高一下学期期末测试题
2024高一物理下学期期末测试卷(人教版)附解析

2024年下学期期末测试卷高一物理(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版(2019)必修第二册全部、选修性必修第一册第1章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
1.图是某-家用体育锻炼的发球机,从同一点沿不同方向发出A、B两球,返回同一水平面时,两球落至同一位置。
如果不计空气阻力,关于两球的运动,下列说法正确的是()A.两球运动至最高点时,两球速度相等B.两球运动过程中,A加速度大于B球加速度C.两球飞行时间相等D.从抛出至落回同一水平面,A球速度变化量大于B球速度变化量2.研究乒乓球发球问题,设球台长2L,网高h,如图乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g),从A点将球水平发出,刚好过网,在B点接到球,则下列说法正确的是()A.网高4Lh =B.发球时的水平初速度02gv Lh=C.球落到球台上时的速度2v gh=D.球从A→B所用的时间24htg'=3.如图所示,一同学表演荡秋千,已知秋千的两根绳长均为4m,该同学质量为50kg,绳和踏板的质量忽略不计,当该同学荡到秋千支架的正下方时,踏板速度大小为4m/s,此时每根绳子平均承受的拉力最接近()A .100N B.200N C.330N D.360N4.如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比R B∶R C=3∶2,A轮的半径大小与C轮的相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来。
2023-2024学年云南省保山市高一下学期期末检测历史试题

2023-2024学年云南省保山市高一下学期期末检测历史试题1. 龙山时代永兴店文化的下塔古城建有双重城墙,城墙上等距离分布有马面和角台建筑,城门处建有瓮城。
整座城依地势和冲沟而建,利用黄河、冲沟、城垣形成一个完善的防御体系。
下塔古城的特点反映了()A.新石器时代战争频繁B.社会阶层的高度分化C.区域文化的交流加强D.文明发展水平的提升2. 下面历史书目录 (下表)反映的时代主题是()第五节八王之乱第六节王马共治第七节诗酒雅集第八节陈朝兴亡第九节五胡归华A.盛世与危机B.争鸣与认同C.分裂与融合D.开放与包容3. 唐朝时期,东北的粟末蒜羯族首领大祚荣接受唐朝册封为渤海郡王,渤海郡成为唐朝版图内的羁縻州。
元朝时在东北设置辽阳行省,与中原管理方式一致。
据此可知元朝时期()A.东北地区正式归属于中央B.致力于缓和民族间矛盾C.内地边疆管理一体化趋势D.羁縻政策加强边疆管理4. 明末清初三大思想家,黄宗羲主张“天下为主,君为客”,顾炎武提出“保天下者,匹夫之贱与有责焉耳矣”,王夫之强调“循天下之公”。
这些思想()A.倡导向西方学习B.激发了民众爱国热情C.促成了社会转型D.使传统文化焕发新机5. 1896年,英法签署《伦敦协定》,规定:“在云南和四川两省,中国已经让与或将来可能让与英国或法国的所有商业和其他特权及利益,都将为两国及国民和附属国人民所共同享有。
”条约的签订体现了()A.英法同盟关系得以巩固B.中国完全沦为半殖民地半封建社会C.列强掀起瓜分中国狂潮D.清政府彻底丧失了对地方的控制权6. 集结滇西的中国远征军于1944年5月正式发动反攻,强渡怒江,力克腾冲、松山、龙陵、芒市、平噶、遮放、畹町,歼敌2万多人,在中国战场上率先把日军赶出国门,与中国驻印军胜利会师。
滇西抗战()A.是抗战防御阶段的典型战役B.打破日军不可战胜神话C.凸显了中国战场的世界意义D.牵制了日军的主力部队7. 1950年,地方各级政府组织工作队开展了贫雇农诉苦大会和“算剥削账”等活动,活动使农民由衷发出“以前是地主的天下,现在是我们的世界”的感慨。
甘肃省2023-2024学年高一下学期期末学业水平质量测试语文试卷(含答案)

高一下学期期末学业水平质量测试卷语文本试卷满分150分,考试时间150分钟注意事项:1.答题前,考生务必将自己的学校、姓名、班级、准考证号填写在答题卡上相应的位置。
2.全部答案在答题卡上完成,答在本试卷上无效。
3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5毫米黑色笔迹签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。
①今天,人们对氧气的存在已经习以为常。
如果把时钟拨回到几十亿年前,回到生命刚刚在地球上立足的时代,我们会发现那时的地球上根本没有氧气,地球大气的主要成分是甲烷、二氧化碳、水蒸气等。
虽然地球上没有氧气,但宇宙中存在着大量的氧元素。
在衰老恒星的演化过程中,恒星核心通过核聚变合成了氧,所以宇宙中氧的含量还是比较丰富的,仅次于氢和氦。
不过,因为氧特别容易和其他元素发生化学反应,所以绝大部分的氧是以某种化合物的形式存在。
这类化合物被称为氧化物,其中最常见的就是水。
②与仅存于海底火山口的化学能相比,太阳能是地球上更为普遍的能源来源。
现在,地球上的大部分生物依赖太阳能生存和繁衍。
例如,植物可以利用太阳能将二氧化碳转变成有机物,这一过程就是光合作用。
要想将二氧化碳转变为有机物,就要设法还原二氧化碳,给二氧化碳提供电子。
细胞中进行光合作用的叶绿体可被视作一个“泵站”,它利用太阳提供的能量(类似于抽水泵利用电作为能量),从某个电子供体中抽取电子提供给二氧化碳。
③在距今约30亿年前,蓝细菌(也称蓝藻)“发明”了利用水作为电子供体支持光合作用的“技术”。
也就是说,蓝细菌利用太阳能将水的氧原子的电子夺走,再将之传递给二氧化碳。
这一过程必然伴随着水被不断地裂解并释放出氧气。
所以,随着蓝细菌的繁殖,氧气会被源源不断地释放出来。
北京市海淀区2023-2024学年高一下学期期末考试英语试题

北京市海淀区2023-2024学年高一下学期期末考试英语试题一、完形填空It was a Saturday afternoon when I was just ten. My grandmother entered the dining room with the mail and placed it by my mother, who 1 the thin envelope rather cautiously, paused and then tossed it into the wastepaper basket.“You can at least open it,” my grandmother said.“I don’t want to see one more 2 letter. Period!” my mother answered.“Poor Mommy,” I said. “Don’t feel bad. You’re a good writer.” But the words of a ten-year-old, while appreciated, were lost in the thick air of adult 3 that filled the room.Ignoring my mother’s response, my grandmother turned the basket over and pulled out the envelope. She 4 open the letter and read it silently. My heart was racing with expectation as she suddenly straightened up and charged at her daughter, pushing the letter under my mother’s nose. “There! There!”“Please, Mother,” my mother said sadly as she pushed the letter away.“Read it!” my grandmother pushed it back. “It’s an 5 !”My mother stopped. She looked first at me, then at my grandmother. Slowly, she read the words: “We are 6 to inform you...”I watched her face turn from 7 to joy. She jumped up and hugged my grandmother, whose face was now shining as if saying 8 I knew you would succeed.Now, years later, whenever I am hesitant to open my own letters in fear of rejection (拒绝), I can feel my mother and grandmother reach for the basket, 9 me to open them. And I also have my son to cheer me up. “Don’t worry, Mommy. You’re a good writer.” I know it no longer matters whether the mail holds an acceptance or a rejection, for I have learned about the power of 10 support.1.A.eyed B.handed C.opened D.received 2.A.invitation B.rejection C.explanation D.recommendation 3.A.anger B.concern C.confusion D.tension4.A.cut B.tore C.forced D.broke5.A.award B.apology C.acceptance D.advertisement 6.A.relieved B.regretful C.happy D.sad 7.A.disbelief B.dissatisfaction C.disagreement D.disappointment 8.A.calmly B.gratefully C.patiently D.proudly 9.A.encouraging B.allowing C.reminding D.instructing 10.A.unchangeable B.unconditional C.unforgettable D.unintentional二、语法填空阅读下列短文,根据短文内容填空。
2023-2024学年下学期高一期末质量检测语文试题答案

高一期末质量检测语文试题参考答案1.C (“丝路贸易给罗马帝国……大概带来了当时一年收入30%的税收”错误。
由原文“罗马帝国当时一年收入的大概30%是依靠其在东边和南边的收税所得,其中特别谈到了东方消费品的税收”可知,这“大概30%”的税收并非全都是丝路贸易带来的。
)2.D (“西域文化渗透到了各个角落”错误。
依据原文“到了唐代,这种文化传播进一步加强”,只能得出“唐朝时东西方文化交流得到了加强”的结论,不能得出“西域文化渗透到了各个角落”的结论。
)3.C (“双向共赢”观点的内容在材料一的第二段。
原文以“佛教的倒流”为例,说明“双向共赢”的涵义,是佛教东传后经过中国佛教界的改造和发展,使佛教发展到更高的高度,然后又传回中亚、印度。
可见“双向共赢”观点的关键在于交流的内容经过对方改造发展后,得到了更高的发展,再传回原产地,对原产地有所帮助。
A项讲的是欧洲借鉴中国瓷器艺术,使得欧洲瓷器具有了独特的瓷器艺术;B项讲的是苜蓿传入中国,对中国骑兵的帮助;D项讲的是茶叶传入欧洲并流行的原因。
这三项只说明物产交流后对传入的地区有作用,没有在得到更高的发展以后促进输出地区的进步。
而波斯锦是在中国丝绸制造的基础上有所提高,并对中国丝绸制造技术产生了促进作用。
故选C。
)4.B (根据图表地区Ⅰ的特产项目及“丝绸产品”的“产品生产”地等内容可知,地区Ⅰ为丝绸之路贸易的东段,地区Ⅱ则是丝绸之路贸易的中段。
而材料二的首句“长安、洛阳到敦煌以及天山廊道属于古代丝绸之路东段”表明,丝绸之路的东段,指从长安、洛阳到敦煌以及天山廊道之间的地区。
换言之,丝绸之路的东段,在敦煌以及天山廊道以东到长安、洛阳之间的地区,并不是“以东”没有终点的地区。
)5.①沿线民族的友好交往、民心相通的现实。
②贸易双方的双向共赢促进了丝路的长期繁荣。
③古代东西方物产资源交换和运输的推动。
(由材料一第一段可知,丝绸之路贸易之所以能够进行且长期繁荣,与宽容的民族政策、和谐的民族关系形成的沿线民族友好交往、民心相通的现实有关。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
安徽省阜阳市第三中学2023-2024学年高一下学期期末考试语文试题(含答案)

安徽省阜阳市第三中学2023-2024学年高一下学期期末考试语文试题(满分150分,测试时间150分钟)一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:调查研究是做好各项工作的基本功。
《关于在全党大兴调查研究的工作方案》提出,“充分运用互联网、大数据等现代信息技术开展调查研究,提高科学性和实效性”。
借助信息技术推进深度调研,有利于全面挖掘信息、发现问题、分析问题、提出有效解决措施。
调查研究的一个重要方面,就是让信息和数据说话。
今天,大数据、物联网、云计算等新技术新应用纷纷涌现,特别是以大语言模型为代表的生成式人工智能技术不断取得进展,拓展了信息技术在国家治理中的应用场景。
在此背景下,将信息技术与调查研究深度融合,不仅能够提高调查研究的效率,确保数据采集的科学性、准确性、代表性,还能提升分析问题的能力,为有关部门和地方作决策提供有力支撑。
提升调研质量,需要有效筛选数据、善于运用数据。
随着信息技术的广泛应用,数据规模正快速增长,不仅包括各类平台数据、传感器数据,还包括了大规模文本、图像、影视资料等数字化档案,形成了庞大的“数字足迹”。
对数据进行科学、精准、专业的分析处理,才能更好为调研服务。
海量数据是宝贵的财富。
用好这笔财富,下一番绣花功夫,有助于更有效地整合资源、聚合力量。
数据分析不能代替实地调研,两者结合,才能让调研更扎实、更全面。
借助信息技术开展调研已成为一种趋势,但这并不意味着有关工作可以脱离传统的实地调研方式。
调研不仅是为了得到数据,还必须对被调研对象和内容有更加全面的认知和理解。
数字能够体现规律、趋势等,却无法反映个体的真情实感。
由于样本选取、调查分析方法的不同,数据本身还可能存在误差。
采取数据分析和实地调研“两条腿走路”的方式,既通过数据掌握大量信息,又捕捉数据之外更真实、更全面的情况,调研的质量也就有了保障。
用好这两种方式,将有效推动调查研究提质增效。
重庆市巴蜀中学校2023-2024学年高一下学期期末考试语文试题(原卷版+解析版)

秘密☆启用前重庆市巴蜀中学校2023-2024学年高一下学期期末考试语文试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分150分,考试用时150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,共19分)阅读材料,完成各题。
材料一:①《中华人民共和国刑法》第二十条第一款规定,“为了使国家、公共利益、本人或者他人的人身、财产和其他权利免受正在进行的不法侵害,而采取的制止不法侵害的行为,对不法侵害人造成损害的,属于正当防卫”。
正当防卫是一种“特殊情形”,在民事纠纷、刑事犯罪案件中,可以免于承担不利责任。
正当防卫制度有其规范价值。
法律基于道德和正义的准则而建立,在现代社会,人权和公民的安全是法律保护的重要对象。
当公民的人身、财产等权益受到他人侵犯时,法律赋予公民正当防卫的权利,使公民能够在合法范围内保护自身安全和权益。
此外,社会秩序的维护需要法律的支持和保障,而正当防卫则是法律赋予公民维护社会秩序的一种方式。
但正当防卫具有一定限制和条件,需要在合法范围内行使,不能超过必要限度。
在处理正当防卫案件时,需要考虑不法侵害的性质、手段、强度、危害程度等,综合社会公众的一般认知作出判断。
②实践中正当防卫认定面临诸多困难。
司法工作人员需要根据法律规定的条件,包括防卫起因、防卫对象、防卫时间和防卫限度来认定。
首先,正当防卫的前提条件,是必须存在正在进行的不法侵害。
但司法实践中,许多不法侵害并非真正的不法侵害,而是由挑衅、误判、误解等行为引起,防卫人在进行自卫时往往难以判断对方行为是否构成不法侵害。
其次,正当防卫对象必须是不法侵害者。
但司法实践中,不法侵害者范围相对模糊,可能包括直接侵害者与间接侵害者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭十四中二〇一三学年第二学期中测试高一年级数学学科试卷注意事项:1.考试时间:2014年4月22日8时至9时30分;2.答题前,务必先在答题卡上正确填涂班级、姓名、准考证号;3.将答案答在答题卡上,在试卷上答题无效.请按题号在各题的答题区域(黑色线框)内作答,超出 答题区域书写的答案无效;4.其中本卷满分100分,附加题20分,共120分.共4页; 5.本试卷不得使用计算器。
一、选择题:共10小题,每小题3分,满分30分。
1.函数()sin cos f x x x =的最小值是(▲)A .1 B.-1 C .12 D .-122.公比为2的等比数列{}n a 的各项都是正数,且 41016a a =,则6a =(▲)A .1B .2C .4D .8 3.函数()cos()cos()44f x x x ππ=+--是(▲)A .周期为π的偶函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为2π的奇函数4.已知等差数列{}n a 的前n 项和为n S ,且244,20S S ==,则该数列的公差d =(▲) A .2 B.3 C .6 D .75.已知3(,),sin 25παπα∈=,则tan()4πα-=(▲)A .7-B .17-C .7D .176.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列, 且2c a =, 则cos B =(▲)A .34BCD .147.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(▲)A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ8.已知函数()2cos 2f x x x m =+-在[0,]2π上有两个零点,则m 的取值范围是(▲)A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.在ABC ∆中,已知tan tan 1A B ⋅>,则ABC ∆是(▲) A .直角三角形 B .钝角三角形 C .锐角三角形 D .最小内角大于45°的三角形10.在数列{}n a 中,若对任意的*n N ∈均有12n n n a a a ++++为定值,且79982,3,4a a a ===,则数列{}n a 的前100项的和100S =(▲)A.132 B.299 C.68 D.99二、填空题:共7小题,每小题4分,满分28分。
11.sin75cos30sin15sin150︒︒-︒︒=▲.12.若数列{}n a的前n项和23nS n n=+,则678a a a++=▲.13.函数2cos2siny x x=+,Rx∈的值域是▲.14.在ABC∆中,a、b、c分别为角A、B、C所对的边,若2cosa b C=,则此三角形一定是▲三角形.15.设当xθ=时,函数()sin2cosf x x x=-取得最大值,则cosθ=▲.16.在ABC∆中,内角A、B、C所对的边分别为a、b、c,给出下列命题:①若a b c>>,则cos cos cosA B C>>;②若A B C>>,则sin sin sinA B C>>;③若40,20,25a b B===︒,则ABC∆有两解;④必存在A、B、C,使tan tan tan tan tan tanA B C A B C<++成立.其中,正确命题的编号为▲.(写出所有正确命题的编号)17.某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120︒;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120︒;依此规律得到n级分形图.(I) n级分形图中共有▲条线段;(II) n级分形图中所有线段长度之和为▲.三、解答题:共4小题,满分42分。
18.(本小题满分10分)等差数列{}n a中,74a=,1992a a=.(1) 求{}n a的通项公式;(2) 设1nnbna=,求数列{}n b的前n项和n S.19.(本小题满分10分)已知函数2π()cos12f x x⎛⎫=+⎪⎝⎭,1()1sin22g x x=+.(1)设x是函数()y f x=的一个零点,求()g x的值;(2)求函数()()()h x f x g x=+的单调递增区间.20.(本小题满分10分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin a c A Bb A C+-=-. (1)求角C ; (2)求a bc+的取值范围.21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,13n S +是6与2n S 的等差中项(*n N ∈). (1) 求数列{}n a 的通项公式;(2)是否存在正整数k ,使不等式2*(1)()n n n k a S n N -<∈恒成立,若存在,求出k 的最大值;若不存在,请说明理由.四、附加题:本大题共2小题,共20分。
22.(本小题满分10分)(1) (本小题满分5分)已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第2014项2014a =__________. (2) (本小题满分5分)tan 20sin 204︒+=o _________.23.(本小题满分10分)数列{}n a 满足112a =,112n na a +=-(*)n N ∈. (1)求证:1{}1n a -为等差数列,并求出{}n a 的通项公式; (2)设11n nb a =-,数列{}n b 的前n 项和为n B ,对任意2n ≥都有320n n m B B ->成立, 求整数m 的最大值.杭十四中二〇一三学年第二学期中测试高一年级数学参考答案注意事项:1.考试时间:2014年4月22日8时至9时30分;2.答题前,务必先在答题卡上正确填涂班级、姓名、准考证号;3.将答案答在答题卡上,在试卷上答题无效.请按题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效;4.其中本卷满分100分,附加题20分,共120分.共4页; 5.本试卷不得使用计算器。
一、选择题:共10小题,每小题3分,满分30分。
1.函数()sin cos f x x x =的最小值是( )A .1 B.-1 C .12 D .-12答案:D2.公比为2的等比数列{}n a 的各项都是正数,且 41016a a =,则6a =( )A .1B .2C .4D .8 答案:B3.函数()cos()cos()44f x x x ππ=+--是( )A .周期为π的偶函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为2π的奇函数 答案:D4.已知等差数列{}n a 的前n 项和为n S ,且244,20S S ==,则该数列的公差d =( ) A .2 B.3 C .6 D .7 答案:B5.已知3(,),sin 25παπα∈=,则tan()4πα-=( ) A .7-B .17- C .7D .17答案:A6.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .34BCD .14 答案:A7.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ答案:C8.已知函数()2cos 2f x x x m =+-在[0,]2π上有两个零点,则m 的取值范围是( ) A .(1,2) B .[1,2) C .(1,2] D .[l,2] 答案:B9. 在ABC ∆中,已知tan tan 1A B ⋅>,则ABC ∆是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .最小内角大于45°的三角形 答案:C10. 在数列{}n a 中,若对任意的*n N ∈均有12n n n a a a ++++为定值,且79982,3,4a a a ===,则数列{}n a 的前100项的和100S =( )A .132B .299C .68D .99答案:B二、填空题:共7小题,每小题4分,满分28分。
11. sin 75cos30sin15sin150︒︒-︒︒=__________. 答案:2212. 若数列{}n a 的前n 项和23n S n n =+,则678a a a ++=________. 答案:4823.函数2cos 2sin y x x =+,R x ∈的值域是_________.答案:]1,0[14. 在ABC ∆中,a 、b 、c 分别为角A 、B 、C 所对的边,若2cos a b C =,则此三角形一定是________三角形. 答案:等腰15. 设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.答案:255-16.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,给出下列命题:①若a b c >>,则cos cos cos A B C >>; ②若A B C >>,则sin sin sin A B C >>;③若40,20,25a b B ===︒,则ABC ∆有两解;④必存在A 、B 、C ,使tan tan tan tan tan tan A B C A B C <++成立.其中,正确命题的编号为 .(写出所有正确命题的编号) 答案:②③17.某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120︒;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120︒;依此规律得到n 级分形图.(I) n 级分形图中共有_______条线段;(II) n 级分形图中所有线段长度之和为___________.答案:(Ⅰ)323n ⋅- (Ⅱ)299()3n -⋅三、解答题:共4小题,满分42分。
18.(本小题满分10分)等差数列{}n a 中,74a =,1992a a =. (1) 求{}n a 的通项公式;………………5′(2) 设1n nb na =,求数列{}n b 的前n 项和n S . 解:(1) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ). ………………2′解得a 1=1,d =12. ………………2′所以{a n }的通项公式为a n =n +12. ………………1′(2) b n =1na n =2n (n +1)=2n -2n +1, ………………3′所以S n =⎝⎛⎭⎫21-22+⎝⎛⎭⎫22-23+…+(2n -2n +1)=2n n +1. ………………2′ 19.(本小题满分10分)已知函数2π()cos 12f x x ⎛⎫=+ ⎪⎝⎭,1()1sin 22g x x =+.(1)设0x 是函数()y f x =的一个零点,求0()g x 的值; (2)求函数()()()h x f x g x =+的单调递增区间.【答案】1π3sin 2232x ⎛⎫=++ ⎪⎝⎭ ………………3′ 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数, 故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ) ………………2′20.(本小题满分10分)在ABC ∆中,角角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin a c A Bb A C+-=-. (1)求角C ;(2)求a bc+的取值范围. 解:(1)C A B A b c a sin sin sin sin --=+ca ba --=,化简得222c ab b a =-+, ………………2′ 所以212cos 222=-+=ab c b a C , ………………2′3π=C ………………1′ (2)C B A c b a sin sin sin +=+)]32sin([sin 32A A -+=π)6sin(2π+=A ………………2′因为)32,0(π∈A ,)65,6(6πππ∈+A , ………………2′ 所以]1,21()6sin(∈+πA . 故,cba +的取值范围是]2,1( ………………1′ 21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,13n S +是6与2n S 的等差中项(*n N ∈). (1) 求数列{}n a 的通项公式;(2)是否存在正整数k ,使不等式2*(1)()n n n k a S n N -<∈恒成立,若存在,求出k 的最大值;若不存在,请说明理由.(1)解法一:因为13n S +是6与2n S 的等差中项,所以1626n n S S ++=(*N n ∈),即1311+=+n n S S ,(*N n ∈) 当2n ≥时有1113n n S S -=+ ………………2′ 得111()3n n n n S S S S +--=-,即113n n a a +=对2n ≥都成立 ………………2′又21113S S =+即121113a a a +=+,所以211133a a ==所以)(31*1N n a n n ∈=-. ………………2′解法二: 因为13n S +是6与2n S 的等差中项, 所以1626n n S S ++=(*N n ∈),即1311+=+n n S S ,(*N n ∈) 由此得)23(31213123)131(231-=-=-+=-+n n n n S S S S (*N n ∈),又21232311-=-=-a S ,所以 3123231=--+n n S S (*N n ∈), 所以数列}23{-n S 是以21-为首项,31为公比的等比数列. ………………3′ 得1)31(2123-⨯-=-n n S ,即1)31(2123--=n n S (*N n ∈),所以,当2≥n 时,121131])31(2123[])31(2123[----=---=-=n n n n n n S S a ,又1=n 时,11=a 也适合上式, 所以)(31*1N n a n n ∈=-. ………………3′(2)原问题等价于()()21111113323n n nk --⎡⎤⎛⎫⎛⎫-<-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(*N n ∈)恒成立. ………………1′ 当n 为奇数时,对任意正整数k 不等式恒成立; ………………1′当n 为偶数时,等价于()2111123033n n k --⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭恒成立,令113n t -⎛⎫= ⎪⎝⎭,103t <<,则等价于2230kt t +-<恒成立, ………………2′因为k 为正整数,故只须21123033k ⎛⎫+-< ⎪⎝⎭,解得012k <<,*k N ∈,所以存在符合要求的正整数k ,且其最大值为11. ………………2′四、附加题:本大题共2小题,共20分。