物理平抛运动的推论
高中物理课件-专题 平抛运动的两个重要推论及类平抛运动 (1)

1. 如图所示,墙壁上落有两只飞镖,它们是从同一位置 水平射出的,飞镖A与竖直墙壁成530角,飞镖B与竖 直墙壁成370角,两者相距为d。假设运动时飞镖总是 指向运动方向,求射出点离墙壁的水平距离. (sin370=0.6,cos370=0.8)
530
A
370
d
B
两 1. 做平抛运动的物体任何时刻速度方向的反向延长线
v0 v0
tan 2 tan
巩固习题
1. 如图所示,墙壁上落有两 只飞镖,它们是从同一位 置水平射出的,飞镖A与 竖直墙壁成530角,飞镖B
与竖直墙壁成370角,两者 相距为d。假设运动时飞镖 总是指向运动方向,求射出 点离墙壁的水平距离. (sin370=0.6,cos370=0.8)
结论1: 做平抛运动的物体任何时刻 速度方向的反向延长线与x 轴的交点P为水平位移的中点。
巩固习题
2. 如图所示,有一倾角为30°的光滑斜面,斜面 长L为10m,一小球从斜面顶端以10m/s 的速度 沿水平方向抛出,求: (g取10 m/s2)
(1)小球沿斜面滑到底端时水平位移S; (2)小球到达斜面底端时的速度大小。
分析:
(1)在斜面上小球沿v0方向 做匀速运动,
(2) 垂直v0方向做初速度为 零的匀加速运动,加速 度a=gsin300
个 重 要
与x轴的交xo点p P为x水2oA平位移的中O点。θv0 P α A
x
推 2. 做平抛运动的物体,在任何 论 时刻,位移偏向角θ与速度
B
l
Q
α
(x,y)
vx
=
v0
:
偏向角α的关系总满足:
y
vy v
tan 2 tan
平抛运动 一轮复习讲义

平抛物体的运动要点提示:一、平抛运动特点分析:受力特点:只受重力mg ;初速度特点:水平方向初速度0V运动规律:1、水平方向:匀速直线运动;2、竖直方向:自由落体运动;注意以下物理量:瞬时速度、水平分速度、竖直分速度、水平位移、竖直位移、合位移、水平速度与竖直推论 1 速度偏向角的函数值规律:平抛运动任意时刻的速度偏向角的三种函数值分别为:vv y =ϕs in vv v v x 0cos ==ϕ 2/tan x y v v x y ==ϕ 推论2 速度偏向角与位移偏向角的关系:平抛运动速度偏向角的正切函数ϕtan ,等于位移偏向角θ的正切的2倍,即θϕtan 2tan =推论3 速度方向反向延长线规律:平抛运动任意时刻的瞬时速度方向的三、平抛运动扩展:类似平抛运动:带电粒子垂直射入匀强电场,作类似平抛运动。
斜抛运动:初速度方向与水平方向有一定夹角,注意此部分内容也要引起重视,具体分析有例题。
例1、(基本问题分析)如图所示,由A 点以水平速度V 0抛出小球,落在倾角为θ的斜面上的B 点时,速度方向与斜面垂直,不计空气阻力,则此时速度大小V B = 飞行时间t=例2、如图所示,小球自A 点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B 点,已知A 、B 两点水平距离为8米,θ=300,求A 、B 间的高度差。
例3、(2012上海)如图,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速为v 0的平抛运动,恰落在b 点。
若小球初速变为v ,其落点位于c ,则( ) A v 0<v <2v 0 (B )v =2v 0 (C )2v 0<v <3v 0 (D )v >3v 0例4、(平抛性质与斜面的结合,较难)在倾角为θ的斜面上以初速度v 0水平抛出一物体,经多长时间物AABAB体离斜面最远?离斜面的最大距离是多少?例5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tg α随时间t 变化的图像是图1中的:( )例6.安徽省两地10届高三第一次联考水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽略空气阻力,则小球初速度的大小为( D ) A .gt 0(cos θ1-cos θ2) B .210cos cos θθ-gtC .gt 0(tan θ1-tan θ2)D .120tan tan θθ-gt例7、两同高度斜面,倾角分别为α、β小球1、2分别由斜面顶端以相同水平速度V 0抛出(如图),假设两球能落在斜面上,求两球的飞行时间之比。
平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

到斜面上
速度方向
vy=gt
θ 与 v0、t 的关系:
vx v0
tan θ= =
vy gt
分解位移,构建位移三角形
θ 与 v0、t 的关系:
运动情形
题干信息
vx v0
tan θ= =
vy 分析方法
gt
分解速度,构建速度三角形
分解位移,构建位移三角形
从空中水平抛出垂直落
从斜面水平抛出又落到
到斜面上
斜面上
这些极值点也往往是临界点。
2.求解平抛运动临界问题的一般思路
(1)找出临界状态对应的临界条件。
(2)分解速度或位移。
(3)若有必要,画出临界轨迹。
37°= ,
03
平抛运动的临界问题
1.临界点的确定
(1)若题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在着临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程中存在着
“起止点”,而这些“起止点”往往就是临界点。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程中存在着极值,
C. a 的水平速度比 b 的小
D. b 的初速度比 c 的大
4.做平抛(或类平抛)运动的物体,设其位移偏向角为α,速度偏向角
为θ,则在任意时刻、任意位置有tanθ=2tanα。
证明:
v x v0
v y gt
x v0 t
1
y
gt 2
2
O
vy
gt
tan
vx
v0
1 2
gt
y 2
第五章 抛体运动
5.4.2平抛运动的推论
平抛运动的五个推论

平抛运动的五个推论平抛运动是物理学中最基本的运动之一,常见于我们日常生活中的许多场合。
它是指当物体在水平平面上沿着一定初速度的轨迹飞行时,只受重力的垂直作用而不受其它外力作用的运动。
下面我们就通过五个推论来进一步了解平抛运动。
第一个推论是,平抛运动中,垂直方向受到的加速度是一定的。
这是因为重力始终垂直于运动轨迹,而加速度是与受力有关的,因此在平抛运动中,受到重力作用的物体的垂直方向加速度是不变的。
第二个推论是,平抛运动中,水平方向受到的加速度为0。
这是因为,在平抛运动中,物体在水平方向没有受到任何外力的作用,因此水平方向的运动速度是恒定的,加速度为0。
第三个推论是,平抛运动中,物体的轨迹为一个抛物线。
这是因为,物体在垂直方向上受到的加速度是不变的,而在水平方向上没有加速度。
因此,物体在运动中的路径就是一个抛物线。
第四个推论是,平抛运动中,物体的水平速度不断减小。
这是因为,物体在水平方向上没有受到任何作用力,而由于重力作用,在垂直方向上速度不断增加,导致物体所处的位置越来越高,同时也越来越远离出发点。
第五个推论是,平抛运动中,当物体飞行到最高点时,其垂直方向的速度为0。
这是因为,在到达最高点时,物体所处的高度达到峰值,重力作用向下,垂直速度开始减小,直到为0,然后又开始增加,但方向朝相反方向,导致物体向下运动。
同时,物体的总能量也达到最大值。
通过以上五个推论,我们可以进一步理解平抛运动的特点和规律。
在实际应用中,我们可以通过这些推论来预测物体的运动轨迹和速度等参数,也可以更好地掌握运动的规律,帮助我们更好地应对各种场景。
高中物理平抛斜抛运动

B.当v=50 m/s时,飞镖将射中第6环线
C.若要击中第10环的线内,飞镖的速度v至少为50 m/s
D.若要击中靶子,飞镖的速度v至少为25 m/s
考点三 斜面上的平抛运动
平抛运动与斜面相结合的模型,其特点是做平抛运动的物体落在斜面上,包括两种情况:
第十一定义:以一定的初速度沿方向抛出的物体只在作用下的运动。
2.性质:平抛运动是加速度为g的曲线运动,其运动轨迹是。
3.平抛运动的条件:(1)v0≠0,沿;(2)只受作用。
4.研究方法:平抛运动可以分解为水平方向的运动和竖直方向的运动。
5.基本规律(如图所示)
位移关系
(3)从同一高度水平抛出的物体,不计空气阻力,初速度越大,落地速度越大。()
考点一 对平抛运动的理解
【例1】(多选)对于平抛运动,下列说法正确的是()
A.落地时间和落地时的速度只与抛出点的高度有关
B.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动
C.做平抛运动的物体,在任何相等的时间内位移的增量都是相等的
C.A、B、C处三个小球的初速度大小之比为3∶2∶1
D.A、B、C处三个小球的运动轨迹可能在空中相交
考点四斜抛运动规律的应用
【例4】(多选)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同.空气阻力不计,则().
A.B的加速度比A的大
B.B的飞行时间比A的长
2.(多选)对平抛运动,下列说法正确的是().
A.平抛运动是加速度大小、方向不变的曲线运动
B.做平抛运动的物体,在任何相等的时间内位移的增量都是相等的
C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动
高中物理人教版必修二第二讲(平抛运动)

P
x
(x,y)
位移偏角与速度偏角不相等
AB=OB/2
y
解平抛运动类问题的一般思维: 1.分解速度:根据速度中合速度和分速度的 方向(角度)和大小关系进行求解 2.分解位移:根据位移中分运动和合运动的 大小和方向(角度)关系进行求解
题型:基本规律的应用 斜面上的抛体运动 类平抛运动
要点一 对平抛运动规律的进一步理解 1.速度的变化规律 水平方向分速度保持vx=v0不变;竖直方向加速度恒 为g,速度vy=gt,从抛出点起,每隔Δt时间,速度的 矢量关系如右图所示,这一矢量关系有两个特点;
vy
B
) Vy
Vx
gt v x vo
tanθ= 2tanα
推论2
平抛物体任意时刻瞬时时速度方向的反向延长线与 初速度延长线的交点到抛出点的距离都等于水平位 移的一半。 证明:设时间t 内物体的水平位移为s,竖直位移为h, 则末速度的水平分量vx=v0=s/t, 而竖直分量vy=2h/t,
v0 h
1 2 0 t 2 gt 2
2
s
s1
t
x
竖直方向: 合位移大小:
s x2 y2
s2
y 位移方向:
y g t tanα= x 2v o
4.平抛运动的轨迹:
推论1
O
v0 ) s y
O x ’ )
x
A
y g t tanα= x 2v o
tanθ=
[解析]
rumg u (1)a= = r g= 2.5 m/s2 m
2 由 v2 B- v0=- 2ax
得 vB= - 2ax+ v2 0= 5.0 m/s 1 (2)h= gt2 2 s= vBt 由以上两式解得: s= 2.0 m.
第三章 第3节 平抛运动

第3节平抛运动一、平抛运动的认识 1.定义把物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。
2.特点(1)受力特点:只受重力。
(2)运动特点:初速度水平,加速度为g ,方向竖直向下。
3.性质为匀变速曲线运动。
4.实验探究⎩⎪⎨⎪⎧水平方向:不受力,做匀速直线运动竖直方向:只受重力,做自由落体运动 二、平抛运动的规律 1.水平方向以初速度v 0做匀速直线运动,v x =v 0,x =v 0t 。
2.竖直方向做自由落体运动,v y =gt ,y =12gt 2。
下落时间:t =2yg ,t 只与下落高度y 有关,与其他因素无关。
1.物体以某一初速度水平抛出,不考虑空气阻力,物体只在重力作用下的运动叫平抛运动。
2.平抛运动是匀变速曲线运动,水平方向做匀速直线运动,x =v 0t ,竖直方向做自由落体运动,y =12gt 2。
3.平抛运动在空中运动时间由竖直高度决定,水平位移由竖直高度和水平初速度共同决定。
1.自主思考——判一判(1)平抛运动的速度、加速度都随时间增大。
(×)(2)平抛运动物体的速度均匀变化。
(√)(3)平抛运动不是匀变速曲线运动。
(×)(4)平抛物体的初速度越大,下落得越快。
(×)(5)平抛运动的初速度可以不沿水平方向。
(×)2.合作探究——议一议(1)体育运动中投掷的链球、铅球、铁饼、标枪等,都可以看成是抛体运动吗?都可以看成是平抛运动吗?图3-3-1提示:链球、铅球、铁饼、标枪等,若被抛出后所受空气阻力可忽略不计,可以看成是抛体运动。
它们的初速度不一定沿水平方向,所以它们不一定是平抛运动。
(2)两个小金属球同时从同一高度开始运动,不计空气阻力,A球自由落体,B球平抛运动,两球下落过程中的高度位置相同吗?为什么?提示:相同;A、B两球在竖直方向上的运动情况完全相同,从同一高度同时进行自由落体运动,因此,在下落过程中的高度位置始终相同。
抛体运动的规律——平抛运动的重要推论+讲义-2024学年高一下学期物理人教版(2019)必修第二册

第五单元第4节平抛运动的重要推论平抛运动物体的轨迹x=v0ty=gt2/2消去t可得y=g2v02x2令a=g2v02,则y=ax2(3)平抛运动的轨迹是抛物线说明: 二次函数的图象叫抛物线推论一:1.任意相等的时间内,速度变化量相同Δv=gt(大小、方向)2.速度偏转角正切值是位移偏转角正切值二倍tanθ=2tanα3.速度方向的反向延长线与x轴的交点为水平位移的中点推论二:1.运动时间t=√2ℎg即飞行时间仅取决于下落高度h,与v0无关2.落地的水平距离x=v0√2ℎg即水平距离只与h、v0有关3.落地速度v t=√v02+2gℎ即落地速度只与h、v0有关4.落地方向tanθ=v yv x=gtv0即落地方向只与h、v0有关【例1】质点从同一高度水平抛出,不计空气阻力,下列说法正确的是()A.质量越大,水平位移越大B.初速度越大,落地时竖直方向速度越大C.初速度越大,空中运动时间越长D.初速度越大,落地速度越大【练1】用m、v0、h分别表示平抛运动物体的质量、初速度和抛出点离水平地面的高度.在这三个物理量中,(1)物体在空中运动的时间是由________决定的;(2)在空中运动的水平位移是由________决定的;(3)落地时的瞬时速度的大小是由________决定的;(4)落地时瞬时速度的方向是由________决定的【例2】如图所示,在高为h=5m的平台边缘水平抛出小球A,同时在水平地面上距台面边缘水平距离为s=10m处竖直上抛小球B,两球运动轨迹在同一竖直平面内,不计空气阻力,重力加速度g=10m/s2。
若两球能在空中相遇,则下列说法正确的是()A.A球的初速度可能是8m/sB.B球的初速度可能是4m/sC.A球和B球的初速度之比为1:2D.A球和B球的初速度之比为2:1【练2】如图所示,x轴在水平地面上,y轴沿竖直方向。
图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c 的运动轨迹,其中b和c是从同一点抛出的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动的推论应用
例1.如右图所示,从倾角为的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面的夹角为α1,第二次初速度为V2,球落到
斜面上前一瞬间的速度方向与斜面的夹角为,若v1 v2,则
A.α1>α2
B. 12
C. 12
D. 无法确定
【解析】1)由题意知两次小球都落在斜面上,则落在斜面上时的位移与水平方向的夹角均为β。
设两次小球落回斜面瞬间的速度与水平方向的夹角分别为α1,α2,根据推论1可知: tanα1=2tanβ,tanα=2tanβ,
则可得α1=α2。
α是一定值,与初速度v0的大小无关。
选项B正确。
2)如图5,根据上面的结论可知A是OB的中点,由几何关系可得tanβ=2tanθ,α=β-θ。
小球两次水平抛出,θ一样,所以落在斜面上两次速度的偏转角相等,即β1=β2,进而推出α1=α2,也就是两次小球落在斜面上的速度方向相同,与初速度无关。
例2.如图2所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成530,飞镖B与竖直墙壁成370,两者相距为d。
假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离。
(sin370=, cos370=)
解析:由题意可知,飞镖A、B从同一点做平抛运动,其速度方向的反向延长线的交点C为水平位移的中点,如图3。
设飞镖的水平位移为x,根据几何关系得:
,
Ya=x/2tan53°=3/8x,Yb=x/2tan37°=2/3x
又已知
解得,即射出点离墙壁的水平距离为24d/7
例题3.作平抛运动的物体,当它的水平速度与竖直速度的要大小之比为1:2时,其水平位移与竖直位移的大小之比_________
解析:设平抛运动物体的初速度为V0,从O点水平抛出,经过一段时间,到达A点。
由图所示。
根据平抛运动的运动规律可得:。