2016年北京西城高三一模数学试卷(理科答案)

合集下载

2016一模理数

2016一模理数

2016高三一模汇编【理科】1、海淀一模(试卷+答案)2、西城一模(试卷+答案)3、东城一模(试卷+答案)4、朝阳一模(试卷+答案)5、石景山一模(试卷+答案)6、丰台一模(试卷+答案)北京市海淀区2015-2016学年度第二学期高三综合练习(一)数学试卷(理科)2016.4一、选择题(本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1、函数()f x=A.[0,)+∞B.[1,)+∞C.(,0]-∞D.(,1]-∞2、某程序的框图如图所示,若输入的z i=(其中i为虚数单位),则输出的S=A.1-B.1C.i-D.i3、若x,y满足2040x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y=+的最大值为A.52B.3C.72D.44、某三棱锥的三视图如图所示,则其体积为A.3B.2C.3D.35、已知数列{}n a 的前n 项和为n S ,则“{}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6、在极坐标系中,圆1:2cos C ρθ=与圆2:2sin C ρθ=相交于,A B 两点,则AB =A .1BC D .27、已知函数sin()0()cos()x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ== 8、某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的收益如右表所示,若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是 A .甲只能承担第四项工作 B .乙不能承担第二项工作 C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题(本大题共6小题,每小题5分,共30分) 9、已知向量(1,),(,9)a t b t ==,若//a b ,则t =_________.10、在等比数列{}n a 中,22,a =且131154a a +=,则13a a +=_________. 11、在三个数1231,2,log 22-中,最小的数是_________.12、已知双曲线2222:1x y C a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离,则C 的方程为_______________.13、如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3中的一个. (1)当每条边上的三个数字之和为4时,不同的填法有种; (2)当同一条边上的三个数字都不同时,不同的填法有种.14、已知函数()f x ,对于实数t 若存在0,0a b >>,满足[,]x t a t b ∀∈-+,使得()()2f x f t -≤,则记a b +的最大值为().H t(1)当()2f x x =时,(0)H =;(2)当2()f x x =且[1,2]t ∈时,函数()H t 的值域是.三、解答题共6小题,共80分。

北京市西城区高三数学一模试卷 文(含解析)

北京市西城区高三数学一模试卷 文(含解析)

北京市西城区2016届高三一模文科数学试卷一、单选题1.设集合,集合,则()A. B.C. D.【知识点】集合的运算【试题解析】所以。

故答案为:B【答案】B2.设命题p:,则p为()A. B.C. D.【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。

故答案为:A【答案】A3.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

故答案为:B【答案】B4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C【答案】C5.在平面直角坐标系中,向量=(1,2),=(2,m),若O,A,B三点能构成三角形,则()A. B. C. D.【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

若O,A,B三点共线,有:-m=4,m=-4.故要使O,A,B三点不共线,则。

故答案为:B【答案】B6.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.36【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

故答案为:D【答案】D7.设函数,则“”是“函数在上存在零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【知识点】零点与方程【试题解析】因为所以若,则函数在上存在零点;反过来,若函数在上存在零点,则则故不一定。

故答案为:A【答案】A8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A.最多可以购买4份一等奖奖品 B.最多可以购买16份二等奖奖品C.购买奖品至少要花费100元 D.共有20种不同的购买奖品方案【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

2016年1月西城区高三期末理科数学试题及答案..

2016年1月西城区高三期末理科数学试题及答案..

北京市西城区2015 — 2016学年度上学期期末试卷高三数学(理科)2016.1本试卷分第I 卷和第n 卷两部分,第I 卷I 至2页,第n 卷3至5页,共150 分.考试时间120分钟.考生务必将答案答在答题卡上,在试卷上作答无效•考试结束后,将本试卷和答题卡一并回交.第I 卷(选择题共40 分)一、 选择题:本大题共 8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A 二{x|x 1},集合B ^{a 2},若A 「B 二.一,则实数a 的取值范围是()(A ) (「:, -1]( B ) (_::,1](C ) [-1, ::)( D ) [1,::)2. 下列函数中,值域为 R 的偶函数是()(A ) y =x 2 1( B ) y =e x d (C ) y =lg|x|( D ) y =;汉1 113. 设命题p :“若sin ,则 ”,命题q :“若a . b ,则 ",则()26a b(A )" p q ”为真命题 (B )" p q ”为假命题 (C )" —q ”为假命题(D )以上都不对4. 在数列{a n }中,“对任意的n E N *, a^ =a n a n 七”是“数列{a .}为等比数列”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件5. 一个几何体的三视图如图所示,那么这个几何体的表面积是((C ) 20 2 3(D ) 20 2 5y -x W 1,6. 设x , y 满足约束条件 x y < 3,若z=x ,3y 的最大值与7. 某市乘坐出租车的收费办法如下: 不超过4千米的里程收费12元;超过4千米的里程按每千米 2元收费(对于其中不足千米的部分,若其小于 0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.(A) 16 2 3 (B ) 16 2、、5泸m,最小值的差为7,则实数m =( )33 1 1 (A )- (B ) --— (D ) 24 4 俯视图侧(左)视图相应系统收费的程序框图如图所示,其中 为行驶里程,y (单位:元)为所收费用,用 最大整数,则图中①处应填()1(A) y =2[x] 4 2 1(B) y =2[x ] 5 2 (C) y =2[x -]42 1(D) y =2[x ] 5 28.如图,正方形 ABCD 的边长为6,点E , F 分别在边AD , BC 上,且DE =2AE , CF =2BF .如果对于常数,,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得PE PF^成立,那么■的取值范围是 ()(A ) (0,7)( B ) (4,7)(C ) (0,4)( D ) (—5,16)第 H 卷 (非选择题共110分)9. ____________________________________________ 已知复数Z 满足z(1 +i) =2 —4i ,那么z =10•在 MBC 中,角 A , B , C 所对的边分别为 a , b , c.若 A = B , a=3 , c = 2,则 cosC= __________________ .2 211.双曲线C : — _________________ =1的渐近线方程为 ;设F 1, F 2为双曲线C 的左、右焦点,P 为C 上一点,16 4且 | Ph |=4,则 | PF 2 |= ________ .12. 如图,在 ABC 中,.ABC=90 , AB =3 , BC =4,点O 为BC 的中点,以BC 为 直径的半圆与 AC , AO 分别相交于点 M , N ,则AN =; AM =.MC ------------------13. 现有5名教师要带3个兴趣小组外出学习考察, 要求每个兴趣小组的带队教师至、填空题:本大题共 6小题,每小题5分,共30分.多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有________ 种.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:°C )满足函数关系七^0,且该食2 , x>0.品在4「C的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:D该食品在^C的保鲜时间是8小时;15. (本小题满分13分)已知函数f(x) =cosx(sinx 亠,3cosx) , x := R . 2(I)求f(x)的最小正周期和单调递增区间;(n)设.0,若函数g(x)=f(x*)为奇函数,求:•的最小值.16. (本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分•两人4局的得分情况如下:甲6699乙79x y(I)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(n)如果x = y =7,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(川)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值•(结论不要求证明)17. (本小题满分14 分)如图,在四棱锥P _ABCD中,底面ABCD是平行四边形,.BCD =135 ,侧面PAB _底面ABCD,. BAP=90j AB = AC = PA = 2 , E, F分别为BC,AD的中点,点M 在线段PD上.(I)求证:EF —平面PAC ; (n)若M为PD的中点,求证:ME //平面PAB ;(川)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求PM的值.PD218.(本小题满分13分)已知函数f (x)二X -1,函数g(x) = 2t In x,其中t < 1 .(I)如果函数f (x)与g(x)在x 处的切线均为l,求切线l的方程及t的值;(n)如果曲线y = f (x)与y = g (x)有且仅有一个公共点,求t的取值范围.D2 2 —在椭圆C上.19.(本小题满分14分)已知椭圆C二笃=A(a b ■ 0)的离心率为-2,点A(1 a b 2(I)求椭圆C的方程;(n)设动直线I与椭圆C有且仅有一个公共点,判断是否存在以原点o为圆心的圆,满足此圆与I相交两点P , P2 (两点均不在坐标轴上),且使得直线OP , OP2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由•20.(本小题满分13分)在数字12川,n(n》2)的任意一个排列A :卯a?,川,4中,如果对于i,『,icj , 有a i ■ a j ,那么就称(a,a j)为一个逆序对•记排列A中逆序对的个数为S(A).如n=4 时,在排列B: 3, 2, 4, 1 中,逆序对有(3,2) , (3,1), (2,1) , (4,1),则S(B)=4.(I)设排列C:3, 5, 6, 4, 1,2,写出S(C)的值;(n)对于数字1 , 2,「•,n的一切排列A,求所有S(A)的算术平均值;(川)如果把排列A:知a2jll, a n中两个数字a「a j(i cj)交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A': b n b2,川,b n,求证:S(A) S(A)为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1、选择题:本大题共 8小题,每小题 1. A 2. C 5. B6. C二、填空题:本大题共 6小题,每小题9. -1 -3i111. yx21213. 54注:第11,12题第一问2分,第二问 5分,共40分.3 . B 4. B7. D8. C5分共30分.710. 912..13-29 16因为函数g (x )为奇函数,且R ,三、解答题:本大题共 6小题,共80分.其他正确解答过程,请参照评分标准给分 15.(本小题满分13分) J 3 (I) 解:f(x) =cosx(si n x ….f 3 cosx) - 丁 =sin x cosx f (2cos 2x -1) 1 • c 3 c sin 2x cos2x 2 2所以函数f (x )的最小正周期 2n =n . 2由 2k n w 2xW 2kn ■ — , k Z ,2325 nn得 k nw x < k T + —,1212所以函数f(x)的单调递增区间为[“-石,k n+ —] , k - Z .5 nn(注:或者写成单调递增区间为(k n-k n + ) , k ,Z .)12 124分 6分7分9分解:由题意,得 g(x)二 f (x 叱)二sin(2x 2:11分n 所以 2.二川_ k n,Z ,3解得〉k • Z ,验证知其符合题意.2 6 又因为二:0 ,n 所以:-的最小值为—. .......... 13分_16. (本小题满分13分)(I)解:记“从甲的4局比赛中,随机选取 2局,且这2局的得分恰好相等”为事件 A ,2 1由题意,得P(A )二C 7 =_ ,1所以从甲的4局比赛中,随机选取 2局,且这2局得分恰好相等的概率为 -.……4分(H)解:由题意,X 的所有可能取值为13 , 15 , 16 , 18 ,................... 5分所以X 的分布列为:X 13 15 16 18 P3 1 3 1 88883 13 1所以E(X) =13工巴+15疋丄+16工2+18疋丄=15.8 8 8 8 (川)解:X 的可能取值为6 , 7 , 8. 17. (本小题满分14分)(I)证明:在平行四边形 ABCD 中,因为AB =AC , BCD =13引, 所以AB _ AC .由E,F 分别为BC, AD 的中点,得EF//AB , 所以EF _AC因为侧面PAB —底面ABCD ,且• BAP =90® , 所以PA _底面ABCD .又因为EF 底面ABCD , 又因为 PAf] AAC =A , PA 二平面 PAC , AC 二平面 PAC , 所以EF _平面PAC .且 P(XT3)1 P(X 胡5)飞, 3P(X “6)託, 1P(X =18)飞,10分 13分所以 g(0) =0,即 sin(2:.(川)解:因为PA_底面ABCD , AB _AC ,所以AP, AB, AC 两两垂直,故以 AB, AC, AP分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则 A(0,0,0), B(2,0,0), C(0,2,0), P(0,0,2), D(£2,0), E(1,1,0),T —I T所以 PB =(2,0, -2), PD =(-2,2, ~2) , BC =(-2,2,0) , ................... 10 分PM ^^4 设伙=,(,.[0,1]),贝y P^(-2 ,2 ,-2 ),PD所以 M(2,2,,2-2), ME =(1 2,,1—2, ,2,—2), 易得平面ABCD 的法向量m =(0,0,1). ................... 11分设平面PBC 的法向量为n =(x, y, z), 由 n BC =0, n PB =0,得_2x 2y =0,gx —2z =0,令 x =1,得 n =(1,1,1).................... 12 分因为直线ME 与平面PBC 所成的角和此直线与平面 ABCD 所成的角相等,所以 |cos :::ME, m 冃 cos ::: ME, n |,即 型F m 丨二均F n 丨, (13)分|ME| | m | |ME| |n |. 2九 所以|2' -2円<1, 解得.3,或.」3(舍)............ 14分^2^218. (本小题满分13分)2t(H)证明:因为M 为PD 的中点,F 分别为AD 的中点,所以ME//平面PAB. ................... 9分D(I)解:求导,得f (x) =2x , g(X)=2t, (x .0) . .................. 2 分x由题意,得切线I的斜率k=f(1)=g(1),即k=2t=2,解得t =1. .............. 3分又切点坐标为(1,0),所以切线I的方程为2x — y—2=0 . ..................... 4分(n)解:设函数h(x) = f (x) -g(x) =x2一1 -2tln x , x (0, ;). ...................... 5 分y = h(x)有且仅有"曲线y = f (x)与y =g(x)有且仅有一个公共点”等价于"函数个零点”.2t 2 x2_ 2t求导,得h(x) =2x 一三二'•x x①当t< 0时,由x (0,::),得h (x) 0 ,所以h(x)在(0,;)单调递增.又因为h(1)=0,所以y =h(x)有且仅有一个零点1,符合题意.②当t =1时,当x变化时,h(x)与所以h(x)在(0,1)上单调递减,在(1,;)上单调递增,所以当x =1 时,h(X)min = h(1) = 0 ,故y =h(x)有且仅有一个零点1,符合题意. ........... 10分③当0 :: t :::1时,令h (x) = 0,解得 ^ = . t .当x变化时,h (x)与h(x)的变化情况如下表所示:Array所以h(x)在(0, t)上单调递减,在c.t,;)上单调递增,所以当x = .,t 时,h(x)mi n二h(・t) . ................ 11 分因为h⑴=0 , ..t :::1,且h(x)在上单调递增,所以h(、f) :::h(1)=0.1 1 1 1 1又因为存在(0,1) ,h(e 枕)=e 耳-1 -2tl ne 页二■ 0,所以存在x^ (0,1)使得九沧)=0 ,所以函数y =h(x)存在两个零点x0 , 1,与题意不符•综上,曲线y=f(x)与y=g(x)有且仅有一个公共点时,t的范围是{t|t<0,或t =1} •.................... 13分19. (本小题满分14分)(I)解:由题意,得°=七'3, a2二b2• c2, ....................... 2分a 2又因为点“1,二)在椭圆C上,2所以丄• 2 =1 , ..................... 3分a24b2解得 a =2 , b =1 , c = • 3 ,2所以椭圆C的方程为—y2 =1. ..................... 5分4(H)结论:存在符合条件的圆,且此圆的方程为x2 y2 =5. ...................... 6分证明如下:假设存在符合条件的圆,并设此圆的方程为x2y^r2(r 0).当直线l的斜率存在时,设I的方程为y = kx m . ................... 7分y 二kx m, 由方程组x2 2 得(4k2 1)x2 8kmx 4m2 -4 =0, 8 分u y =1,因为直线I与椭圆C有且仅有一个公共点,所以 1 =(8km)2 _4(4k2 1)(4m2 -4) =0,即m2=4k2 1 . .................... 9 分y =kx m,2 2 22由方程组2 22 得(k 1)x 2kmx m -r =0 , .................... 10 分[x +y =r ,则 2 =(2km)2 _4(k 2 1)(m 2 _r 2) 0.设直线OR , OP 的斜率分别为k 1 , k 2,2 2所以当圆的方程为 x y -5时,圆与I 的交点13分当直线I 的斜率不存在时,由题意知 I 的方程为x = 2,1 此时,圆x 2+y 2=5与I 的交点R,P 2也满足k 1k 2=—.41 综上,当圆的方程为 x2 y^5时,圆与I 的交点R,P 2满足斜率之积k !k 2为定值.4.................... 14分20. (本小题满分13分)(I)解:S(C) =10 ; (H)解:考察排列 D : a,d 2, IH, d n 」,d n 与排列 D 1:d n ,山,d 2,a ,因为数对(d i ,d j )与(d j ,d i )中必有一个为逆序对(其中 1wi :::j < n ), 且排列D 中数对(d i ,d j )共有C :二葺卫个, 所以 S(D) S(DJ 』;T ).所以排列D 与D 1的逆序对的个数的算术平均值为n(n T) 4设 P(X i ,yJ ,卩2(% y),则 X i - X 2-2 kmk 2 12 2m -rx2 2~k 111分2 2y 1y 2(kx 1 m)(kx 2 m) k x 1x 2 km(x 1 x 2) m所以补2x 1x 2x 1x 2NX 22 2,2 m -r k 厂k 2 12 2 m -r k 2 1km 学 m 2 k 2 +1 2 2 2m -r k 2 2 , m —r12分2 2将m =4k 1代入上式,得 k 1 k 22 2(4 -r )k 1 22~4k (1 — r )要使得Kk 2为定值,则 土丄4121 -r ,即r 2=5,验1R,P 2满足k 1k 2为定值2而对于数字1,2,…,n的任意一个排列A:a i,a?,川,a n,都可以构造排列A i:a n, a2, a ,且这两个排列的逆序对的个数的算术平均值为血却.4所以所有S(A)的算术平均值为12卫. ............ 7分4(川)证明:①当j -i 1,即厲,引相邻时,不妨设a, ::: a, i,则排列A•为a i, a?,川,a*, a’,a” q .2,川,a.,此时排列A■与排列A:印,a?,川,a n相比,仅多了一个逆序对(a, i,aj ,所以S(A) =S(A) 1,所以S(A) S(A) =2S(A) 1 为奇数. ..................... 10 分②当j - i 1,即a, ,a j不相邻时,假设a,,a j 之间有m 个数字,记排列A: a1, a:. Ill a,, 6 k:, ,lllk m,印,|||, a.,先将a,向右移动一个位置,得到排列A1:ai, a:, HI, a—心a,, k2, J|l,k m, a j,lli, a n,由②,知S(A)与S(A)的奇偶性不同,再将a,向右移动一个位置,得到排列A2:3, a2, a—匕,k:, a,, k3,||),k m, a」,川,% , 由②,知S(A,)与S(A)的奇偶性不同,以此类推,a,共向右移动m次,得到排列A m: a1, a2, IIIK, k2川l,k m, a, a j,|||, a.,再将a」向左移动一个位置,得到排列A m+1: a1, a2,山,a』,匕,||),k m,a j, a,,山,a n , 以此类推,q共向左移动m+1次,得到排列A2m+1: a1, a2, HI, %,匕,11), k m, a,HI,a n, 即为排列A ,由②,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化,而排列A经过2m十1次的前后两数交换位置,可以得到排列A:所以排列A与排列A•的逆序数的奇偶性不同,所以S(A) S(A)为奇数.13分综上,得S(A) S(A)为奇数.。

2016-1市西城区高三上学期期末数学(理)试卷

2016-1市西城区高三上学期期末数学(理)试卷

北京市西城区2015 — 2016学年度上学期期末试卷高三数学(理科) 2016.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞-(B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D )2y x = 3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14 (D )14-侧(左)视图正(主)视图俯视图22 1 1开始 4x >输出y 结束否 是 输入xy=12○1 7. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+ (B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.E FD P C A BB OC A NM12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下: 甲 6 6 9 9 乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ;(Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.18.(本小题满分13分)已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.F CADPMB E已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点3(1,)2A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±12 12. 132- 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos222x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>,所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:X 13 15 16 18P38 1838 18……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………5分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 2|22|||3λλ-=, 解得332λ-=,或332λ+=(舍). ………………14分18.(本小题满分13分)F CADPMB Ezyx(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分 (Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,1)1(1,)+∞()h x '-0 +()h x↘↗所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时, 令()0h x '=,解得x t =.当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,)t t(,)t +∞()h x '-0 +()h x↘↗所以()h x 在(0,)t 上单调递减,在(,)t +∞上单调递增, 所以当x t =时,min()()h x h t =. ………………11分因为(1)0h =,1t <,且()h x 在(,)t +∞上单调递增,所以()(1)0h t h <=.又因为存在12e (0,1)t -∈ ,111122()12ln 0t t t t h t ----=--=>e e e e ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ………………2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-. 要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时,不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a , 再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。

北京市西城区2016届高三上学期期末考试数学理试题(WORD精校版)

北京市西城区2016届高三上学期期末考试数学理试题(WORD精校版)

市西城区2015 — 2016学年度第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若AB =∅,则实数a 的取值X 围是()(A )(,1]-∞-(B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是()(A )21y x =+(B )e e x x y -=-(C )lg ||y x =(D)y3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则() (A )“p q ∧”为真命题(B )“p q ∨”为假命题 (C )“q ⌝”为假命题(D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的() (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是() (A)16+(B)16+ (C)20+(D)20+侧(左)视图正(主)视图俯视图6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥若3z x y =+的最大值与最小值的差为7,则实数m =()(A )32(B )32-(C )14(D )14-7.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1(A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值X 围是() (A )(0,7)(B )(4,7) (C )(0,4) (D )(5,16)-FD P C B第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1该食品在6C 的保鲜时间是8小时;○2当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3到了此日13时,甲所购买的食品还在保鲜时间内; ○4到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()cos(sin)f x x x x=,x∈R.(Ⅰ)求()f x的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f xα=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,135BCD∠=,侧面PAB⊥底面ABCD,90BAP∠=,2AB AC PA===, ,E F分别为,BC AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证://ME平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求PMPD的值. FCA DPMB E18.(本小题满分13分)已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值X 围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列C :3, 5, 6, 4, 1, 2,写出()S C 的值; (Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±1212291613.54 14.○1○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =+2sin cos 1)x x x =-1sin 22x x =………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =.………………7分 由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z .………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=,………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>,所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18,………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:……………… 8分所以3131()13151618158888E X =⨯+⨯+⨯+⨯=.………………10分(Ⅲ)解:x 的可能取值为6,7,8.………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB , 所以EF AC ⊥.………………1分因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD , 所以PA EF ⊥.………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC .………………4分(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB .………………5分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB .………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系, 则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-,………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)=m .………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, 所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n ,………………13分D所以 |22|λ-=,解得λ=λ=.………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >.………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =.……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=.………………4分(Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞.………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分①当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意.………………8分②当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意.………………10分③当01t <<时,令()0h x '=,解得x .当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x在上单调递减,在)+∞上单调递增,所以当x=时,min()h x h=.………………11分因为(1)0h=1<,且()h x在)+∞上单调递增,所以(1)0h h<=.又因为存在12e(0,1)t-∈,111122()12ln0t t t th t----=--=>e e e e,所以存在0(0,1)x∈使得()0h x=,所以函数()y h x=存在两个零点x,1,与题意不符.综上,曲线()y f x=与()y g x=有且仅有一个公共点时,t的X围是0{|t t≤,或1}t=.………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得ca=,222a b c=+, (2)分又因为点A在椭圆C上,所以221314a b+=,………………3分解得2a=,1b=,c,所以椭圆C的方程为1422=+yx. ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y+=.………………6分证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r+=>.当直线l的斜率存在时,设l的方程为mkxy+=.………………7分由方程组22,1,4y kx mxy=+⎧⎪⎨+=⎪⎩得0448)14(222=-+++mkmxxk,………………8分因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+.………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=,………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+,………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r kmk km m m r k k k m r m r k --⋅+⋅+-++==--+,………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分20.(本小题满分13分)(Ⅰ)解:()10S C =;………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤),且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个,………………3分所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -.………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -.………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数.………………10分 ○2当1j i ≠+,即,i j a a 不相邻时, 假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同, 以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数.………………13分。

北京市西城区2016届高三上学期期末考试数学理试题(WORD版)-含答案

北京市西城区2016届高三上学期期末考试数学理试题(WORD版)-含答案

北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(理科) 2016.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D )2y x =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+侧(左)视图正(主)视图俯视图22 1 1开始 4x >输出y 结束否 是 输入xy=12○1 6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-第Ⅱ卷(非选择题 共110分)E FD P C A BB OC A NM二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下: 甲 6 6 9 9 乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.18.(本小题满分13分)F CADPMB E已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点3(1,)2A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.13i -- 10.7911.12y x =±12 12. 132- 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos222x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:X 13 15 16 18P38 1838 18……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB ,FADPMz所以//MF 平面PAB . ………………5分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 2|22|||3λλ-=, 解得332λ-=,或332λ+=(舍). ………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分(Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,1)1(1,)+∞()h x '-0 +()h x↘↗所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时, 令()0h x '=,解得x t =.当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,)tt(,)t +∞()h x '-0 +()h x↘↗所以()h x 在(0,)t 上单调递减,在(,)t +∞上单调递增, 所以当x t =时,min()()h x h t =. ………………11分因为(1)0h =,1t <,且()h x 在(,)t +∞上单调递增, 所以()(1)0h t h <=.又因为存在12e(0,1)t-∈ ,111122()12ln 0tttth t ----=--=>ee ee ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ………………2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分(Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a , 再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。

2016年高考北京理科数学试题及答案(word解析版)

2016年高考北京理科数学试题及答案(word解析版)

2016年高考北京理科数学试题及答案(word解析版)2016年普通高等学校招生全国统一考试(北京卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2016年北京,理1,5分】已知集合{}|2A x x =<<,{}1,0,1,2,3=-,则A B =I ( )(A ){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D ){}1,0,1,2-【答案】C【解析】集合{}22A x x =-<<,集合{}1,0,1,2,3B x =-,所以{}1,0,1A B =-I ,故选C .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.(2)【2016年北京,理2,5分】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5【答案】C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2016年北京,理3,5分】执行如图所示的程1,2()2x +y =02x-y=0x =0x +y =3序框图,若输入的a 值为1,则输出的k 值为( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =,故选B .【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(4)【2016年北京,理4,5分】设a r ,b r 是向量,则“a b =r r ”是“a b a b +=-r r r r ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】D 【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r 表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b-r r r r 不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r 不一定成立,从而不是必要条件,故选D .【点评】本题考查的知识点是充要条件,向量的模,分析出“a b =r r ”与“a b a b +=-r r r r ”表示的几何意义,是解答的关键.(5)【2016年北京,理5,5分】已知x y ∈R ,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y ->_ (C )11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭ (D )ln ln 0x y +>【答案】C【解析】A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y-<所以A 错; B .考查的 是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12x y ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错,故选C .【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.(6)【2016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16 (B )13(C )12 (D )1【答案】A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==,故选A .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(7)【2016年北京,理7,5分】将函数sin 23y x π⎛⎫=- ⎪⎝⎭图象上的点,4P t π⎛⎫ ⎪⎝⎭向左平移()0s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图象上,则( )(A )12t =,s 的最小值为6π (B )3t =,s 的最小值为6π (C )12t =,s 的最小值为3π (D )3t ,s 的最小值为3π 【答案】A 【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6,故选A .【点评】本题考查的知识点是函数()()sin 0,0y x A ωϕω=+>>的图象和性质,难度中档.(8)【2016年北京,理8,5分】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.故选B .【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题.二、填空题:共6小题,每小题5分,共30分。

北京2016各区模拟高三理科数学一模、二模分类之压轴题部分

北京2016各区模拟高三理科数学一模、二模分类之压轴题部分

{西城}16年高三一模 理科 数学20.设数列{}n a 和{}n b 的项均为m ,则将数列和的距离定义为1mi ii a b=-∑.(Ⅰ)该出数列1,3,5,6和数列2,3,10,7的距离 (Ⅱ)设A 为满足递推关系111nn na a a ++=-的所有数列{}n a 的集合,{}n b 和{}n c 为A 中的两个元素,且项数均为m ,若12b =,13c =,{}n b 和{}n c 的距离小于2016,求m 得最大值;素的距离大于或等于3,证明:中的元素个数小于或等于16.{顺义}16年高三一模 理科 数学20.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在,使得.{海淀}16年高三一模 理科 数学20.(本小题满分13 分)给定正整数n (n ≥3),集合{}1,2,,n U n =⋅⋅⋅.若存在集合A ,B ,C ,同时满足下 列条件:① U n =A ∪B ∪C ,且A ∩B = B ∩C =A ∩C =∅;②集合A 中的元素都为奇数,集合B 中的元素都为偶数,所有能被3 整除的数都在集 合C 中(集合C 中还可以包含其它数);③集合A , B ,C 中各元素之和分别记为S A , S B ,S C ,有S A =S B =S C ; 则称集合 U n 为可分集合.(Ⅰ)已知U 8为可分集合,写出相应的一组满足条件的集合A , B ,C ; (Ⅱ)证明:若n 是3 的倍数,则U n 不是可分集合; (Ⅲ)若U n 为可分集合且n 为奇数,求n 的最小值. (考生务必将答案答在答题卡上,在试卷上作答无效){东城}16年高三一模 理科 数学20.(本小题共13 分)数列{}n a 中, 给定正整数m (m >1),V (m )=111||m i i i aa -+=-∑.定义:数列{}n a 满足1i i a a +≤(i =1,2,…,m -1),称数列{}n a 的前m 项单调不增. (1)若数列{}n a 的通项公式为(1),(*)n n a n N =-∈,求V (5).(2)若数列{}n a 满足:1,,(1,*,)m a a a b m m N a b ==>∈>,求证:V (m )=a -b 的充分必要条件是数列{}n a 的前m 项单调不增.(3)给定正整数m (m >1),若数列{}n a 满足:0n a ≥,(n =1,2,…,m ),且数列{}n a 的前m 项和为m 2,求V (m )的最大值与最小值.(写出答案即可){朝阳}16年高三一模 理科 数学20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.{80零模}16年高三一模 理科 数学20.(本小题满分13分)对于任意的*n ∈N ,记集合{1,2,3,,n E n =⋅⋅⋅,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭.若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*k ∈N ,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2{1,P =.122,x x P ∀∈,且12x x ≠,不存在*k ∈N ,使212x x k +=,所以2P 具有性质Ω. (Ⅰ) 写出集合35,P P 中的元素个数,并判断3P 是否具有性质Ω. (Ⅱ)证明:不存在,A B 具有性质Ω,且A B =∅ ,使15E A B = . (Ⅲ)若存在,A B 具有性质Ω,且A B =∅ ,使n P A B = ,求n 的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16-11 y = 12.6 13.21 14.○1○4注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==, 得 3b c =. ………………3分由余弦定理 2222cos a b c bc A =+-及π3A =,a ………………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =. ………………7分 (Ⅱ)解:由π3A =,得2π3B C =-. 所以 2πsin()3sin 3C C -=. ………………8分1sin 3sin 2C C C +=, ………………11分5sin 2C C =,所以tan C =. ………………13分16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A , ………………5分由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710. ………………9分 (Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90. ………………13分17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD , ……………… 2分 同理//BC 平面1ADD , 又因为1BC CC C = ,所以平面1//BCC 平面1ADD , ……………… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD . ……………… 4分 (Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠= ,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B = , 所以AB ⊥平面1BCC , 所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点, 所以1CC ⊥平面ABCD , 因为11//CC DD , 所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分 别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =- ,1(4,0,2)AD =-. 设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅= m ,10AD ⋅= m ,得22420,x y z x z -++=⎧⎨-+=⎩ 令2x =,得(2,3,4)=-m . ………………8分易得平面1ADD 的法向量(0,1,0)=n . 所以cos ,||||⋅<>==m n m n m n 即平面11AC D 与平面1ADD . ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直. ………………11分证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈,由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,得1(1,0,)BC m =- ,1(3,2,)DC m = ,1(3,2,)DP DC m λλλλ== ,(3,2,0)CD =--,(33,22,)CP CD DP m λλλ=+=-- . ………………12分 若1BC CP ⊥,则21(33)0BC CP m λλ⋅=--+=,即2(3)3m λ-=-,因为0λ≠,1所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直. ………………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-, ………………2分 所以(1)2e e f a '=-=,解得e a =. ………………3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分 (Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+. ………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =. ………………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分 由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<, 所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<. ………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,所以12214||ln 41ln ex x x x -=->-=,即 124||lnex x ->. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :2213x y m m+=, ………………1分所以21a m =,213b m=,故2a ==16m =, 所以椭圆C 的方程为22162x y +=. ………………3分因为2c =,所以离心率c e a == ………………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥, ………………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +, 且直线AP 的斜率003AP y k x =-, ………………8分 所以直线BD 的斜率为0031AP x k y --=, 所以直线BD 的方程为:000033()22y x x y x y -+-=-. ………………10分令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-,由2200162x y +=,得220063x y =-, 化简,得20023(0,)2y B y --. ………………11分所以四边形OPAB 的面积OPAB OAP OAB S S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯………………12分 2000233(||||)22y y y --=+ 0033(2||)22||y y =+32⨯≥=当且仅当00322y y =,即0[y =时等号成立. 所以四边形OPAB面积的最小值为 ………………14分 20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7. ………………2分 (Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±. 由111n n n a a a ++=-,得211p a p +=-,31a p =-,411p a p -=+,5a p =, 所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次. ………………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ). ……………5分 由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大.由417||3i i i b c =-=∑, ………………6分 得34564864117||||86420163i i i i i i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455. ………………8分 (Ⅲ)证明:假设T 中的元素个数大于或等于17个. 因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ………………10分设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==.因为这三个数列中每两个的距离大于或等于3,所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1. 又因为40f =或1,所以44f c =和44f d =中必有一个成立, 同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i iif c =-∑≤和71||2i iif d =-∑≤中必有一个成立.这与题意矛盾,所以T中的元素个数小于或等于16.………………13分。

相关文档
最新文档