导数常见题型和解题方法总结
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
高考导数的题型及解题技巧

高考导数的题型及解题技巧高考中,导数是数学必修内容之一,也是考生需要重点掌握的知识点之一。
导数作为微积分的基础,不仅能帮助我们求出函数的极值、最大值、最小值等,还能证明函数的性质,解决数学问题。
在高考中,涉及导数的题目类型有很多,以下是常见的几种题型及解题技巧。
一、求导数求导数是导数的基础操作,也是高考中出现频率最高的题型之一。
求导数的方法有很多,如极限法、公式法、差商法、反函数法等。
在解题时,需要掌握各种方法,依据题目的具体情况选择合适的方法求解。
二、函数的单调性和极值要判断函数的单调性和极值,需要先求出函数的导数,然后通过导数的符号来判断函数的单调性和极值。
如果导数为正,则函数单调递增;如果导数为负,则函数单调递减;如果导数为0,则函数取极值。
在解题时,需要注意导数为0时,还需要判断函数是否具有拐点。
三、曲线的凹凸性和拐点要判断曲线的凹凸性和拐点,同样需要求出函数的导数和二阶导数,然后通过二阶导数的符号来判断曲线的凹凸性和拐点。
如果二阶导数为正,则曲线凹向上;如果二阶导数为负,则曲线凹向下;如果二阶导数为0,则曲线具有拐点。
在解题时,需要注意拐点处是否是函数的极值点。
四、函数的应用题导数在实际生活中有很多应用,如速度、加速度、最优化等。
在解决这类题目时,需要将问题转化为函数的导数问题,然后根据导数的性质求解。
在解题时,需要理解速度、加速度等概念,并注意题目中给定的条件。
总之,导数是高考数学的重点和难点,需要考生认真掌握,熟练运用。
在复习时,建议多做例题,掌握各种求导方法和计算技巧,熟悉各种题型的解题思路,才能在考试中发挥出自己的水平。
导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
高考导数题型分析及解题方法

高考导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1. 32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数331x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =-2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为0/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
导数知识点各种题型归纳方法总结

导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式: ①'0()C C =为常数;②1()'nn x nx-=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'xxe e = ⑥()'ln (0,1)xxa a a a a =>≠且; ⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算 1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ', 即有()00V f t '=。
导数各种题型及解法的总结

《导数各种题型及解法总结》基础知识梳理1.常见题型2.在解题中常用的有关结论(需要熟记):3.解题方法规律总结虑判别式、对称轴、区间端点函数值的符号等因素。
2. 已知函数(含参数)在某区间上单调,求参数的取值范围,有三种方法:①子区间法;②分离参数法;③构造函数法。
3. 注意分离参数法的运用:含参数的不等式恒成立问题,含参数的不等式在某区间上有解, 含参数的方程在某区间上有实根(包括根的个数)等问题,都可以考虑用分离参数法,前 者是求函数的最值,后者是求函数的值域。
4. 关于不等式的证明:通常是构造函数,考察函数的单调性和最值。
有时要借助上一问的有关单调性或所求的最值的结论,对其中的参数或变量适当赋值就可得到所要证的不等式。
对于含有正整数n 的带省略号的不定式的证明,先观察通项,联想基本不定式(上述结论 中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关) , 再对自变量x 赋值,令x 分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。
)5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区 间端点的函数值,结合函数图象, 确立所满足的条件,再求参数或其取值范围。
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令f (x) =0得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0 )第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数y 二f(x)在区间D 上的导数为f(x), f (x)在区间D 上的导数为g(x),若在区间 D 上,(2)若对满足 m 兰2的任何一个实数 m ,函数f (x)在区间(a,b )上都为“凸函数”,求b-a 的最大值.g(x) -.0恒成立,则称函数y = f(x)在区间D 上为“凸函数”,已知实数m 是常数,(1 )若y = f (x)在区间0,3 1上为“凸函数”,求m 的取值范围; 4f(x 7 6 3 mx 3x1例2:设函数f (x) x3 2ax2 -3a2x b(0 ::: a ::: 1, b R)3(I)求函数f (x)的单调区间和极值;(n)若对任意的x引a+1,a+2],不等式flx/a恒成立,求a的取值范围. (二次函数区间最值的例子)点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成立h(x)二f (x)-g(x) • 0恒成立;从而转化为第一、二种题型3 2 3 t — 6 2例3 ;已知函数f(x^x3 ax2图象上一点P(1,b)处的切线斜率为-3 ,g(x)=x3—x-(t 1)x 3 (t 0) (I)求a,b的值;(n)当x・[-1,4]时,求f (x)的值域;(川)当[1,4]时,不等式f(x) _g(x)恒成立,求实数t的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数常见题型和解题方法总结
1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
2、变更主元-----已知谁的范围就把谁作为主元
3、根分布
4、判别式法-----结合图像分析
5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在
一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m 的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值、解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵ 当时, 恒成立, 当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数” 则等价于当时恒成立变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)-22 例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围、解:(Ⅰ)3aa a3a 令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当x=3a时,极大值=b、(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数、(9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系例3:已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值
二、参数问题
1、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m , n)上是减函数”与“函数的单调减区间是(a , b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数、
(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围、解:、(Ⅰ)∵ 是偶函数,∴ 、此时,,令,解得:、列表如下:(-∞,-2)-
2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为、(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:、综上,的取值范围是、例
5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。
子集思想解:(I)
1、当且仅当时取“=”号,单调递增。
2、 a-1-1单调增区间:
单调增区间:(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,综上,a的取值范围是[0,1]。
2、题型二:根的个数问题题1 函数f(x)与g(x)(或与x 轴)的交点,即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可。
例
6、已知函数,,且在区间上为增函数、(1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值
范围、解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:
,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点、………………………13分综上可知,当或时,有一个交点;当时,有两个交点、…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数、(Ⅰ)若函数在处有极值,求的解析式;(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围、(1)∵f′(x)=3/a2 •x2,∴由3/a2 •x2=3得
x=a,即切点坐标为(a,a),(-a,-a)∴切线方程为y-a=3(x-a),或y+a=3(x+a)(2分)整理得3x-y-2a=0或3x-
y+2a=0解得a=1,∴f(x)=x
3、∴g(x)=x3-3bx+3(4分)∵g′(x)=3x2-3b,g(x)在x=1处有极值,∴g′(1)=0,即312-3b=0,解得b=1∴g (x)=x3-3x+3(6分)(2)∵函数g(x)在区间[-1,1]上为增函数,∴g′(x)=3x2-3b≥0在区间[-1,1]上恒成立,∴b≤0,又∵b2-mb+4≥g(x)在区间[-1,1]上恒成立,∴b2-mb+4≥g (1)(8分)即b2-mb+4≥4-3b,若b=0,则不等式显然成立,若b≠0,则m≥b+3在b∈(-∞,0)上恒成立∴m≥
3、故m的取值范围是[3,+∞)。