二元柯西不等式的八种证法
柯西不等式证明方法大全

柯西不等式证明⽅法⼤全定义对于任意实数a i,b i(i=1,2,⋯,n),有n ∑i=1a2in∑j=1b2j≥n∑i=1a i b i2,(n∈N+)(∗)当且仅当b i=0(i=1,2,⋯,n) 或∃k∈R,a i=kb i(i=1,2,⋯,n) 时,等号成⽴.法⼀、构造⼆次函数分析可通过⼆次函数的判别式证明.证明当a1=a2=⋯=a n或b1=b2=⋯=b n时,(∗) 式显然成⽴.设a1,a2,⋯,a n中⾄少有⼀个不为 0,令A=n∑i=1a2i,B=n∑i=1a i b i,C=n∑i=1b2i,则A>0.设⼆次函数f(x)=Ax2+2Bx+C=n∑i=1(a2i x2+2a i b i x+b2i)=n∑i=1(a i x+b)2≥0,∴Δ=(2B)2−4AC≤0⟺AC≥B2,则 (∗) 式成⽴.要使 (∗) 式取等号,即Δ=0,则f(x) 有唯⼀零点,即有唯⼀实数x使a i x+b i=0(i=1,2,⋯,n).若x=0,则b i=0(i=1,2,⋯,n),若x≠0,则a i=−1x bi(i=1,2,⋯,n).综上,(∗) 式成⽴,当且仅当b i=0(i=1,2,⋯,n) 或∃k∈R,a i=kb i(i=1,2,⋯,n) 时取等号.法⼆、向量内积分析⽤向量内积与向量模的积的⼤⼩关系即可证明.证明设n维空间直⾓坐标系中有向量\boldsymbol \alpha=(a_1,a_2,\cdots,a_n),\boldsymbol \beta=(b_1,b_2,\cdots,b_n),且\boldsymbol \alpha与\boldsymbol \beta之间的夹⾓为\theta(0\le\theta\le\pi),则有\begin{aligned} &\boldsymbol \alpha \cdot \boldsymbol \beta =|\boldsymbol \alpha| |\boldsymbol \beta| \cos\theta\\\Longleftrightarrow &|\boldsymbol \alpha \cdot \boldsymbol \beta| =|\boldsymbol \alpha| |\boldsymbol \beta| |\cos\theta|, \end{aligned}⼜|\cos\theta|\le 1,则\begin{aligned} &|\boldsymbol \alpha \cdot \boldsymbol \beta| \le|\boldsymbol \alpha| |\boldsymbol \beta|\\\Longleftrightarrow &\left| \sum\limits_{i=1}^n a_ib_i \right| \le\sqrt{ \sum\limits_{i=1}^n a_i^2 } \sqrt{ \sum\limits_{j=1}^nb_j^2 }\\ \Longleftrightarrow &\left( \sum\limits_{i=1}^n a_ib_i \right)^2 \le \sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^nb_j^2, \end{aligned}可得(*)式成⽴.易知当且仅当\boldsymbol \alpha与\boldsymbol \beta同线时,即\boldsymbol \beta=\boldsymbol 0或\exist~k\in\mathbb R,\boldsymbol \alpha=k\boldsymbol \beta时,|\boldsymbol \alpha\cdot\boldsymbol \beta|=|\boldsymbol \alpha||\boldsymbol \beta|,即()当且仅当b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i(i=1,2,\cdots,n)时,(*)式取等号.法三、作差法分析作差,然后配平⽅即可.证明易得\begin{aligned} \sum\limits_{i=1}^n a_i^2 \sum\limits_{j=1}^n b_j^2 -\left( \sum\limits_{i=1}^n a_ib_i \right)^2 &=\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_i^2b_j^2 -\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ia_jb_j\\ &= \frac 12\sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_i^2b_j^2+a_j^2b_i^2) -\frac 12 \sum\limits_{i=1}^n \sum\limits_{j=1}^n2a_ib_ia_jb_j\\ &= \frac 12 \sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_i^2b_j^2+a_j^2b_i^2-2a_ib_ja_jb_i)\\ &= \frac 12\sum\limits_{i=1}^n \sum\limits_{j=1}^n (a_ib_j-a_jb_i)^2\ge 0, \end{aligned}当且仅当a_ib_j=a_jb_i(i,j=1,2.\cdots,n),即b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i(i=1,2,\cdots,n)时,等号成⽴,即证.法四、排序不等式分析通过排序不等式的形式来表⽰柯西不等式.证明易知(*)式等价于\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ja_ib_j \ge\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_ib_ja_ib_j,由排序不等式可知上式成⽴,当且仅当a_ib_j=a_jb_i(i,j=1,2,\cdots,n),即b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbbR,a_i=kb_i(i=1,2,\cdots,n)时,等号成⽴.法五、数学归纳法分析与n相关的不等式⼀般都能⽤数学归纳法,这⾥就不多说了.证明设n=k.当k=1时,(*)式显然成⽴.当k\ge 2时,不妨设当n=k-1时(*)式成⽴,则\begin{aligned} \left( \sum\limits_{i=1}^k a_i^2 \right) \left( \sum\limits_{i=1}^k b_i^2 \right) =&\left( \sum\limits_{i=1}^{k-1} a_i^2 +a_k^2 \right) \left( \sum\limits_{i=1}^{k-1} b_i^2 +b_k^2 \right)\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} a_i^2b_k^2 +\sum\limits_{i=1}^{k-1} a_k^2b_i^2 +a_k^2b_k^2\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} a_i^2b_k^2 -\sum\limits_{i=1}^{k-1} 2a_ib_ka_kb_i+\sum\limits_{i=1}^{k-1} a_k^2b_i^2 +a_k^2b_k^2 +\sum\limits_{i=1}^{k-1} 2a_ib_ka_kb_i\\ =&\sum\limits_{i=1}^{k-1} a_i^2 \sum\limits_{i=1}^{k-1} b_i^2 +\sum\limits_{i=1}^{k-1} (a_ib_k-a_kb_i)^2 +(a_kb_k)^2 +2\sum\limits_{i=1}^{k-1}a_ib_ia_kb_k\\ \ge&\left( \sum\limits_{i=1}^{k-1} a_ib_i \right)^2 +2\sum\limits_{i=1}^{k-1} a_ib_ia_kb_k +(a_kb_k)^2\\=&\left( \sum\limits_{i=1}^{k-1} a_ib_i +a_kb_k \right)^2\\ =&\left( \sum\limits_{i=1}^k a_ib_i \right)^2, \end{aligned}当且仅当\sum\limits_{i=1}^{k-1}(a_ib_k-a_kb_i)^2=0,即a_ib_k=a_kb_i(i=1,2,\cdots,n),且\sum\limits_{i=1}^na_i^2\sum\limits_{j=1}^nb_j^2=\left(\sum\limits_{i=1}^na_ib_i\right)^2时,等号成⽴.综上,(*)式成⽴,当且仅当b_i=0(i=1,2,\cdots,n)或\exist~k\in\mathbb R,a_i=kb_i时,等号成⽴.Loading [MathJax]/extensions/TeX/boldsymbol.js。
3.6 柯西、排序不等式及不等式证明

4a + 1 + 4b + 1 + 4c + 1 = ( 4a + 1 ×1+ 4b + 1 ×1+ 4c + 1 ×1) ≤ [(4a + 1) + (4b + 1) + (4c + 1)](12 + 12 + 12 ) = 21
1 a 当且仅当 = b = c = 时,取得最大值为 21 。 3
1 1 1 2 2 2 2 1 ②( x + y + z) = ( 2x ⋅ + 3y ⋅ + z) ≤ (2x + 3 y + z )( + + 1) 2 3 2 3
2
∵x + y + z = 1
6 ∴2x + 3 y + z ≥ 11
2 2
2x 3y = =z 1 3 2 6 6 1 当 即x = , y = , z = 时, A最小 = 2 3 11 11 11 11 x + y + z = 1
解: ①( x + 2 y)2 = ( 2x ⋅ 1 + 3 y × 2 )2
2 3 1 4 11 ≤ (2x2 + 3 y2 )( + ) = (2x2 + 3 y2 )× 2 3 6
∵2x + 3 y = 5
2 2
55 ∴( x + 2 y) ≤ 6
2
∴−
330 330 ≤ x + 2y ≤ 6 6
π
π
π
π
π
3
aA+ bB + cC = a( + δ1 ) + b( −δ2 ) + c( −δ3 ) 3 3 3 = = = ≥
归纳柯西不等式的典型应用

归纳柯西不等式的典型应用1.柯西不等式的一般形式为:对任意的实数 n n b b b a a a ,,,,,,2121⋅⋅⋅⋅⋅⋅()()222112222122221)(n n n n b a b a b a b b b a a a⋅⋅⋅⋅⋅⋅++≥+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅++其中等号当且仅当λ===nnb a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ⋅⋅⋅⋅⋅⋅++≥+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅++2. 柯西不等式的证明:证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法:作差:因为222111()()()nnniji i i j i a b a b ===-∑∑∑221111()()()()nnnniji i j j i j i j a b a b a b =====-∑∑∑∑221111nnnni ji i j j i j i j a b a b a b =====-∑∑∑∑22221111111(2)2n n n n n ni j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑2222111(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑2111()02n n i j j i i j a b a b ===-≥∑∑ 所以222111()()()n n n iji i i j i a b a b ===-∑∑∑0≥,即222111()()()n n niji i i j i a b a b ===≥∑∑∑即222222211221212()()()n n n n a b a b a b a a a b b b +++≤++++++………………当且仅当0(,1,2,,)i j j i a b a b i j n -==……即(1,2,,;1,2,,;0)ji j i ja a i n j nb b b ===≠…………时等号成立。
柯西不等式各种形式的证明及其应用演示版.doc

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
柯西不等式的几种新证法

∑ b, i据柯西 一彭雅科夫斯基不等式, 2 有
i 1 =
(,)≤(,)66, 口b2 口口(,)于是( 口i ∑ i ≤ 6 )
i 1 =
( ) 个 非 零 向 量 共 线 的充 要 条 件 是 2两
a‘ = ± l .1 : b I l a b
( ∑ )∑ b) ( .
i 1 = i 1 :
( ∑ )∑ b) (
证法 4 利用 向量 的 内积
ai b
≤
Ⅱ
n +
b
/
.
设 二 向 量 a = ( 1 a , , , a ,2… a ) b
√ √
2
2
(1 2…,n, b, , b)内积由( ,):∑ 6所 b Ⅱ6
2
而原不 等式 成立 .
证 法 3 利用 行列 式
・ . ‘
= i 1 =
i l =
・
( b)这 不等 ∑ . 个 式以 z 对称的 结构, 广泛
( ∑ ) ∑ b) ( 一
i 1 : i 1 =
的应用 , 以及 证法 的多样 性 , 引起 了广泛 的兴 趣和讨 论 , 下面给 出几种 新 的证法 .
2
( P)∑ P ) ∑ ( k 上式中 P :b , 令 k k z
= -
F 1 "
+
k
≤( ∑
k= l k= l
) a) ( f, t 从
柯西 不等式 是指 : 于 a,f 对 b∈R( =1 i ,
2 2, , , — … n)曼 ㈦) 有 一 a ≤( (6i ∑ b ∑ )
f 1 = =1
( ) 个 非 零 向量 垂 直 的充 要 条 件 是 3两
02柯西不等式与平均值不等式(含经典例题+答案)

柯西不等式与平均值不等式一、比较法1.求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.2.求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明1a b即可,这种方法称为求商比较法.二、分析法从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.三、综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即“由因寻果”的方法.四、放缩法在证明不等式时,有时我们要把所证不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.五、反证法的步骤1.作出否定结论的假设;2.进行推理,导出 矛盾;3.否定假设,肯定结论.六、柯西不等式的二维形式1.柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2).(c 2+d 2)≥(ac +bd)2,其中等号当且仅当a 1b 2=a 2b 1时成立.2.柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中等号当且仅当两个向量方向相同或相反时成立.3.二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2七、柯西不等式的一般形式柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…b n 为实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.八、基本不等式的一般形式a 1+ a 2+…a n n≥n (a 1+ a 2+...a n ) 例3:设n 是正整数,求证:12≤1+1+ (12)<1.解:(1)由|2x -1|<1,得-1<2x -1<1,解得0<x <1,所以M ={x|0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b)=(a -1)(b -1)>0, 故ab +1>a +b. 本例条件不变,试比较logm(ab +1)与logm(a +b)(m >0且m≠1)的大小.解:∵0<a <1,0<b <1,∴(ab +1)-(a +b)=(a -1)(b -1)>0.故ab +1>a +b.当m >1时,y =logmX 在(0,+∞)上递增,∴logm(ab +1)>logm(a +b)当0<m <1时logmX 在(0,+∞)上单调递减,∴logm(ab +1)<logm(a +b).例6:设a >b >0,求证:a2+b 2>a -b .例8:已知m >0,a ,b ∈R ,求证:a mb +⎛⎫ ⎪≤a 2+mb 21+m . 它的变形形式又有(a +b )2≥4ab ,a 2+b 22≥22a b +⎛⎫ ⎪⎝⎭等;(4)a +b 2≥ab (a ≥0,b ≥0),它的变形形式又有a +1a ≥2 (a >0),b a +a b ≥2(ab >0),b a +a b≤-2(ab <0)等. 2.分析法证明不等式的注意事项:用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析法的过程仅需要寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接“关键词”.例10:设m 是|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪a x +b x 2<2. [证明]由已知m ≥|a |,m ≥|b |,m ≥1.又|x |>m ,∴|x |>|a |,|x |>|b |,|x |>1.∴⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪a x +⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x ||x |2=1+1|x |<1+|x ||x |=2.∴|a x +b x2|<2成立. 例11:已知a >0,b >0,c >0,a +b >c .求证:a 1+a +b 1+b >c 1+c. 证明:∵a >0,b >0,∴a 1+a >a 1+a +b ,b 1+b >b 1+a +b .∴a 1+a +b 1+b >a +b 1+a +b. 而函数f (x )=x 1+x =1-11+x 在(0,+∞)上递增,且a +b >c ,∴f (a +b )>f (c ),则a +b 1+a +b >c 1+c, 所以a 1+a +b 1+b >c 1+c,则原不等式成立. 例12:求证:32-1n +1<1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +). 证明:∵k (k +1)>k 2>k (k -1),k ≥2,∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k ,分别令k =2,3,…,n 得12-13<122<1-12;13-14<132<12-13;…1n -1n +1<1n 2<1n -1-1n; 将上述不等式相加得:12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n, 即12-1n +1<122+132+…+1n 2<1-1n ,∴32-1n +1<1+122+132+…+1n 2<2-1n. (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析得出的.常见的放缩变换有变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N +,k >1.利用函数的单调性,真分数性质“若0<a <b ,m >0,则a b <a +m b +m ”,添加或减少项,利用有界性等. (2)在用放缩法证明不等式时,“放”和“缩”均有一个度.例13:已知x ,y 均为正数,且x >y,2x +1x 2-2xy +y 2≥2y +3. 解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1x -y 2=(x -y )+(x -y )+1x -y 2≥33x -y 21x -y 2=3,所以2x +1x 2-2xy +y 2≥2y +3. 例14:设a ,b ,c 为正实数,求证:1a 3+1b 3+1c3+abc ≥2 3. 证明:因为a ,b ,c 为正实数,由平均不等式可得1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3,即1a 3+1b 3+1c 3≥3abc. 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc +abc ≥2 3abc ·abc =2 3.所以1a 3+1b 3+1c3+abc ≥2 3. 例15:若n 为大于1的自然数,求证:n n n +1<n +1+12+13+ (1). 证明:由柯西不等式右边=1+1+1+12+1+13+…+1+1n =2+32+43+54+…+n +1n ≥n ·n 2·32·43·…·n +1n=n .n n +1=左边.∵2≠32≠43,故不取等号.∴不等式n n n +1<n +1+12+13+ (1)成立. 例16:已知f (x )=x 2+px +q ,求证|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥|f (1)+f (3)-2f (2)|=|(1+p +q )+(9+3p +q )-(8+4p +2q )|=2,与|f (1)|+2|f (2)|+|f (3)|<2矛盾,∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12. 例17:设a 、b 、c 均为正数,求证:12a +12b +12c ≥1b +c +1c +a +1a +b. 证明:∵a 、b 、c 均为正数,∴121122a b ⎛⎫+ ⎪⎝⎭≥12ab ≥1a +b,当a =b 时等号成立;12(12b +12c )≥12bc ≥1b +c ,当b =c 时等号成立;12(12c +12a )≥12ca ≥1c +a ,当a =c 时等号成立.三个不等式相加即得12a +12b +12c ≥1b +c +1c +a+1a +b,当且仅当a =b =c 时等号成立. 例18:已知:a n =1×2+2×3+3×4+…+n n +1(n ∈N +),求证:n n +12<a n <n n +22. 证明:∵n n +1=n 2+n ,∴n n +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵n n +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=12+(2+3+…+n )+n +12=n n +22.综上得:n n +12<a n <n n +22. 例19:设a ,b ,c 为正数且a +b +c =1,求证:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭≥1003. 证明:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭=13(12+12+12)[21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭] ≥132111111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()2111113a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥13(1+9)2=1003. 例20:已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =1-x 2x+x 21-x(0<x <1)的最小值. 解:(1)证明:法一:∵a >0,b >0,∴(a +b )22a b b a ⎛⎫+ ⎪⎝⎭=a 2+b 2+a 3b +b 3a ≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立。
柯西不等式

柯西不等式【摘要】本文将给出柯西不等式及其应用时需注意的几点说明、柯西不等式的几种形式和证明以及关于柯西不等式的几种题型。
我们知道,柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程组等问题上得到应用。
【关键词】柯西(Cauchy )不等式;函数最值;解三角形问题;不等式的证明;不等式的应用。
【正文】一、柯西不等式及其证明。
定理: 设i a ,i b ∈R (i=1,2,3........,n ),则2112n 1i 2⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∑===ni i i n i i i b a b a ,当且仅当i a =λi b ,即11a b =22a b =nn b a =λ等号成立。
此不等式称为柯西不等式。
说明1:由于“∑==ni i a 120,∑==ni i b 120,∑==ni i i b a 10”情况之一出现时,不等式显然成立,因此,在下面的讨论中不妨设∑=≠ni i a 120,∑=≠ni i b 120,∑=≠ni i i b a 10都成立。
说明2:柯西不等式取等号的条件常常写成比例形式11a b =22a b =nn b a ,并约定:分母为0时,相应的分子也为0。
“等号成立”是柯西不等式应用的一个重要组成部分。
说明3:使用柯西不等式的方便之处在于,对任意的两组实数都成立,这个不等式告诉我们,任意两组数 1a ,2a , n a , 1b ,2b , n b ,其对应项“相乘”之后、“求和”、再“平方”这三种运算不满足交换律,先各自平方,然后求和,最后相乘,运算的结果不会变小。
现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nn b x a b x a b x a x f ++++++= =222221......x a a a n )(+++x b a b a b a n n )(++++......22211)(22221......n b b b ++++0 (2)2221>++n a a a ,0)(≥x f 恒成立,∴)......()......(4 (42)22212222122211n n n n b b b a a a b a b a b a +++∙+++-+++=∆)(0≤即22211......)(n n b a b a b a +++≤)......( (2)222122221n n b b b a a a ++++++)( 当且仅当 0=+i i b x a ),....,2,1(n i =即1212n na a ab b b ===时等号成立证明2 数学归纳法(1)当1n =时 ,右式=()211a b ,左式=2121b a ,显然 ,左式=右式。
(完整版)柯西不等式各种形式的证明及其应用(最新整理)

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //==扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc≥=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233112233=,,,,,,,,,cos ,,cos ,1n n n n n n m a a a a n b b b b m n a b a b a b a b m n m nm nm n a b a b a b a b =⋅=++++==≤∴++++≤令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k n k k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或、均为零。