光学课程:第三章部分习题解答

合集下载

工程光学第三章课后习题及答案郁道银

工程光学第三章课后习题及答案郁道银

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。

2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。

4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

解:
此为平板平移后的像。

5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。

解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。

解:。

物理光学第三章课后作业解答

物理光学第三章课后作业解答
解:(1) 对于右边,由于1.50<1.62>1.50,因此入射 光小角度入射时,从空隙上下表面反射的两束光 的光程差有半波损失,即
2nh
2
当 h=0时, ,因此右边中央条纹为暗条纹。
2
(2) 对于左边,由于1.50< 1.62 < 1.75 ,因此入射光小 角度入射时,从空隙上下表面反射的两束光的光程差 无半波损失,即
IP 3.4I1 0.85 I0 4I1
5(P119) 在杨氏实验装置中,两小孔的间距为0.5mm, 光屏离小孔的距离为50cm。当以折射率为1.60的透明 薄片贴住小孔 S2 时,发现屏上的条纹移动了1cm,试 确定该薄片的厚度。
解:
(n 1)l 0.6l l
0.6
yd 1 0.05 0.001cm
解: (1)
n1 sin1 n2 sin2
2
arcsin
sห้องสมุดไป่ตู้n 300 1.5
19.470
2n2hcos2 / 2 m
m 21.5hcos19.470 / 2 / 200
(2)
2 300
2n2hcos2 m
m 2 0.005 cos300 / 122
14(P120) 如图所示,平板玻璃由两部分组成(冕牌玻 璃n=1.50,火石玻璃n=1.75),平凸透镜用冕牌玻璃制 成,其间隙充满二硫化碳(n=1.62),这时牛顿环是何 形状?
y D
d
15 1.5cm
10
D 1.5mm
d
1.5d 1.5 0.45 0.58μm
D 1150
k=2 k=1 k=0 k=-1 k=-2
8(P119) 一波长为0.55m的绿光入射到间距为0.2mm 的双缝上,求离双缝2m远处的观察屏上干涉条纹的 间距。若双缝间距增加到2mm,条纹间距又是多少?

光学课后习题解答

光学课后习题解答

第一章 光的干涉1、波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆ 得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3.把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=m m122I I = 22122A A =12A A =7. 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度.已知肥皂膜折射率为1.33,且平行光与发向成30°角入射.解:根据题意222(210)2710nmd n j d λ-=+∴===8. 透镜表面通常镀一层如MgF 2(n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚? 解:可以认为光是沿垂直方向入射的。

物理光学第3章习题解答

物理光学第3章习题解答

式中Z1 ka,Z 2 kb。对于衍射场中心,Z1 Z 2 0,
相应的强度为
a 4 b 4 a 2b 2 2 2 2 ( I r )0 4C C (a b ) 2 4 4
2
当 b a / 2时
2 a (1) ( I r )0 C a 2
a J1 (ka ) 2
利用贝塞尔函数表解上式,得到
ka Z1 3.144
因此,第一个零点的角半径为
3.144 0.51 2 a a
a 左图中,实线表示的是b 的圆环的衍射强度曲线。 2
半径为a的圆孔的强度曲线如虚线所示。
18.一台显微镜的数值孔径为0.85,问: (1)它用于波长 400nm 时的最小分辨距离是多少? (2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍? (3)显微镜的放大率应设计成多大?(设人眼的最小分辨率为1 ) 【解】
【解】
为使波长600nm的二级谱线的衍射角 30 ,光栅栅距d 必须满足
m 2 600 106 mm d 2.4 103 mm sin sin 30
据(2),应选择d 尽量小,故
d 2.4 103 mm
据(3),光栅缝宽
d 2.4 103 mm 0.8 103 mm 3 3
(1) P点的亮暗取决于圆孔包含的波带数是奇数还是偶数 (假设波带数目不大)。当平行光入射时,波带数
2 D / 2 (1.3mm) 2 j 3 r0 r0 (563.3 106 mm)(103 mm)
2
故P点是亮点。
(2)当P点向前移近圆孔时,相应的波带数增加;波带数增大 为4时,P点变为暗点。

蔡履中光学课后习题答案光学第三章课后题

蔡履中光学课后习题答案光学第三章课后题

d zm x λ='dzm x 2)12(λ+='dzd z 2132)132(λλ=+⨯nm 67.5086712==∴λλ极大值极小值解:53-mm d z e 45.0105.0103.3363=⨯⨯⨯==--λλm h n =-)1(λm d z x ='λz x d m '=zx d h n '=-∴)1(zh dx n '=+∴152.11001.03103.31073.41333=⨯⨯⨯⨯⨯=+=---n 条纹向上移动解:43-cms 40='5=βmmd d 152.0=⨯==∴βcms z 52210=++'=mmdze 26.0==∴λ,则由成像公式)若右移(cm 23方向垂直于21s s 21εαεαλ+=e 001.01022.0221=⨯==⋅==⋅f d f z dαεαεmmm e 25.0105.2002.01050049=⨯=⨯=∴--ε,带公式求的像距求亦可用成像2121s s s s S )直条纹(1解:63-间距为空间周期)条纹无变化(2x d z e =15= 5.11015==∴e nm z ed 58715.11045.05.15=⨯⨯==-λ解:33-86.21==dz e λnm400=λ93.32==z de λnm 550=λnm 700=λ53=e 解:23-4=d 5.1=z 1875.0==∴d z e λ由几何关系45.3=x 15.1='x 3.215.145.3=-='-=∆∴x x x 条取可观察:122.121875.03.2=解:113-60=l 18012060=+=z θλ⨯⨯-=60)1(2n ze rad31084.8-⨯=θ2.051==e mm x n 6.10)12(=-θ范围:解:103-rade 3100.1-⨯=5.0=l 25.15.0=+=z mml z e 1105.02250023=⨯⨯⨯==∴-θλl z l x d m-=5.12lx l m =θmm x m3=条3=e x m可观察∴解:93-)有由几何关系(见书上图7.2.3α201cos I =I β202cos I =I βαθ+=而)cos(cos cos cos cos 2)cos(cos cos cos cos 2cos 22222222121βαβαβαβαβαβαθ++=++=I +I I I =v 夹角21P P 后的通过21P P 00,2I P I 后为则透过设入射光强为解:73-cmf tg D 048.130=⋅=048.1=Nγ设hn n f λγN =N0则λγN =∴N n f 221.6106005.120102048.1923222=⨯⨯⨯⨯⨯==N ∴--N λγn f h个亮环可观察6∴解:273-i f e δ⋅=或用ndn n i λδ021=cme 671.0=i nh cos 2=∆光程差时)(010=i 331061025.122--⨯=⨯⨯⨯=nh m m 4391010610600⨯⨯=⨯=--hnN n f r λ.102=)(00=n 5.1=n CMF 20=10=N cmr 34.1067.02010210600105.11203910=⨯=⨯⨯⨯⨯=∴--cmr 4.107.02010210600115.12033911=⨯=⨯⨯⨯⨯=--)(cmr 27.120063.01021060095.120399=⨯=⨯⨯⨯⨯=--cm r 07.027.134.1=-=∆cmr 06.034.14.1=-=∆∴为明点∴无半波损失解:263-mmm d z b s3164.04.316102108.632139==⨯⨯⨯==--Mμλmmm b b p0791.01.7941===Mμ解:163-t C L C∆=s c l t c 982101031030--=⨯⨯==∆x f Hz t '=∆=∆9101ν()nmmm m x c 3912918221038.11038.11038.110108.643----⨯=⨯=⨯=⨯'⨯=∆=∆νλλ解:223-mmb z dm s2.1105.010600139=--⨯⨯⨯==λmm b z dm s4.2105.010600239--⨯⨯⨯==λ解:173-21h h h +=2)12(22λλ+=+=∆m h 2λm h =∴11212h R r =由几何关系22222hR R =222222121λm R r R r =+∴21r r =λm R R R R r 21212+=∴2121R R m R R r +=λ解373-2020=R 220,2=⋅=∴λλR Rm 2010231-⨯=λR 2010432-⨯=λR 3.589=λm R 34.01=∴mR 35.12=∴cmR R n f 543.074.094.22)35.1134.01(5.01)11)(1(121=+=+=--=∴解:353-mm r r 123=-2021rr -求m R r R e mλλ212==λmR r m=12323=-=-∴λλR R r r 1)23(=-λR )23(231+=-=λR mmR r r 346.0146.311.0)23)(2021()2021(2021=⨯=+-=-=-∴λ解333-αλn e 2=ad ne γλα5310876.310552.123.5892--⨯=⨯⨯⨯==∴解313-λλm nh =+22337.1=n m h 910380-⨯=910016.1)21(-⨯=-λm 时当1=m nm 20321=λ时2=m nm3.6772=λnm4.4063=λ时3=m λm nh =2时当1=m nm 1016=λ时2=m nm 5082=λnm3383=λ时3=m 时当nm h 38=<<9106.1012-⨯=nh 光干涉相长反射光干涉相消,透射远小于.λ解:303-nm nm 3.677064.4和最强光波长为∴透射光无半波损失波长的光最强508∴,则条纹移过一个每移动2λ1102423220.0=∴λnm 9.62810242322.0=⨯=λ:解40-321h h h +=2)12(22λλ+=+=∆m h 2211222hR h R r ==12212R R m R R r -=λ2222212λm R r R r =-∴1221R R m R R r -=∴λ解:同上题38-3λλm h =+222)12(λk m r -=亮环半径m r m 311006.13-⨯==时mrR 9988.052121==∴λm r m 321077.15-⨯==时nmr rr r r R 1.697952592921212221122222=⋅=⋅==∴λλλ解363-解:413-hn )1(2-了插入玻璃板后光程增加条纹移一条)每增加则条纹增加一条(厚度光程每增加2λλ120)1(2=-∴λh n λ10)1(=-∴h n nmm n h 41009.19.10110⨯==-=μλ解:433-nm 0013.0=∆λλλγ∆=∆∴2c γ∆=∆∴1t cmc L c88.312=∆=∆=∴λλγhh 2则光程增加镜子每移动最大光程差cL h =2cm L h c94.15288.312===∴λm h =个510476.2⨯==λhm 解:463-2)1(4R R F -=2r R =80)1(4)1(222=-=∴r rF 447.04)2(==∆Fδ05.142)3(=∆=σπϑF 9756.02993.012)4(2=+==+=F FR r V解:473-λ02m nh =1=n 41042⨯==λhm 第二十个环399802040000200=-=-=m m λm i h =cos 29995.010210500399802cos 29=⨯⨯⨯==∴--h m i λyad i 201016.381.1-⨯==变化。

(完整版)《光学教程》(姚启钧)课后习题解答

(完整版)《光学教程》(姚启钧)课后习题解答
反射光线经玻璃板后也要平移 ,所成像的像距为
放入玻璃板后像移量为:
凹面镜向物移动 之后,物距为 ( )
相对 点距离
10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少?
解:
由球面折射成像公式:
解得:
11、有一折射率为 、半径为 的玻璃球,物体在距球表面 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率。
则在玻璃片单位长度内看到的干涉条纹数目为:
即每 内10条。
10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为 。已知玻璃片长 ,纸厚 ,求光波的波长。
解:
当光垂直入射时,等厚干涉的光程差公式:
可得:相邻亮纹所对应的厚度差:
由几何关系: ,即
11、波长为 的可见光正射在一块厚度为 ,折射率为 的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。

5、(略)
6、高 的物体距凹面镜顶点 ,凹面镜的焦距是 ,求像的位置及高度,(并作光路图)
解:
由球面成像公式:
代入数值
得:
由公式:
7、一个 高的物体放在球面镜前 处成 高的虚像。求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?
解:⑴
, 虚像

得:
⑵由公式
(为凸面镜)
8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起。若凸面镜的焦距为 ,眼睛距凸面镜顶点的距离为 ,问玻璃板距观察者眼睛的距离为多少?
解:⑴
⑵由光程差公式
⑶中央点强度:
P点光强为:
3、把折射率为 的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

径为-80cm,求此折反系统的基点,并讨论
其特性。
解:1)对于共心透镜两个面
L1 L2
L3
0.5m
0.8m 0.4m
1
n r1
n
1.5 1 0.5
1m1
2
n
n r2
1 1.5 0.4
1.25m1
f1
n 1
1 1
1m
f1
n 1
1.5m
f 2
n 2
1 1.25
0.8m
f2
n 2
1.5 1.25
111
解:第一次通过L1时
p1 p f
p 5.6cm
L1
L2
p1 14cm
Q.
通过L2 平面时
n p2 p n
5.6cm 10cm p 14 10 4cm p2 6cm
通过L2 曲面反射:
1 1 11 p3 p2 12
p3 3cm
再通过L2 平面时:
p4
p3
n n
2cm
11 1
和平面向上时,纸上与透镜接触处的字成
象的位置。
解;1)凸面向上时,
n n n n p p r
1 1.5 11.5 p 0.02 0.08
p 0.0145m
0.02 0.0145 0.0055m
成象于纸面上方0.0055m处
2)凸面向下时,平面曲率半径为∞
1 1.5 0 p 0.02
1.2m
d f1 f2 0.11.5 1.2 0.2m
xH
f1d1
1 0.1 0.5m 0.2
xH
f2d1
0.8 0.1 0.4m 0.2
f f1 f2 11.2 6m f f1f2 1.5 (0.8) 6m
0.2
0.2
共心透镜的H和H´均位于球心处
2)对于凹透镜L3
f12
f1 f2 12
2R 3r 2(r R)
3Rr Rr
f12
f1f 2 12
3Rr Rr
左半球两球面共轴系统的H和H´均在球心处
根据对称性,右半球组成的共轴系统的H 和H´也在球心,即整个系统的H和H´在球心。
f3
f3
r 2
0.8 2
0.4m
3
2 0.8
2.5m1
共心透镜与凹面镜构成折反系统,光线 通过共心透镜两次,在凹面镜反射一次
折 2共心 3 d共心3
d 0.8m
1 2 1 2.5 0.8 2.5 1 2.5m1
f折
6
6
f折 0.4m
折 3 且共心透镜的H和H´均位于球心处
p 0.4 5 y
y 0.2cm 象缩小五倍
0 为正立虚象
n n 1.33 1.33 13.3m1 p p 0.08 0.4
17 一光学系统如图所示,L1和L2为薄透 镜L1的焦距为4cm, L2材料的折射率为1.5, 其球面曲率半径为12cm,球面为镀铝反射面,
L1和L2间隔10cm,一物放在L1前5.6cm处, 求光线第二次通过L1后的成象位置,并在图 上标出。
∴折反系统基点位置与凹面镜完全相同, 作用只在于校正球面镜象差。
3)若要确定折反系统基点位置,可用两次 共轴球面系统成象,也可直接由凹面镜得出

共心
3
d共心3
பைடு நூலகம்
8 3
m1
6.4m f f 0.375 m xH 0.75m xH 0.05m
第二次再与共心透镜成象
6 (0.8 0.375 0.05) 5.625 m
8 一个等曲率的双凸透镜,放在水面上 (n=1.33),两球面的曲率半径均为3cm,中 心厚度为2cm,玻璃的折射率为1.50,在透镜 下4cm处有一物点Q,试分别算出两曲面的光 焦度,并计算最后在空气中象点的位置。
n´´ n´
n
Q
解:凸透镜水中一面的光焦度
1
n r
n
1.5 1.33 0.33
5.76m1
p 0.0133m
0.02 0.0133 0.0067m
成象于纸面上方0.0067m处
11 一凸球面浸没在折射率为1.33的水中, 高为1cm的物在凸面镜前40cm处,象在镜后 8cm处,求象的大小、正倒、虚实及凸面镜 的曲率半径r和光焦度φ
解: pn
pn
n n
p 0.08 1 y
xH 0.05m xH 0.8m f f 0.4m
折反系统的物点主点与象方主点仍位于 凹透镜顶点处,与前面分析一致。所以3)步 骤可省略。
23 空心玻璃球,外半径R,内半径r,玻 璃折射率1.5,置于空气中,求此光学系统 的基点,并讨论其特性与r的关系
解:1)左半球两球面组成共轴系统
1
n R
凸透镜空气一面的光焦度
2
n n r
11.5 0.33
16.7m1
n´´ n´
n
Q
Q点在水中球面成象
n p
n p
1
p 0.04m
p 0.0544m
再在空气中球面成象
n p
n 0.02
p
2
p 0.289m
即成象在上表面下方0.289m
9 半径为R的透明体的半面镀以反射膜,问 当此球的折射率为何值时,从空气中入射的光 经此球反射后按原方向返回?
解(一):原方向返回,角度改变π
i
i´ i´
i 2i i 2i
近轴折射定律 n sin i i 2
sin i i
解(二): f 2R
f
n
n n 1
2R
R
n n n 1 p
RR
n2
10 一平凸透镜放在纸上,透镜材料的
折射率为1.50,球面的曲率半径为80mm,
透镜的中心厚度为20mm,分别求凸面向上
再通过L1 平面时:
p6 p5 f
p5 10 2 8cm
即在L1左侧8cm
p6 8cm
L1
L2
Q.
5.6cm 10cm
20 一双凸透镜中心厚度为6cm,折射率 为1.5,曲率半径均为50cm,求其在空气中 的光焦度。
解:用透镜制造者公式:
(nL
1 1)[
r1
1 r2
(nL 1) nr1r2
n
1.5 1 R
1 2R
f1
n 1
2R
f1
n 1
1.5 1
3R
2
n
r
n
11.5 R
1 2r
2R
f2
n 2
1 1
2r
2r
f2
n 2
3r
d f1 f2 R r 3R 3r 2r 2R
xH
f1d 12
2R(R r) R 2(r R)
xH
f2d 12
2r(R r) r 2(r R)
d]
(1.5 1)[ 1 1 0.5 0.06 ] 0.5 0.5 1.5 0.5 (0.5)
1.94m1
推导过程: 1 2 (d / n)12
1
nL 1 r1
2
nL 1 r2
22 折射率为1.5的共心透镜与凹面镜的
球心重合于C点,置于空气中,透镜的曲率
半径分别为50cm和40cm,凹面镜的曲率半
相关文档
最新文档