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

椭圆性质总结

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

高考数学 椭圆性质大全(92条结论)

椭圆92条结论 1.122PF PF a += 2.标准方程22 221x y a b += 3.11 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点 的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111 (||,||)r OP r OQ r r a b +=+==. 16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 22 2211A B a b +=+ ;(2) L =17.给定椭圆1C :222222 b x a y a b +=(a >b >0), 2C :222222222 ()a b b x a y ab a b -+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222 002 222(,)a b a b x y a b a b ---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过' P 点. 18.设00(,)P x y 为椭圆(或圆)C:22 221x y a b += (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为 k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2 122 11m b k k m a +?=- ?-. 19.过椭圆22 221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定

椭圆性质定理80条

椭圆性质定理80条 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

高中数学椭圆性质92条二级结论大全

椭圆性质92条二级结论大全 1.12 2PF PF a += 2.标准方程22 221x y a b += 3.11 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时 A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 22 22 11A B a b +=+ ;(2) L = 17.给定椭圆1C :2 2 2 2 22 b x a y a b +=(a >b >0), 2C :222222 2 22 ()a b b x a y ab a b -+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222 002 222(,)a b a b x y a b a b ---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过' P 点. 18.设00(,)P x y 为椭圆(或圆)C:22 221x y a b += (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2 斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2 12211m b k k m a +?=- ?-.

椭圆性质5条与证明

1.已知椭圆C :22 221x y a b +=(a >b >0),过其左焦点1F 的直线与椭圆C 交于相异长轴顶点的两点P 、Q ,A 为椭圆长轴上一个顶点(左右皆可),连结AP 和AQ 分别交相应于椭圆C 左准线1l 于M 、N 两点,则11MF NF ⊥ 证明:依题意可知,直线AB 斜率不为0, 不妨取A 为椭圆左顶点,即A (,0)a -,1l :2 a x c =- 则设直线AB 方程x my c =-,A 11(,)x y ,B 22(,)x y 直线AB 与椭圆C 方程联立得 222224()20b m a y mcb y b +--= 则2 1222241222220mcb y y b m a b y y b m a ?+=?+??=-?+??>??? 恒成立 直线AP :11()y y x a my a c =++-,点M 211()(,)() a a c a y c c my a c --+- 同理可知N 222()(,)() a a c a y c c my a c --+- 2111()(,)() b a c a y F M c c my a c -=-+-,2212()(,)()b a c a y F N c c my a c -=-+- 41211212()()[()][()] b a c a y a c a y F M F N c c my a c c my a c --?=+?+-+- 4221222221212()[()()()]b a c a y y c c m y y m a c y y a c -=++-++- 4224 2242222222()[2()()()] b a c a b c c b m m c a c b a c a b m -=--+-+-+ 0= 故11MF NF ⊥(同理,当A 为其右顶点时结论亦成立)

椭圆中常考的十六条焦点性质及其证明

椭圆中常考的十六条焦点性质及其证明 (一)椭圆中,PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 证明:延长F 2H 至M ,交PF 1于M ∵PT 平分∠MPF 2 ,又F 2H ⊥PT ,∴2||||PM PF = 又12||||2PF PF a +=, ∴11||||2||2||||PM PF a F M OH OH a +===?=. ∴H 轨迹是以长轴为直径的圆,除长轴端点. (二)椭圆中,椭圆焦点三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 证明:如图,设以焦半径MF 2为直径的圆的半径为r 1, 圆心为O 1, 由椭圆定义知1212||||||||||||MF MF AB MF AB MF +=?=- ∴112111 ||||(||||)22 OO MF AB MF a r = =-=- ∴⊙O 、⊙O 1相内切 (三)设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2 (或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 证明:设旁切圆切x 轴于'A ,切2PF 于M ,F 1P 于N , 则||||PN PM = ,2|||'|MF MA =, 11|||'|F N F A =, ∴1122||||||||PF PM F F MF +=+ 1221222222|||||'||||'|222|'||'||| PF PF F A F F F A a c F A F A a c F A +-=+?=+?=-= ∴'A 与A 2重合. (四)椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a , 与y 轴平行的直线交椭圆于P 1、P 2时, A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 证明:设交点00(,)S x y ,1(,)P m n ,2(,)P m n - ∵11 1 P A A S K K = 22 2 P A P S K K =, ∴

椭圆性质大全(92条含证明) (1)

椭圆 1.122PF PF a += 2.标准方程22 221x y a b += 3. 11 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点 的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 22 2211A B a b +=+;(2) 42422a A b B L +=. 17.给定椭圆1C :222222 b x a y a b +=(a >b >0), 2C :22222222 2 ()a b b x a y ab a b -+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222 02 222(,)a b a b x y a b a b ---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过' P 点. 18.设00(,)P x y 为椭圆(或圆)C:22 221x y a b += (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为 k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是2 122 11m b k k m a +?=- ?-. 19.过椭圆22 221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定 向且20 20 BC b x k a y =(常数).

椭圆性质总结及习题

椭 圆 重点:椭圆的定义、椭圆的标准方程及椭圆的参数方程; 难点:用椭圆的定义及基本性质求椭圆的方程。 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。 (1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22 =+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0;

椭圆及其性质知识点题型总结

椭圆 知识清单 1.椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P| e d PF =,0<e <1的常数}。 (1=e 为抛物线;1>e 为双曲线) (利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线). 2 标准方程:(1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个Rt 三角形) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3 参数方程:焦点在x 轴,?? ?==θ θ sin cos b y a x (θ为参数) 4 一般方程:)0,0(12 2 >>=+B A By Ax 5.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④椭圆的准线方程:对于12222=+b y a x ,左准线c a x l 2 1:-=;右准线c a x l 22:=

相关文档
最新文档