数字电子技术(第三版)第11章时序逻辑电路分析

合集下载

数字电子技术之时序逻辑电路介绍课件

数字电子技术之时序逻辑电路介绍课件
存储逻辑电路:具有记忆功能,输 出取决于当前输入和历史状态
时序逻辑电路的特点
STEP1
STEP2
STEP3
STEP4
存储功能:能够存储 输入信号的状态,并 在一定条件下输出相 应的信号
反馈机制:通过反馈 机制实现对输入信号 的响应和输出信号的 控制
定时功能:能够实现 对输入信号的定时控 制,并在一定条件下 输出相应的信号
设计思路:使用D 触发器构成计数器, 每个D触发器输出 连接到下一个D触 发器的输入
设计步骤:
确定触发器的个数 和类型
设计触发器的连接 方式
编写触发器的逻辑 方程
设计电路的仿真和 测试
设计结果:实现一 个4位二进制计数器, 能够正常计数并输 出正确的计数值
谢谢
设计原则
01
正确性:保证 电路的功能正 确,满足设计 要求
02
简洁性:尽量 减少电路的复 杂度,降低成 本
03
可靠性:保证 电路在各种情 况下都能正常 工作
04
灵活性:便于 修改和扩展, 适应不同的需 求
05
性能优化:提 高电路的速度、 功耗和面积等 性能指标
设计实例
设计要求:实现一 个4位二进制计数 器
04
状态图分析步骤:绘制状态图、分析状态转换、确定输出信号
05
状态图分析优点:直观、易于理解和分析复杂电路
状态表分析法
状态表:描 述时序逻辑 电路状态的 表格
状态转换: 状态表列出 了电路在各 种输入条件 下的状态转 换关系
状态方程: 描述状态转 换关系的数 学方程
状态图:用 图形方式表 示状态转换 关系的方法
组合逻辑电路与时序 逻辑电路的区别:组 合逻辑电路只对当前 的输入信号进行响应, 而时序逻辑电路对过 去的输入信号和当前 的输入信号进行响应。

时序逻辑电路实验报告

时序逻辑电路实验报告

时序逻辑电路实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。

2.掌握常用中规模集成计数器的逻辑功能和使用方法。

二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。

三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。

在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。

2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。

74LSl63是同步置数、同步清零的4位二进制加法计数器。

除清零为同步外,其他功能与74LSl61相同。

二者的外部引脚图也相同,如图5.1所示。

表5.1 74LSl61(74LS163)的功能表3.集成计数器的应用——实现任意M进制计数器一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。

第二类是由集成二进制计数器构成计数器。

第三类是由移位寄存器构成的移位寄存型计数器。

第一类,可利用时序逻辑电路的设计方法步骤进行设计。

第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。

两种实现方法:反馈置数法和反馈清零法。

第三类,是由移位寄存器构成的移位寄存型计数器。

4.实验电路:十进制计数器同步清零法同步置数法六进制扭环计数器具有方波输出的六分频电路四、实验内容及步骤1.集成计数器实验(1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。

然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。

(2)根据电路图,首先用D触发器74LS7474构成一个不能自启的六进制扭环形计数器,同样将输出连接至数码管或发光二极管。

习题答案(数电)

习题答案(数电)

11. 在教材P469图10.3.5给出的积分型单稳态触发器电路中, 若G1和G2为74LS系列门电路,它们的VOH=3.4V ,VOL≈0V, VTH=1.1V ,R=1kΩ ,C=0.01μF,试求在触发信号作用下输 出负脉冲的宽度。设触发脉冲的宽度大于输出脉冲的宽度。
西安工程大学
数字电子技术基础
9. 在教材P467图10.3.1给出的微分型单稳态触发器电路中,已 知R=51kΩ ,C=0.01μF,电源电压VDD=10V ,试求在触发信号 作用下输出脉冲的宽度和幅度。 解:
tW=RCln2=51×103×0.01×10-6×0.69=0.35ms Vm=VOH-VOL≈10V
西安工程大学
令A2=E A1=F A0=G 则
数字电子技术基础 Y0 ~ Y7 m0 ~ m7
(3)用门电路实现,门电路种类不限。
X EFG EFG EFG EFG Y EFG EFG EFG EFG
G(EF EF) G(EF EF) G(EF EF) EF (G G)
西安工程大学
数字电子技术基础 21. 某石英晶体振荡器输出脉冲信号的频率为32768Hz,用 74161组成分频器,将其分频为频率为1Hz的脉冲信号。 解:因为32768=215,经15级二分频,就可获得频率为1Hz的脉 冲信号。因此将四片74161级联,从高位片(4)的Q2输出即 可。
西安工程大学
输入端 S、R 的电压波形如图中所示。 答案:
西安工程大学
数字电子技术基础 17.由或非门组成的触发器和输入端信号如图所示,设触发器
的初始状态为1,画出输出端Q的波形。 答案:
西安工程大学
数字电子技术基础 18. 在下图电路中,若CP、S、R的电压波形如图中所示,

数字电子技术时序逻辑电路

数字电子技术时序逻辑电路

PPT文档演模板
数字电子技术时序逻辑电路
PPT文档演模板
图5-3 4位寄存器74LS175的逻辑图
数字电子技术时序逻辑电路
2. 移位寄存器 移位寄存器不仅具有存储的功能,而且还有移位功能,可以 用于实现串、并行数据转换。如图5-4所示为4位移位寄存器 的逻辑图。
PPT文档演模板
数字电子技术时序逻辑电路
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
PPT文档演模板
数字电子技术时序逻辑电路
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
PPT文档演模板
数字电子技术时序逻辑电路
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
数字电子技术时序逻辑电路
PPT文档演模板
图5-5 同步二进制加法计数器的数时字电序子图技术时序逻辑电路
PPT文档演模板
图5-8 同步4位二进制加法计数器74LS16数1字的电逻子技辑术图时序逻辑电路
表5-1 同步4位二进制加法计数器74LS161的功能表
PPT文档演模板
数字电子技术时序逻辑电路
写驱动方程:
写状态方程:
PPT文档演模板
数字电子技术时序逻辑电路
列状态转换表:
PPT文档演模板
数字电子技术时序逻辑电路
画状态转换图:
PPT文档演模板
数字电子技术时序逻辑电路
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
PPT文档演模板
图5-2 双2位寄存器74LS75的逻辑图

时序逻辑电路的分析方法

时序逻辑电路的分析方法

利用染色体畸变和基因
突变为指标监测环境污染 物的致突变作用
理生化变 化为指标
来监测环
单元1 时序逻辑电路的分析方法
一、生物监测的主要方法
《数字电子技术》
1.生物群落法(生态学方法) 利用生物群落组成和结构的变化及生态 系统功能的变化为指标监测环境污染。
(1)寻找指示生物
例如:蜗虫
水蚯蚓
(2)了解污染物对生物群落的影响
单元1 时序逻辑电路的分析方法
号作用前电路的输出状态有关。
时序逻辑电路 方框图
特点:(1)时序电路往往包含组合电路和存储电路两
部分,而存储电路是必不可少的。(2)存储电路输出 的状态必须反馈到输入端,与输入信号一起共同决定组 合电路的输出。
分类:同步时序逻辑电路:所有触发器的时钟端均连
在一起由同一个时钟脉冲触发,使之状态的变化都与输 入时钟脉冲同步。 异步时序逻辑电路:只有部分触发器的时钟端与输入时 钟脉冲相连而被触发,而其它触发器则靠时序电路内部 产生的脉冲触发,故其状态变化不同步。
时序图:在时钟脉冲序列作用下,电路状态、输出状态随时间变化的 波形图。
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(1)输出方程
(2)驱动方程
一单、元生1 时物序监逻辑测电的路主的分要析方方法法有哪些?
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(2)驱动方程
(3)状态方程
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法

数字电子技术时序逻辑电路习题

数字电子技术时序逻辑电路习题
第42页/共55页
5、画逻辑电路图
T1 = Q1 + XQ0 T0 = XQ0 + XQ0 Z = XQ1Q0
第43页/共55页
6、检查自启动
全功能状态转换表
现 入 现 态 次 态 现驱动入 现输出
Xn Q1n Q0nQ1n+1Q0n+1 T1 T0
Zn
1/0
0/0 0 0 0 0 1 0 1
0
现入 现态 次 态
X Q1 Q0 Q1 Q0 0 0 00 1 0 0 11 0 0 1 00 0
1 0 00 1 1 0 11 0 1 1 01 1 1 110 0
现驱动入 现输出
D1 D0 01 10 00
Z1 Z2
00 00 10
01 10 11 00
00 00 00 01
D1 = Q1Q0 + Q1Q0X
标题区
节目录
第14页/共55页
X/Z
S0 1/0
S1
1/1
0/0
S2
10101…
题6.2(1)的状态转移图
③ 状态间的转换关系
标题区
节目录
第15页/共55页
X/Z
0/0 S0 1/0
S1 1/0
1/1
11…
0/0
0/0
100…
S2
题6.2(1) 的原始状态转移图
标题区
节目录
第16页/共55页
(2) 解:① 输入变量为X、输出变量为Z;
S1 1/0
11…
0/0
1/1
0/0
100…
S2
题6.2(2) 的原始状态转移图
标题区
节目录
第19页/共55页

数字电子技术复习知识点

数字电子技术复习知识点

"数字电子技术"重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD、格雷码之间进展相互转换。

举例1:〔37.25〕10= ( )2= ( )16= ( )8421BCD解:〔37.25〕10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路:(1)根本概念1〕数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。

2〕TTL门电路典型高电平为3.6 V,典型低电平为0.3 V。

3〕OC门和OD门具有线与功能。

4〕三态门电路的特点、逻辑功能和应用。

高阻态、高电平、低电平。

5〕门电路参数:噪声容限V NH或V NL、扇出系数N o、平均传输时间t pd。

要求:掌握八种逻辑门电路的逻辑功能;掌握OC门和OD门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。

举例2:画出以下电路的输出波形。

解:由逻辑图写出表达式为:C+==,则输出Y见上。

+Y+AABBC3.根本逻辑运算的特点:与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,一样为零;同或运算:一样为1,相异为零;非运算:零变 1, 1 变零;要求:熟练应用上述逻辑运算。

4. 数字电路逻辑功能的几种表示方法及相互转换。

①真值表〔组合逻辑电路〕或状态转换真值表〔时序逻辑电路〕:是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

数字电子技术--时序电路+寄存器

数字电子技术--时序电路+寄存器

(CP 有效) (Q0 有效) (CP 有效)
Q1n 1 Q1n n n n Q2 1 Q1 Q0
求状态转换表
现态 次态 输出
Q2nQ1nQ0n 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
Q2n+1Q1n+1Q0n+1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0
4.1概 述
一、时序电路的特点 1. 定义 任何时刻电路的 输出,不仅和该时刻 的输入信号有关,而 且还取决于电路原来 的状态。 2. 电路特点 (1) 与时间因素 (CP) 有关; (2) 含有记忆性的元件(触发器)。

x 入i q1

组合逻辑 电 路


输1
x
y1 输

出 yj
w1
存储电路

ql
2 3 4 5
0 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 1 1 0
画状态转换图 /1 /1 /1 /1 /1 000 001 011 111 110 100 /0 有效状态和有效循环 010 /1 /1 101
n n n Y Q2 Q1 Q0
无效状态和无效循环
000 /0
n1 Q n Q n Q0 1 1 0 1 2
n Q2
00 01 11
10
0

1 0 0 1 1 0
0 0 1
0 1
1 0

n Q0 1 Q 0 n 1 Q1 Q 2 Q1Q0 Q1 Q 0 n 1 Q2 Q1Q0 Q2 Q 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 11 章 时序逻辑电路分析 图 11.2 时序电路方框图
第 11 章 时序逻辑电路分析
2. 1) 时序电路的逻辑功能可以用代表X、 Y、 Z、 W这些信 号之间关系的3个向量函数表示: 输出方程: Z(tn)=F[X(tn), Y(tn)]; 驱动方程: W(tn)=H[X(tn), Y(tn)]; 状态方程: Y(tn+1)=G[W(tn), Y(tn) 其中, Y(tn+1)称为次态, Y(tn)称为现态。
第 11 章 时序逻辑电路分析
2) 状态表是反映时序电路输出Z(tn)、 次态Y(tn+1)和输入 X(tn)、 现态Y(tn)间对应取值关系的表格。 例如我们列出图 11.1所示电路的状态表, 如表11.1所示。
第 11 章 时序逻辑电路分析
3) 状态图是反映时序电路状态转换规律及相应输入、 输 出取值情况的几何图形。 根据状态表11.1所示的状态表, 可作出如图11.3所示的状态图。
第 11 章 时序逻辑电路分析
实训11 时序逻辑电路分析
11.1 时序逻辑电路的一般分析方法 11.2 时序逻辑电路分析实例
第 11 章 时序逻辑电路分析
11.1 时序逻辑电路的一般分析方法
11.1.1 概述
1. 时序逻辑电路的特点 为了进一步说明时序电路的特点, 我们先分析图11.1 (a)中给出的一个简单的时序电路。 一部分是由3个与非 门构成的组合电路; 另一部分是由T触发器构成的存储电 路, 它的状态在CP的下降沿到达时发生变化。
第 11 章 时序逻辑电路分析 (5) 由状态表画状态图, 如图11.7所示。
图 11.7 状态图
第 11 章 时序逻辑电路分析
(6) 电路功能描述。 由状态图或状态表可知, 凡输 入X= 0, 则触发器进入1状态; 凡输入X=1, 则触发器进 入0状态, 并且只有在触发器由1状态转换到0状态时, 电 路输出Z=0, 在其他情况下Z=1。 假如将触发器预置在0状 态, 当输入序列为01时, 触发器将先进入1状态, 然后又 转换到0状态, 并且电路输出Z=0; 在其他输入序列情况下 输出为1。
第 11 章 时序逻辑电路分析
【例11.3】 分析图11.8所示时序电路。 解 (1) 分析电路组成。 该电路的存储器件是3个JK 触发器, 组合器件是3个与非门和2个与门。 M为输入信号, CO1、 CO2为两个输出信号。 该电路的3个触发器共用一个 时钟信号, 故是同步时序电路。
第 11 章 时序逻辑电路分析 图 11.1 简单时序电路和波形图
第 11 章 时序逻辑电路分析
该组合电路有3个输入信号(X、 CP和Q), 其中, X、 CP为外输入信号, Q为存储电路T触发器的输出; 有 两个输出信号Z和T, 其中Z为电路的输出, T为反馈信号, 用作T触发器的输入。 由该电路可以写出T触发器的驱动方 程、 状态方程和电路输出Z的方程。
第 11 章 时序逻辑电路分析
第 11 章 时序逻辑电路分析 图 11.3 状态图
第 11 章 时序逻辑电路分析
11.1.2
(1) 分析逻辑电路组成, 即确定输入和输出, 区分 组合电路部分和存储电路部分, 确定是同步电路还是异步 电路。
(2) 写出存储电路的驱动方程和时序电路的输出方程。 对于某些时序电路还应写出时钟方程。
第 11 章 时序逻辑电路分析
第 11 章 时序逻辑电路分析
(4) 将输入信号和现态的各种取值组合代入状态方程, 得到状态表如表11.3所示。表中增加Y列以使状态表更直观。 注意Y = 0时, 其新状态不能由状态方程确定, 因为D触发 器得不到时钟信号, 所以状态维持不变。
第 11 章时序逻辑电路分析
图 11.5 状态图
第 11 章 时序逻辑电路分析
【例11.2】 分析图11.6所示时序电路。 解 (1) 分析电路组成。 该电路的存储器件是一个D 触发器, 组合器件由一个与门、 一个与非门和一个同或门组 成。 外输入信号是X, 输出信号是Z。 该电路为同步时序 电路。
第 11 章 时序逻辑电路分析 图 11.6 例11.2逻辑图
第 11 章 时序逻辑电路分析
(3) 求状态方程。 (4) 列状态表。 把电路的输入信号和存储电路现态 的所有可能的取值组合代入状态方程和输出方程进行计算, 求出相应的次态和输出。 列表时应注意, 时钟信号CP只是 一个操作信号, 不能作为输入变量。 (5) 画状态图或时序图。 (6) 电路功能描述。
第 11 章 时序逻辑电路分析
时序电路方框图如图11.2所示。 图中X(x1, …, xi ) 代表现在输入信号; Z(z1, …, zi)代表现在输出信号; W(w1, …, wi)代表存储电路现在输入的信号, 也就是存 储电路的驱动信号; Y(y1, …, yi)代表存储电路的输出, 也是组合电路的部分输入。
(2) 写出驱动方程和输出方程:
第 11 章 时序逻辑电路分析 (3) 求状态方程。 将驱动方程代入JK触发器的特性方程
可得
第 11 章 时序逻辑电路分析
(4) 将输入信号和现态的各种取值组合代入状态方程, 得到状态表如表11.2所示。
第 11 章 时序逻辑电路分析 (5) 由状态表作状态图, 如图11.5所示。
第 11 章 时序逻辑电路分析
11.2
【例11.1】 分析图11.4所示电路的逻辑功能。 设起 始状态是Q3Q2Q1=000。
第 11 章 时序逻辑电路分析 图 11.4 例11.1电路图
第 11 章 时序逻辑电路分析
解 (1) 分析电路组成。 该电路的存储器件是3个JK 触发器, 组合器件是一个与门。 无外输入信号, 输出信号 为C, 是一个同步时序电路。
第 11 章 时序逻辑电路分析
电路输出方程: Z=X·Qn·CP
存储电路的驱动方程: T=X
T触发器状态方程:
(11.1) (11.2)
(11.3)
第 11 章 时序逻辑电路分析
由T触发器的状态方程和输出方程可以画出电路的工作 波形, 如图11.1(b)所示。 图中①和②是T触发器原状态 为0时的工作波形, ③和④是T触发器原状态为1时的工作 波形。 比较波形②和④可见, 虽然输入信号X和CP完全相 同, 但是由于T触发器的原状态不同, 输出则不同。
相关文档
最新文档