椭圆性质及详细证明

椭圆性质及详细证明
椭圆性质及详细证明

椭圆性质的证明与证明:

性质1、 椭圆上一点P 处的切线平分焦点三角形外角的证明:

题目:已知12,F F 为椭圆22

221(0)x y a b a b

+=>>的焦点,P 为椭圆上一点。求证:点P 处的切线PT 必

平分12PF F ?在P 处的外角.在解答此题之后,我们还得到一个重要的定理.

证法1 设1200(,0),(,0),(,)F c F c P x y -.

对椭圆方程22221x y a b +=两边求导得,22

22.0x y y a b '

+=

∴ 22b x

y a y

'=-

∴ 0020(,)

20

pT x y b x k k y a y '===-

又1010pF y k k x c ==

+,20

20pF y k k x c

==-, 由到角公式知

2002002

2002

200tan 211.

b x y

a y x c k k

b x y kk a y x c

----∠==

+-- 22222

000222

000

()

()b cx b x a y a b x y a cy -+=-- 222222

00222000000()()b cx a b b cx a b c x y a cy cy cx a cy --===

--, 同理200

22

0012

00

10

200

tan 111.y b x x c a y k k b y b x k k cy x c a y ++-∠===+-+. ∵ 1,2(0,)π∠∠∈, ∴ 12∠=∠, 又14∠=∠, ∴ 24∠=∠

证法2 设1(,0)F c -,2(,0)F c ,00(,)P x y ,如图1,过1F 、2F 作切线PT 的垂线,垂足分别为M 、N. ∵ 切线PT 的方程为

00221x x y y

a b

+=,则点1F 、2F 到PT 的距离为

1F M =

2F N =

∴ 0

22

012

01021

1cx cx a F M a cx F N cx a a

----==-- 001002ex a a ex PF ex a a ex PF --+===-- ∴ 1PMF ?∽2PNF ? ∴ 12∠=∠, 又∵14∠=∠ ∵ 24∠=∠.

两种证法都是由12∠=∠导出,如图,设PD 为法线(即PD ⊥切线PT ),则PD 平分12F PF ∠,故得如下重要定理.

定理 在椭圆上任意一点P 的法线,平分该点两条焦半径的夹角. (到角公式)

把直线L1依逆时针方向旋转到与L2重合时所转的角,叫做L1到L2的角,简称到角.tan θ=(k2-k1)/(1+k1·k2)

性质2.椭圆焦点三角形定义及面积公式推导

(1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12PF F 称之为椭圆焦点三角形.

(2)面积公式推导

解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

222

1212

12

cos 2PF PF F F PF PF α+-=

?222

1212

(2)2r r c r r +-=

? 22121212()242r r r r c r r +--=22

1212

(2)242a rr c rr --=

2212124()22a c r r r r --=212

12

2b r r r r -=

∴2

1212cos 2rr b rr α=-

即21221cos b r r α

=+,

∴12

2

12112sin sin 221cos PF F b S r r ααα

?==??+2sin 1cos b αα=+=2tan 2b α.

例1.焦点为12,F F 的椭圆22

14924x y +

=上有一点M ,若120MF MF ?= ,求12MF F ?的面积. 解:∵120MF MF ?=

, ∴12MF MF ⊥, ∴ 12MF F S ?=290tan

24tan

242

2

b α

?

==. 例2.在椭圆的22

221(0)x y a b a b

+=>>中,12,F F 是它的两个焦点,B 是短轴的一个端点,M

是椭圆上异于顶点的点,求证:1212F BF F MF ∠>∠.

证明:如图2,设M 的纵坐标为0y ,

210212121

21MF F F BF S y F F b F F S ??=?>?=

, ∴221212tan tan 22F BF F MF b b ∠∠>, 即1212tan tan 22F BF F MF

∠∠>, 又121211

,22

F BF F MF ∠∠都是锐角, 故121211

22

F BF F MF ∠>∠ 从而有1212F BF F MF ∠>∠.

图1

图2

性质3、双曲线焦点三角形定义及面积公式推导.

(1)定义:如图3,双曲线上一点P 与双曲线的两个焦点12,F F 构成的三角形12PF F 称之为双曲线焦点三角形.

(2)面积公式推导:

解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

2

2

2

1212

12

cos 2PF PF F F PF PF α+-=

?222

1212

(2)2r r c r r +-=

? 22121212()242r r r r c r r -+-=22

1212

(2)242a rr c r r +-=

2212122()r r c a r r --=

2

1212

2r r b

r r -=

∴2

1212cos 2rr rr b α=-

即2

1221cos b r r α

=-,

∴12

2

12112sin sin 221cos PF F b S r r ααα

?==??-2sin 1cos b αα=-=2cot 2b α.

例3、已知双曲线22169144x y -=,设12,F F 是双曲线得两个焦点.点P 在双曲线上,

1232PF PF ?=,求12F PF ∠的大小.

解:双曲线的标准方程为22

1916

x y -

=, ∴121212121211

sin 32sin 16sin 22

PF F S PF PF F PF F PF F PF ?=

?∠=?∠=∠, 从而有1216sin F PF ∠1216cot 2F PF ∠==12

12

16sin 1cos F PF F PF ∠-∠, ∴12cos 0F PF ∠=, ∴1290F PF ∠=?.

例4:椭圆22162

x y +

=与双曲线 2

213x y -=的公共焦点为12,F F ,P 是两曲线的一个交点,求21cos PF F ∠的值.

图3

解:在椭圆和双曲线中异算12PF F ?面积 ∵122tan 1cot 22

PF F S α

α

?==?,

∴2

1tan 2

2

α

=, ∴2

21

1tan 1122cos 13

1tan 122

α

αα--

=

==++

. 开拓:从上例我们不难发现,若椭圆22

112211

1(0)x y a b a b +=>>和双曲线

22

222

222

1(0,0)x y a b a b -=>>有公共的焦点12,F F 和公共点P ,那么12PF F ?的面积2121tan

2F PF S b ∠=,又2122cot 2

F PF

S b ∠=,从而22212S b b =?,即12S b b =?. 性质4:若000(,)P x y 在椭圆22

22

1x y a b

+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 证明:设00(,)P x y .

对椭圆方程22221x y a b +=两边求导得,22

22.0x y y a b '

+=

∴ 22b x

y a y '=- ∴ 0020(,)20

pT x y b x k k y a y '===-

由点斜式:20

0020()b x y y x x a y -=--,又因为00(,)P x y 在22221x y a b +=上,所以2200221x y a b +=,整理即得:

00221x x y y

a b

+=

椭圆的特殊性质

一、椭圆的几何性质(以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 2、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M ,则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F , 连接OM 由已知有1PF FP =, M 为1F F 中点 ∴212OM FF ==()121 2 PF PF +=a 所以M 的轨迹方程为 222 x y a +=。 3、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 4、过焦点F 的弦AB , )(2112定值b a BF AF =+ 5、AB 是椭圆的任意一弦,P 是AB 中点,则22 a b K K OP AB -=?(定值) 证明:令()()1122,,,A x y B x y ,()00,P x y 则()1202 x x x += ()1202 y y y += x x

22 1122 22 222211x y a b x y a b ?+=????+=?? ()()()()1212121222 ..0x x x x y y y y a b +-+-?+= ∵ ()()1212AB y y k x x -=-,00OP y k x =, ∴ 2 2A B O P b k k a ?=-。 6、椭圆的长轴端点为A 1、A 2,P 是椭圆上任一点,连结A 1P 、A 2P 并延长,交一准线于N 、M 两点,则M 、N 与对应准线的焦点张角为900 证明:令()221200,,,,,a a M y N y P x y c c ???? ? ????? ,()1,0A a -,()2,0A a ∴()()100200,,,,A P x a y A P x a y =+=-uuu r uuu r 221122,,,a a A M a y A N a y c c ???? =+=- ? ????? uuuu r uuu u r ∵ 由于1A 、P 、M 共线 ,∴ 2 0001210() a y a x a y c y a y x a a c ?++=?=++ ∵ 由于2,,A P N 共线 ,∴ 2 0002220() a y a x a y c y a y x a a c ?--=?=-- ∴ 22 242200012222 000()() a a y a y a y a a c c c y y x a x a x a c ?-?+-==?-+-, ∵ 2222 0002222201x y y b a b x a a +=?=-- ∴ 2422 1222 b a a c y y a c -=-?42b c =-, ∵ 2122,,a F M c y c a F N c y c ? ??=-? ???????? =- ?? ??? uuu r uuu r 4 122b FM FN y y c ??=+uuu r uuu r ∴ 0FM FN ?=u u u r u u u r , ∴ M 、N 与对应准线的焦点张角为900 7、圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定 x

(完整)七年级数学平行线的性质与判定的证明练习题及答案

平行线的性质与判定的证明 温故而知新: 1.平行线的性质 (1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补. 2.平行线的判定 (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行互补. 例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数; (2)探求∠DNQ与∠AMN,∠EPN的数量关系. 解析:根据两直线平行,内错角相等及角平分线定义求解. (标注∠MND=∠AMN,∠DNP=∠EPN) 答案:(标注∠MND=∠AMN=60°, ∠DNP=∠EPN=80°) 解:(1)∵AB∥CD∥EF, ∴∠MND=∠AMN=60°, ∠DNP=∠EPN=80°, ∴∠MNP=∠MND+∠DNP=60°+80°=140°, 又NQ平分∠MNP, ∴∠MNQ=1 2 ∠MNP= 1 2 ×140°=70°, ∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,

∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN) 由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN, ∴∠MNQ=1 2 ∠MNP= 1 2 (∠AMN+∠EPN), ∴∠DNQ=∠MNQ-∠MND =1 2 (∠AMN+∠EPN)-∠AMN =1 2 (∠EPN-∠AMN), 即2∠DNQ=∠EPN-∠AMN. 小结: 在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补. 例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2. 解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF) 答案:(标注:∠1=∠2=∠DCB) 证明:因为∠AGD=∠ACB, 所以DG∥BC, 所以∠1=∠DCB, 又因为CD⊥AB,EF⊥AB, 所以CD∥EF, 所以∠2=∠DCB, 所以∠1=∠2.

27.命题、证明及平行线的判定定理(提高)知识讲解

命题、证明及平行线的判定定理(提高)知识讲解 【学习目标】 1.了解定义、命题的含义,会区分命题的条件(题设)和结论; 2.体会检验数学结论的常用方法:实验验证、举出反例、推理; 4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式; 5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】 要点一、定义与命题 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 要点诠释: (1)定义实际上就是一种规定. (2)定义的条件和结论互换后的命题仍是真命题. 2.命题:判断一件事情的句子叫做命题. 真命题:正确的命题叫做真命题. 假命题:不正确的命题叫做假命题. 要点诠释: (1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论. (2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立. 要点二、证明的必要性 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明. 要点三、公理与定理 1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理. 2.定理:通过推理得到证实的真命题叫做定理. 要点诠释: 证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程. 要点四、平行公理及平行线的判定定理 1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释: (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 2.平行线的判定定理

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

相交线与平行线知识点及练习

相交线与平行线知识点 1.相交线 同一平面中,两条直线的位置有两种情况: 相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4; 邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。像∠1和∠2这样的角我们称他们互为邻补角; 对顶角:∠1和∠3有一个公共的顶点O,并且∠1 的两边分别是∠3两边的反向延长线,具有这种位置 关系的两个角,互为对顶角; ∠1和∠2互补,∠2和∠3互补,因为同角的补角 相等,所以∠1=∠3。 所以,对顶角相等 例题: 1.如图,3∠1=2∠3,求∠1,∠2,∠3,∠4的度数。 2.如图,直线AB、CD、EF相交于O,且AB CD ⊥, FOB__________。 2_______,∠= 127,则∠= ∠=? C E A 2 O B 1 F D 垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂 线,它们的交点叫做垂足。如图所示,图中AB⊥CD,垂足 为O。垂直的两条直线共形成四个直角,每个直角都是90?。 例题: 如图,AB⊥CD,垂足为O,EF经过点O,∠1=26?,求∠EOD,∠2,∠3的度数。(思考:∠EOD可否用途中所示的∠4表示?) 垂线相关的基本性质:

(1)经过一点有且只有一条直线垂直于已知直线; (2)连接直线外一点与直线上各点的所有线段中,垂线段最短; (3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。 例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么? *线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直平分线。如何作下图线段的垂直平分线? 2.平行线:在同一个平面内永不相交的两条直线叫做平行线。 平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。 如上图,直线a与直线b平行,记作a//b 3.同一个平面中的三条直线关系: 三条直线在一个平面中的位置关系有4中情况:有一 个交点,有两个交点,有三个交点,没有交点。 (1)有一个交点:三条直线相交于同一个点,如 图所示,以交点为顶点形成各个角,可以用角的相关 知识解决; 例题: 如图,直线AB,CD,EF相交于O点,∠DOB是它的余角的两倍,∠AOE=2∠DOF,且有OG⊥OA,求∠EOG的度数。 (2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)如 图所示,直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系: *同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;

完整版七年级数学平行线的有关证明及答案

平行线的性质与判定的证明练习题 温故而知新: 1.平行线的性质 (1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补. 2.平行线的判定 (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行互补. 例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数; (2)探求∠DNQ与∠AMN,∠EPN的数量关 系. 解析 在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补. 1 2. 1=∠AB,⊥AB,EF⊥证明:∠2 例如图,∠AGD=∠ACB,CD

解析:在完成证明的问题时,我们可以由角的关系可以得到直线之. 间的关系,由直线之间的关系也可得到角的关系 BCD;∠ED,求证:∠ABC+∠CDE=①,直线(例3 1)已知:如图2-4AB存在什么等量关系?并证明与BC,位于如)当2-②所示时,ABCD ( . 解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化 2 °,第二次拐的是120如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A例4 ,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C°,第三次拐的角是∠B是150角∠应为多少度?C

. 把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答解析: 举一反三:)则∠FG∥HI,x的度数为(,如图1.2-9 D. 100 C. 90 B. 72A.60°°°°3 °,求∠D=24∠D=192°,∠B-,∠EG平分∠BEFB+∠BED+∠,∥2. 已知如图所示,ABEF∥CD. 的度数GEF .GDEABEDBCEFAB2-103.已知:如图,∥,∥,,交于点求证:∠EB=∠.4

北师版八年级上第七章平行线的证明知识点总结及习题

八年级上册第七章平行线的证明 【要点梳理】 要点一、定义、命题及证明 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 2.命题:判断一件事情的句子,叫做命题. 要点诠释: (1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理. 3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释: (1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论. (2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等. (3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质 1.平行线的判定 判定方法1:同位角相等,两直线平行. 判定方法2:内错角相等,两直线平行. 判定方法3:同旁内角互补,两直线平行. 要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有: (1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行. (4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 2.平行线的性质 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有: (1)若两条直线平行,则这两条直线在同一平面内,且没有公共点. (2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点三、三角形的内角和定理及推论 三角形的内角和定理:三角形的内角和等于180°. 推论:(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角. 要点诠释: (1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.

平行线的性质练习(含答案)

平行线的性质 (检测时间50分钟 满分100分) 班级_________________ 姓名_____________ 得分_____ 一、选择题:(每小题3分,共21分) 1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( ) 个 个 个 个 D C B A 1 E D B A O F E D C B A (1) (2) (3) 2.如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,?那么∠BDC 等于( ) ° ° ° ° 3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;?③内错角相 等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④ 4.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交 5.如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) ° ° ° ° 6.如图4所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( ) ° ° ° °

F E D C B A G F E D C B A 1 F E D C B A (4) (5) (6) 7.如图5所示,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )? 个 个 个 个 二、填空题:(每小题3分,共9分) 1.如图6所示,如果DE ∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______; 如果∠CED=∠FDE,那么________∥_________.根据是________. 2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、?后的两条路平行, 若第一次拐角是150°,则第二次拐角为________. D C B A D C B A 1 2 (7) (8) (9) 3.如图8所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ ACD=?_______. 三、训练平台:(每小题8分,共32分) 1. 如图9所示,AD ∥BC,∠1=78°,∠2=40°,求∠ADC 的度数.

第七章平行线的证明知识点复习

平行线的证明 平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行. 判定定理2:_______________,两直线平行.定理:平行于同一直线的两直线___________. 2、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD 3.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。 4、如图,某湖上风景区有两个观望点A ,C 和两个度假村B ,D .度假村D 在C 的正西方向,度假村B 在C 的南偏东30°方向,度假村B 到两个观望点的距离都等于2km . (1)求道路CD 与CB 的夹角; (2)如果度假村D 到C 是直公路,长为1km ,D 到A 是环湖路,度假村B 到两个观望点的总路程等于度假村D 到两个观望点的总路程.求出环湖路的长; (3)根据题目中的条件,能够判定DC ∥AB 吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC ∥AB . 5.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠A ED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗? 知识点3:平行线的性质 性质定理1:两直线平行,同位角___________. 性质定理2:两直线平行,内错角_________. 性质定理3:两直线平行,同旁内角__________. 练习:6、已知:如图,AB//CD ,BC//DE ,∠B=70°,求∠D 的度数。 专题 与平行线有关的探究题 A B E D C A B E P D C F

北师大版八年级数学上册《平行线的证明》知识点归纳

北师大版八年级数学上册《平行线的证明》 知识点归纳 第七章平行线的证明 为什么要证明?实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有理有据的证明。 定义与命题 定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义。 命题:判断一件事情的句子,叫做命题。一般地,每个命题都由条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。命题可以写成“如果......那么......”的形式,其中如果引出的部分是条件,那么引出的部分是结论。 真命题:正确的命题称为真命题。 假命题:不正确的命题称为假命题。要说明一低点命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例, 公理、定理 公理:公认的真命题称为公理。 证明:演绎推理的过程称为证明。

定理:经过证明的真命题称为定理。 本书认定的真命题: 两点确定一条直线。 两点之间的距离最短。 同一平面内,过一点有且只有一条直线与已知直线垂直。 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 过直线外一点有且只有一条直线玙这条直线平行。 两边及其夹角分别相等的两个三角形全等。 两角及其夹边分别相等的两个三角形全等。 三边分别相等的两个三角形全等。 数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据。 同角的补角相等。同角的余角相等。 三角形的任意两边之和大于第三边。 对顶角相等。 平行线的判定; 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。。 两条直线被第三条直线所载,如果同旁内角互补,那么这两条直线平行。。

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

椭圆性质及详细证明

椭圆性质的证明与证明: 性质1、 椭圆上一点P 处的切线平分焦点三角形外角的证明: 题目:已知12,F F 为椭圆22 221(0)x y a b a b +=>>的焦点,P 为椭圆上一点。求证:点P 处的切线PT 必 平分12PF F ?在P 处的外角.在解答此题之后,我们还得到一个重要的定理. 证法1 设1200(,0),(,0),(,)F c F c P x y -. 对椭圆方程22221x y a b +=两边求导得,22 22.0x y y a b ' += ∴ 22b x y a y '=- ∴ 0020(,) 20 pT x y b x k k y a y '===- 又1010pF y k k x c == +,20 20pF y k k x c ==-, 由到角公式知 2002002 2002 200tan 211. b x y a y x c k k b x y kk a y x c ----∠== +-- 22222 000222 000 () ()b cx b x a y a b x y a cy -+=-- 222222 00222000000()()b cx a b b cx a b c x y a cy cy cx a cy --=== --, 同理200 22 0012 00 10 200 tan 111.y b x x c a y k k b y b x k k cy x c a y ++-∠===+-+. ∵ 1,2(0,)π∠∠∈, ∴ 12∠=∠, 又14∠=∠, ∴ 24∠=∠

证法2 设1(,0)F c -,2(,0)F c ,00(,)P x y ,如图1,过1F 、2F 作切线PT 的垂线,垂足分别为M 、N. ∵ 切线PT 的方程为 00221x x y y a b +=,则点1F 、2F 到PT 的距离为 1F M = , 2F N = ∴ 0 22 012 01021 1cx cx a F M a cx F N cx a a ----==-- 001002ex a a ex PF ex a a ex PF --+===-- ∴ 1PMF ?∽2PNF ? ∴ 12∠=∠, 又∵14∠=∠ ∵ 24∠=∠. 两种证法都是由12∠=∠导出,如图,设PD 为法线(即PD ⊥切线PT ),则PD 平分12F PF ∠,故得如下重要定理. 定理 在椭圆上任意一点P 的法线,平分该点两条焦半径的夹角. (到角公式) 把直线L1依逆时针方向旋转到与L2重合时所转的角,叫做L1到L2的角,简称到角.tan θ=(k2-k1)/(1+k1·k2) 性质2.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

椭圆常见性质

椭圆常见性质 1. 11 || 1PF e d =< 2.PT 平分12PF F ?在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相离. 4.以焦点半径1PF 为直径的圆必与长轴为直径的圆内切. 5.设12,A A 为椭圆的左,右顶点,则12PF F ?在边2PF (或1PF )上的旁切圆,必与12A A 所在的直线切与2A (或1A ). 6.椭圆焦点三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 7.椭圆两焦点到椭圆焦点三角形旁切圆的切线长为定值a+c 与a-c . 8.椭圆焦点三角形的非焦顶点到其内切圆的切线长为定值a-c . 9.椭圆焦点三角形中,内心将内点与非焦顶点连线段分成定比c . 10.椭圆焦点三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 11.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 12.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,垂足就是垂足同侧焦半径为直径的圆的和椭圆长轴为直径的圆的切点. 13.椭圆22 221(0)x y a b a b +=>>的焦半径公式: 1020||,||.PF a ex PF a ex =+=-(0x 是P 点横坐标). 14.设P 点是椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点,12,F F 为其焦点.记 12F PF θ∠=,则1222122(1)||||;(2)tan .1cos 2 PF F b PF PF S b θ θ?= =+ 15.若P 为椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点, 12,F F 为其焦点, 1221,PF F PF F αβ∠=∠=,则 tan tan .22 a c a c αβ -=+ 16.设椭圆22 221(0)x y a b a b +=>>的两个焦点为12,F F ,P(异于长轴端点)为椭圆上任意一点,

椭圆与双曲线性质有关性质推论归纳共92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 ||1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆 于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心张直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

平行线的判定和性质练习题

平行线的判定定理和性质定理 [一]、平行线的判定 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:E D∥CF. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C 图9 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

平行线知识点+四大模型

平行线四大模型 平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行, 如上图: 若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行); 若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行); 若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行: 平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同 旁内角也有相应的数量关系,这就是平行线的性质. 性质1: 两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2: 两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等 性质3: 两条平行线被第三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补

本讲进阶平行线四大模型 结论 结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD. 结论1:若AB∥CD,则∠P=∠AEP+∠CFP; 结论2:若∠P=∠AEP+∠CFP,则AB∥CD. 结论 结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD. 结论

椭圆性质总结

椭圆性质总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F , 212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1 >e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -=(一个 ?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总 在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ? ??==θθ sin cos b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0)有以下性 质:

椭圆性质总结

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

人教版数学七年级下册平行线的判定和性质练习题 非常经典的题型 值得给学生测试

(第1页,共3页) 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ) 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. 12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并 说明理由. 13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ. [二]、平行线的性质 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = . 3.如图3所示 (1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF. (3)若∠A +∠ = 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = . 5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = . 6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C 图9 1 3 2 A E C D B F 图10 F 2 A B C D Q E 1 P M N 图11 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B 图1 2 4 3 1 A B C D E 1 2 A B D C E F 图2 1 2 3 4 5 A B C D F E 图3 1 2 A B C D E F 图4 图5 1 A B C D E F G H 图7 1 2 D A C B l 1 l 2 图8 1 A F C D E G 图6 C D F E B A

相关文档
最新文档