生物电现象的发现及心肌细胞的生物电现象
心肌的生物电现象和

离子跨膜运输原理
心肌细胞膜对离子的选择性通透
心肌细胞膜上的离子通道和离子泵对特定离子具有选择性通透作用,使得细胞 内外的离子浓度存在差异。
离子浓度梯度与电化学驱动力
离子在浓度梯度和电化学驱动力的作用下,通过离子通道进行跨膜运输,形成 心肌细胞的生物电现象。
心肌细胞除极与复极过程
除极过程
心肌细胞在静息状态下,细胞膜内外存在电位差。当受到刺 激时,细胞膜上的钠离子通道开放,钠离子内流,导致细胞 膜电位发生变化,形成动作电位的上升支,即除极过程。
将光学标测技术与传统电生理技术相结合,可更全面地了解心肌电活动的时空变化特征。
心脏再生医学中生物电问题探讨
心肌细胞再生与生物电活 动的关系
心肌细胞再生过程中,生物电活动的恢复是 关键环节之一,需要深入探讨其机制。
生物电活动对心肌再生的影 响
生物电活动可通过影响心肌细胞的增殖、分化、迁 移等过程,进而影响心肌再生效果。
心肌缺血时,心肌细胞因缺氧而发生代谢障碍,导致生物 电活动出现异常,如ST段改变、T波倒置等。
要点二
生物电异常加重心肌缺血
生物电异常会进一步加重心肌缺血,形成恶性循环,严重 时可能导致心肌梗死等严重后果。
心肌肥厚与生物电改变
心肌肥厚伴随生物电改变
心肌肥厚是心脏对长期压力或容量负荷增加的适应性 反应,此过程中伴随着心肌细胞生物电活动的改变。
心律失常
折返激动是引发心律失常的重要原因之一。 当折返激动发生时,心脏的正常电生理顺序 被打乱,可能导致心脏收缩的协调性和效率 降低,进而引发各种类型的心律失常。
心肌生物电传播异常表现
01
传导阻滞
传导阻滞是指心肌组织中电信号传导的暂时性或永久性中断。这种异常
第二节 心肌的生物电现象和生理特征(4)

第二节心肌的生物电现象和生理特征(4)产生正常跨膜电位(静息电位和动作电位),但对于心肌细胞活动的调节以及异常电活动的电生产有着特别重要的意义。
重要的化学门控离子通道有以下三种;(1)乙酰胆碱控制的K+通道(I k-ACh):早年曾认为ACh激活的是I kl,近年发现是通过G蛋白激活开放了另一种与在生物物理学特性和生理学特性上均不相同的K+通道。
(2)ATP依从性K+通道(I k-ATP):ATP的作用并不是分解供能激活此通道,而是维持此通道在正常情况下处于关闭状态。
当心肌细胞内ATP降到临界水平以下时(如心肌缺血时),此种特殊的K+通道开放。
大量K+外漏以致缺血心肌细胞局部高钾而引起除极,诱发心律失常。
硫脲类药物可阻断此通道。
(3)I Na�Ck―Ca2+通道:是细胞内Ca2+增高时激活的一种非特异性正离子通道,载流离子是Na+和K+,形成一过性内向离子流(I ti)。
实验表明,在某些情况下,浦肯野细胞在动作电位复极后可产生一种除极电位(延迟后除极电位),当它达阈电位时就可以诱发另一个新的动作电位,形成异位搏动。
I ti就是延迟后除极电位的离子基础。
洋地黄中毒,细胞外低K+或低Na+,以及咖啡因、儿茶酚胺等可引起细胞内Ca2+超负荷的因素,均可诱发或加强I ti和延迟后除极电位。
二、心肌的电生理特性心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。
心肌的收缩性是指心肌能够在肌膜动作电位的触发下产生收缩反应的特性,它是以收缩蛋白质之间的生物化学和生物物理反应为基础的,是心肌的一种机械特性。
兴奋性、自律性和传导性,则是以肌膜的生物电活动为基础的,故又称为电生理特性。
心肌组织的这些生理特性共同决定着心脏的活动。
(一)心肌的兴奋性所有心肌细胞都具有兴奋性,即具有在受到刺激时产生兴奋的能力。
衡量心肌的兴奋性,同样可以采用刺激的阈值作指标,阈值大表示兴奋性低,阈值小表示兴奋性高。
1.决定和影响兴奋性的因素从关于兴奋产生过程的叙述中可知,兴奋的产生包括静息电位去极化到阈电位水平以及Na+通道(以快反应型细胞为例)的激活这样两个环节;当这两方面的因素发生变化时,兴奋性将随之发生改变。
4解剖生理学基础—第六章 循环系统4

3.心室舒张期与充盈
1).等容舒张期 心室肌舒张
→室内压↓→>房内压→房室瓣关
<主动脉压→主动脉瓣关
→心室密闭腔→心室容积不变、压力急剧↓
房内压<室内压<动脉压;
2).快速充盈期 室内压↓<房内压→房室瓣开→心房血被“抽吸”入 室 房室瓣开放,半月瓣关闭; 血液由心房快速流入心室,心室容积增大。 房内压>室内压<动脉压 3).减慢充盈期 房室压力梯度
心脏的泵血功能随不同生理情况的需要而改变。最终 是通过改变搏出量和心率来调节心输出量的。
(二)影响心排出量的因素
博出量的多少则决定于前负荷、后负荷和心肌收缩能 力等。 1、心肌前负荷 心室的前负荷:心室肌的初长度决定于心室舒张末期 的血液充盈量,换言之,心室舒张末期容积相当于心 室的前负荷。 前负荷↑→心肌初长度↑→肌缩力↑→搏出量↑(一定范 围)
⑸4 期缓慢除去的发生机理也与快反应细胞不同。
4 期缓慢去极主要由K+外流的进行性减衰和以Na+为 主的缓慢内流所引起。
4期自动去极化过程是形成自动节律性的基 础,也是自律细胞与非自律细胞生物电现 象的主要区别。
二、心肌的生理特性
兴奋性 自律性 电生理特性 传导性 收缩性 机械特性
这种不需要神经和体液因素参与,只是通过心 肌细胞本身初长变化而引起心肌细胞收缩强度的 变化过程。
临床上静脉输液时要严格控制输液量和输液速度, 防止发生急性心力衰竭。
异长自身调节:在一定范围内,静脉回流量增加,心 室舒张末期容积(即初长度)增加,则心室肌收缩力量 增强,博出量增多。这种通过心肌细胞本身初长度的 改变来对博出量进行调节的方式,称为异长自身调节。
心肌的生物电现象及节律性兴奋的产生与传导-精选文档

3期(快速复极末期)0mv→-90mv 100~150ms Ik电流。即K+外流。
4期(静息期) 电位稳定于RP水平。 Na+-K+泵活动 并有Ca++-Na+交换。
(二)影响心肌细胞兴奋性
的因素
1、静息电位水平
2、阈电位水平
备用
3、钠通道的状态 激活
失活
(三)兴奋性的周期性变化与收缩的关系 1.心室肌兴奋性的周期性变化
自律细胞 rhythmic cell: 例如 P细胞 浦氏cell
2、根据生物电活动尤其AP的0期除极 速度不同 快反应细胞 例如:心室肌细胞 慢反应细胞 例如:窦房结细胞
一、心肌细胞的生物电现象
心脏各部位不同类型的心 肌细胞的动作电位。
(1)工作细胞 的静息电位和动 作电位及成因
Resting potential 静息电位 -90mv 主要是K+外流
心肌的生物电象及节 律性兴奋的产生和传导
心肌生理特性: 兴奋性(excitability) 自律性(autorhythmicity) 传导性(conductivity) 收缩性(contractivity)
心肌细胞分类 1、根据组织学及功能不同
工作细胞 working cell: 例如 心室肌cell 心房肌cell
Action potential 动作电位 1. 除极过程:0期 -90→+20~30mv 1~2ms Na+ 内流
钠通道为快通道,其阻断剂河豚毒 开放 失活均快,阈电位-70~-55mv 快反应细胞 快反应电位
2.复极过程: 1期(快速复极初期)+20→0mv10ms 0期和1期合称锋电 spike potential Ito 电流,即K+外流
4、心肌细胞的生物电现象

心肌细胞的电生理学分类
• 据心肌细胞动作电位的电生理特征(特别 是0除极速率) • 快反应细胞包括:心房肌、心室肌和蒲肯 野细胞,其动作电位特点是:除极快、波 幅大、时程长。快反应电位 • 慢反应细胞包括窦房结和房室交界区细胞, 其动作电位特点是:除极慢、波幅小、时 程短。慢反应电位
心肌生理特性
• • • • • 自律性 兴奋性 传导性 收缩性 前三者为心肌的电生理特性,收缩性是心 肌的一种机械特性。它们共同决定着心脏 的活动。
自律性
• 组织细胞能够在没有外来刺激的条件下, 自动发生节律性兴奋的特性。 • 衡量指标:自动兴奋的频率。
• 正常情况下,窦房结的自律性最高,100次/分。 它自动产生的兴奋依次激动心房肌、房室交界、 房室束及其分支和心室肌,引起整个心脏兴奋和 收缩。由于窦房结是正常心脏兴奋的发源地,又 是统一整个心脏兴奋和收缩节律的中心,故称为 心脏的正常起搏点。故由窦房结控制的心跳节律, 称为窦性节律。而正常情况下,窦房结以外的心 脏自律组织因受窦房结兴奋的控制,不表现其自 律性,故称为潜在起搏点。
心室肌细胞跨膜电位及其产生机理
• 1.静息电位:心室肌细胞在静息时,细胞膜处于内正外负的极化状 态,其主要由K+ 外流形成。 • 2.动作电位:心室肌动作电位的全过程包括除极过程的0期和复极过 程的1、2、3、4等四个时期。 • 0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到 +30mV左右,构成了动作电位的上升支,称为除极过程(0期)。它 主要由Na+内流形成。 • 1期:在复极初期,心室肌细胞内电位由+30mV迅速下降到0mV左右, 主要由K+ 外流形成。 • 2期:1期复极到0mV左右,此时的膜电位下降非常缓慢它主要由 Ca2+内流和K+ 外流共同形成。 • 3期:此期心室肌细胞膜复极速度加快,膜电位由0mV左右快速下降 到-90mV,历时约100~150ms。主要由K+的外向离子流(Ik1和Ik、Ik 也称Ix)形成。 • 4期:4期是3期复极完毕,膜电位基本上稳定于静息电位水平,心肌 细胞已处于静息状态,故又称静息期。Na+、 Ca2+ 、K+的转运主要 与Na+--K+泵和Ca2+泵活动有关。关于Ca2+的主动转运形式目前多 数学者认为:Ca2+的逆浓度梯度的外运与Na+顺浓度的内流相耦合进 行的,形成Na+- Ca2+交换。
心肌细胞的生物电现象

5
—心传导系, 主要包括窦 房结P细胞和 哺肯野细胞。 —普通心肌 细胞,不具 自动节律性。
一、工作细胞的跨 膜电位
一.静息电位 静息电位-90mV。 K+平衡电位。 一.动作电位 常用0、1、2、3、4期
代表心室肌细胞动作电 位的各个时期。
K+的一过性外 向电流。
(1)除极过程 又称0期,占1-2ms。 Na+快速内流 (2)复极过程 包括三个阶段: 1期复极 膜内电位由+30mV迅速下降到0mV左右,习
4期又称为静息期。
肌膜上Na+-K+泵从细胞内排出多余的 Na+和Ca2+,并摄入K+。
二、自律细胞的跨膜电位
心室肌(A)与窦房结(B)细胞跨膜电位的比较
一.窦房结细胞 动作电位复极后出现明显的
4期自动除极。 窦房结细胞的最大复极电位
(-70mV)和阈电位(40mV)。
0期除极结束时,膜内 电位为0mV左右
惯上常把这两部分合称为锋电位。
3期复极是快速K+外流。
2期复极 非常缓慢,又称为平台期,持续约100-150ms。 同时有Ca2+内向电流和K+外向电流。 3期复极 细胞膜复极速度加快,膜内电位由0mV左右较快地下降到-
90mV,完成复极化过程,占时约100-150ms 。
4期:
4期是膜复极完毕、膜电位恢复后的时 期。
1
下次课讨论:
心传系、自主神经与心肌工作细胞的结合
复极初期,K+通道被激活, 出现K+外流。
Ca2+内流的逐渐减少和 K+外流的逐渐增加,膜便 逐渐复极。
由“慢”通道所控制、由 Ca2+内流所引起的0期除 极,是窦房结细胞动作电 位的主要特征。
生物电现象举例
生物电现象举例生物电现象是指在生物体内产生的电流、电场和电压等现象。
生物电现象在生物学中起着重要的作用,例如在肌肉的收缩过程中,神经细胞的传导过程中,心脏起搏过程中等都与生物电现象密切相关。
以下是一些生物电现象的具体例子:1. 心脏电活动:心脏是由心肌细胞组成的,这些细胞在兴奋时会产生电位差,从而形成一系列心脏电活动。
其中最重要的是心脏起搏过程,即心脏在没有外界刺激下自主地产生心脏电活动,从而推动心脏肌肉进行有序的收缩和舒张。
心脏电活动可以通过心电图进行监测和记录,用于诊断心脏疾病和评估心脏功能。
2. 神经传导:神经细胞是生物体内传递信息的重要组织,其传导过程就是通过电信号的形式完成的。
当神经细胞受到外界刺激时,会产生电位差,从而引起神经冲动的传导。
这些神经冲动可以通过神经纤维传递到其他细胞或器官,从而实现生理功能的调节和控制。
3. 肌肉收缩:肌肉是由肌肉纤维构成的,当肌肉受到神经冲动刺激时,会产生电位差,从而引起肌肉收缩。
这种生物电现象是肌肉运动的基础,通过调控肌肉细胞内的电位差,可以控制肌肉的收缩和松弛,完成各种运动功能。
4. 脑电活动:大脑是人类最复杂的器官之一,其中包含了大量的神经元和突触连接。
当大脑神经元兴奋时,会产生电位差,从而形成脑电活动。
这种活动可以通过脑电图进行监测和记录,用于研究大脑功能和认知过程。
5. 细胞膜电位:细胞膜是细胞内外环境的分界线,其中含有大量的离子通道和离子泵。
当细胞兴奋或受到刺激时,会发生细胞膜电位的变化,从而引起细胞内外的离子流动和信号传导。
这种生物电现象在细胞的代谢、分化和信号传导中起着重要作用。
总之,生物电现象是生物体内一种重要的生理现象,它反映了生物体内各种细胞和组织之间的相互作用和调节。
通过深入研究生物电现象,可以更好地理解生命的奥秘,揭示生物体内各种生理功能的机制和规律。
心肌的生物电现象-2
(2) 4期自动去极化速度比窦房结细胞的慢,
故自律性低。
小结:快反应自律细胞的电位形成机制
3 期 末 K+ 通 道 的 递 增 性 失 活 K+ 递 减 性 外 流 电 位 复 极 至 -60mV 时 If 通 道 的 递 增 性 激 活 Na+ 递 增 性 内 流
断
自 动 去 极 达 阈 电 位 快 Na+ 通 道 开 放 Na+ 再 生 式 内 流 去 极 化→产 生 AP 的 0 期
自 动 去 极 达 阈 电 位(-40mV) 慢 Ca2+ 通 道(L型)开 放
Ca2+ 内 流 ↑
产 生 AP 的 0 期
(三)浦肯野细胞(快反应自律细胞)的电位
1.机制: 0、1、2、3期:与心室肌细胞基本相似。 4期:递增性Na+为主的内向离子流(If)+ 递减性外 向K+电流所引起的自动去极化 2.特点: (1) 0期去极化速快,幅度大(快反应)
3期(快速复极末期)
慢Ca2+通道失活 + Ik 通道通透性增加 ↓ K+再生式外流 ↓ 快速复极化 至RP水平
4期(静息期)
因膜内[Na+]和[Ca2+] 升高,而膜外[K+]升高 激活离子泵 排出Na+和Ca2+,泵入K+ 恢复正常离子分布。
小结:心室肌RP和AP的形成机制
工作细胞和自律细胞跨膜电位
4期:K+递减性外 流(IK) + Na+递增 性内流(If)+ Ca2+内流(ICa-T型 钙通道激活)→ 缓慢自动去极化
小结:慢反应自律细胞的电位形成机制
生物电现象举例
生物电现象举例下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!生物电现象是指生物体内部发生的一种电学现象,是由于生物体内部细胞膜上的离子通道导致的电压差异而产生的电位差。
心肌细胞的生物电现象和生理特性
复习题
一、名词解释 1.窦性节律 2.自律性
二、思考题 1、分析心室肌细胞的跨膜电位及其形成机制。 2、简述心肌的生理特性。
38
谢谢观看
心肌在没有外来刺激的情况下,能自动地发生节律 性兴奋的特性,称自动节律性,简称自律性。 产生机制:4期自动去极化
13
1.心脏的起搏点 窦房结100>房室交界50>房室束40>浦肯野纤维30
正常起搏点
潜在起搏点
窦性心律
异位心律
14
2.影响自律性的因素 ① 4期自动去极化速度
——速度快,则自律性高
▪ 代偿间歇:一次期前收缩后存在一段较长时间的心室舒 张期,称为代偿间歇。
28
形成原因
期前兴奋有自己的有效不应期,随后一次来自窦房 结的兴奋往往落在有效不应期中而形成一次“脱失” ,必 须等到下一次窦房结的兴奋传来才能引起兴奋和收缩。
31
兴奋性的周期性变化与收缩活动的关系 ▪ 有效不应期特别长,一直延续到心肌细胞舒张期开始之
2、动作电位:0、1、2、3、4五期
3
心室肌细胞动作电位的分期及其形成机制
AP分期
持续时间 离子活动
去极化 0期 1期
1~2 ms 10ms
Na+快速内流 K+外流
复极化 2期平台期 3期
静 息 4期
100~150ms 100~150ms
K+外流、Ca2+内流 K+外流 离子泵活动
心室肌细胞动作电位的主要特征: Ca2+缓慢内流而形成2期平台期,使复极化历时明显
9
心肌细胞的分类
▪ 根据自动节律性(4期有无自动去极化) 自律细胞 非自律(工作)细胞
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物电现象的发现及心肌细胞的生物电现象
一、关于生物电现象的研究
人类发现生物电现象,可追溯到公元前三世纪有关地中海电鳐等具有强烈震击。
直到十八世纪三十年代,才真正开始对生物电现象进行观察和研究。
1731年,英国人Gray.S.首先提出人体是可以带电的。
但在当时的条件下无法用实验来证明。
十八世纪末,意大利的医生和生理学家Galvani.A.在实验中发现,用金属导体连接蛙腿的神经和肌肉,肌肉就会收缩。
科学家们开始研究探讨,然而直接证明生物组织本身是否带电,是在使用了电流计之后才有可能。
电流计的发明使用,加速了生物电研究的进程,很快在肌肉、神经、甚至感官上都已证明确有生物电存在,并且在兴奋时这种电位会有波动。
对生物电现象的研究,是在研究生命的基本特征——兴奋性的过程中逐步展开的。
早在十九世纪中后期生理学家应用离体青蛙或蟾蜍的神经肌肉标本进行实验时,施加机械性或适当的电刺激后,肌肉则随之表现机械收缩。
人们就将这种能的记载力称为兴奋性。
实际上,几乎所有生物的活组织或细胞都具有某种程度的对外界刺激发生反应的能力,并将其广泛称为应激性。
兴奋性与应激性相比,使用范围就比较狭窄了,一般仅用于生理学中。
随着实验技术的发展,大量的实验表明:细胞处于兴奋状态时,尽管有不同的外部表现,但都有一个共同的、最先出现的反应,即受到刺激的细胞膜部分,膜两侧出现了一个特殊形式的电变化——动作电位,肌肉收缩、分泌活动等外部反应实为细胞膜动作电位进一步触发后产生,并且产生于受刺激部位的动作电位可沿着整个细胞膜扩散。
故而兴奋性重新被认为是细胞受到刺激时产生动作电位的能力。
动作电位就是生物电的表现形式之一,另外还有静息电位、局部电位等。
经前人研究总结,所谓静息电位就是细胞处于安静状态下(未受刺激时)膜内外的电位差。
表现为膜外相对为正而膜内相对为负;所谓动作电位就是可兴奋组织或细胞受到
阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。
近几十年来,由于对细胞和生物膜电生理的广泛研究,心肌电生理方面从五十年代记录出单根心肌纤维的静息和动作电位开始到现在,在这方面的研究已经有了很大的发展,下面就针对心肌细胞的生物电现象展开说明。
二、心肌细胞的生物电现象
组成心脏的心肌细胞并不是同一类型的,根据它们的组织学特点、电生理特性以及功能上的区别,粗略地分为两大类型:两类心肌细胞分别实现一定的职能,互相配合,完成心脏的整体活动。
一类是普通的心肌细胞,包括心房肌和心室肌,含有丰富的肌原纤维,执行收缩功能,故又称为工作细胞。
另一类是一些特殊分化了的心肌细胞,组成心脏的特殊传导系统;其中主要包括P细胞和哺肯野细胞,它们除了具有兴奋性和传导性之外,还具有自动产生节律性兴奋的能力,故称为自律细胞,它们含肌原纤维甚小或完全缺乏,故收缩功能已基本丧失。
还有一种细胞位于特殊传导系统的结区,既不具有收缩功能,也没有自律性,只保留了很低的传导性,是传导系统中的非自律细胞,特殊传导系统是心脏内发生兴奋和传播兴奋的组织,起着控制心脏节律性活动的作用。
心肌细胞具有三大电生理特性,包括兴奋性、自律性和传导性。
而这三大特性都与细胞内外离子运动情况有很大的关系。
心肌细胞的生物电现象也包括静息电位和动作电位。
下面就两者展开具体讨论:
1.心肌细胞的静息电位
对于一般的心肌细胞而言,其静息电位的形成机制主要是K+的扩散。
静息时,膜对K+的通透性较高,膜内的K+即因浓度差造成的扩散力而外流。
CL-虽然也存在浓度差但是由于在向膜内扩散时会受到膜内电场力的排斥作用,通透量不大,并且在该状态时,可以认为Na+几乎不通透。
总的结果膜外聚集较多的正离子,膜内为较多的负离子, 正、负电荷相互吸引使膜处于外正内负的极化状态。
以哺乳类心室肌而言,其静息电位约为-90毫伏。
在心肌细胞中也有个别较为特殊的细胞。
如窦房结等慢反应细胞的膜电位没有静息期,在一般情况下把其最大舒张压当做静息电位的参考。
但在特殊处理以
后也可测得其静息电位,比心室肌等快反应细胞的要小的多,其中可能的原因是窦房结对Na+的通透性较高。
2.心肌细胞的动作电位
心肌细胞动作电位的产生和心肌细胞膜上存在的一些特异性离子通道有密切关系。
通道的开闭能够控制有关离子的进出,从而控制其电导,影响膜内外离子的流动,产生各种离子电流。
并不是所有的心肌细胞的动作电位的发生是相同的,即各种心肌细胞兴奋时的离子电流活动情况不完全相同,因此动作电位的高度与形式也有差别。
如窦房结、房室交界动作电位的峰值较低。
上升到峰值的速度也比较慢。
心房肌与心室肌尤其是浦氏纤维的动作电位峰值较高,上升的速度也比较快。
一般来说,典型的心肌细胞动作电位可分为5个时期:O期,即除极期,1期,即快速复极初期,2期,即缓慢复极期,3期,即快速复极末期,4期,即静息期。
三、研究心肌细胞的生物电现象的实际意义
心肌细胞在静息和活动时伴有生物电(又称跨膜电位)变化。
研究和了解心肌的生物电现象对进一步理解心肌生理特性具有重大意义。
心房和心室不停歇地进行有顺序的、协调的收缩和舒张交替的活动,是心脏实现泵血功能、推动血液循环的必要条件,而细胞膜的兴奋过程则是触发收缩反应的始动因素。
因此,首先了解心肌细胞的生物电现象,然后,根据生物电现象就能够分析心肌兴奋和兴奋传播的规律和生理意义。
在近几年的研究中发现,除机械敏感通道开放产生的电流外, 人心肌细胞膜约有15 种以上电流源, 其中一种发生变化即可明显影响心脏的活动或药物的作用。
另外, 游离心肌细胞的电活动变化能否代表完整心脏(病变或健康)变化亦不清楚。
这些均有待于进一步研究。
且随着分子生物技术的发展, 不仅N a+ , K+ 及Ca2+ 通道的克隆已成为现实, 且能建立可永久表达一种或几种离子通道亚单位或和特异性膜受体的细胞株以供药理学研究。
根据特异性探针对正常与病变心肌细胞中某一离子通道或受体的mRNA 进行定量亦成为可能。
无疑, 电生理学与分子生物学的结合, 将为建立结构功能研究模型、探索心脏病理学机制、研制更多特效药物带来新的希望。
参考文献
[1]张责恕.生物电现象的发现过程及产生机制.沧州师范专科学校学报.第15卷第2期.1999-6
[2]袁毅君,张敏,马纲.生物电现象与神经细胞动作电位.天水师范学院学报.第23卷第2期.2003-4
[3]侯应龙,臧益民,商立军,张宁仔.人心肌细胞电生理及其病理生理学意义.心功能杂志.1999-11
[4]李秀娟.心肌细胞药代动力学模型讨论初步.硕士学位论文
[5]沈佩芳.心肌细胞的生物电现象及其形成机制。