实变函数论课后答案第四章
实变函数论与泛函分析曹广福到章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉;若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:i )(inflim )(inf lim x x nnA nnA χχ=ii )(sup lim )(sup lim x x n nA nnA χχ=证明:i )(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明i }{n B 互相正交ii i ni i ni B A N n 11,===∈∀证明:i m n N m n ≠∈∀,,;不妨设n>m,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.ii 因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: i })(|{a x f x E >=}1)({1na x f n +≥∞=ii})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:i })(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即ka a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故 ,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1k a x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim ka x f x E x m n +≤∈=}1)(|{k a x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:ka x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间a,b 上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的; 证明: 设Q 为有理数集,由定理6:Q 是不可数的;现在证:z y x z y x Q Q Q ,,|),,{(=⨯⨯}都是有理数可数Q x ∈∀,因为Q Q ⨯)}({Qx Q x ⨯=∈ 是可数个有理数集的并,故可数,又因为)}({Q Q Q Qx Q Q x ⨯⨯=⨯⨯∈ 并且Q Q Q Q x Q x ⨯⨯⨯∈∀~}{,,所以Q Q x ⨯⨯}{可数故Q Q Q ⨯⨯可数14.证明:可数集的有限子集的全体仍是可数证明: 设Q 为可数集,不妨记为:},,,,,{321 n r r r r Q =N n ∈∀,令}},,,,{|{321n n r r r r a a A ⊂=则 n A 为有限集n 2n =A ,则 n A =∈Nn A 为正交可数集,即0n C ≤A又因为}{A Q x x Q ⊂∈|}{~,所以A Q C ≤=0 ,故0C A =A 是Q 上一切有限子集的全体;15.设是两两不相交的集所组成的集列,证明:∅==∞→∞→n n n n E E lim lim证明: 因为{ ,,21E E }两两不相交,所以,∅=∈∀∞=m nm E N n ,,故∅=∅=∈=∞=∞=∞=∞→11)(lim n m nm n n n E E另一方面,若∅≠=∞=∞=∞→)(lim 1m nm n n n E E ,我们取n n E x ∞→∈lim 0则k n N k k ≥∃∈∀,,使得k n E x ∈.特别的,当 N k ∈=1时,n E x n ∈≥∃有,11,当11+=n k时:211221,E x n n k n N n ∈>+=≥∈∃,有)21n n < 从而,21n n E E x ∈ 这与∅=21n n E E 矛盾,故∅=∞→n n E lim从而∅==∞→∞→n n n n E E lim lim16.若集A 中每个元素由相互独立的可列个指标所决定,即A=}{21 x x a ,而每个指标i x 在一个势为C 的集中变化,则集A 的势为C;证明:设i x 在势为C 的集合中变化,即A=∏∞=∈121}),,(|{21i ix x B x x a因R B R B i i i i'→':,~ϕϕ 是既单又满的映射, 定义 ∏∏∞=∞∞=∈=∀→1211),,(;:i i i iB x x x R Bϕ,)),(),((),,()(2121 x x x x x ϕϕϕϕ==故∞∞=∏RB i i到是1ϕ得既单又满的映射,从而,∞∞=∏R BA i i~~1从而 C R A ==∞17.设n n A ∞=1 的势是C,证明至少有一个n A 的势也是C;证明:因为n n n A A N n ∞=⊂∈∀1, ,所以C A A n n n =≤∞=1如果C A N n n ≠∈∀,,则C A N n n <∈∀,,即,n A 正交可数,从而,n n A ∞=1正交可数.这与C A n n =∞=1矛盾.故,N ∈∃n ,使C A n =.18.证明:0,1上的实函数全体具有势C2 证明:设]}1,0[|{⊂=A A ,则C 2=记0,1上全体是函数所构成的集合为ϑ 对于 ∈∀x ,定义函数⎩⎨⎧∉∈=A x Ax x A .0,1)(χ ,即A χ是集合A 的特征函数;}{ϑ⊂⊂=]1,0[|A A ⇒ ϑ≤= C 2另一方面,ϑ∈∀f ,定义 ]}1,0[|))(,{(∈=x x f x B f则 2R R R B f =⨯⊂,}|{2R R B B R ⨯⊂=,则C R 22=}|{~ϑϑ∈f B f 2R ⊂,所以 C R 22=≤ϑ,从而,C 2=ϑ20.证明:n R 中孤立点集市有限或可数集证明:E x ∈∀中,E 是n R 的一些孤立点所构成的集合 由定义,0>∃x δ,使得}{),(x E x O x = δ.现在令 }|)2,({E x x O x∈=δξ,则ξ中任意二领域是不相交的事实上,若y x E y x ≠∈∃,,,有∅≠)2,()2,(yxy x O δδ取)2,()2,(yxy x O z δδ⋂∈,并且不失一般性设:y x δδ≤,则y yxy z z x y x δδδρρρ=+<+≤22),(),(),(.故 }{)2,()2,(y y x O x yx=∈δδ ,这推出y x =,这与y x ≠矛盾.E x ∈∀,取一个有限点)2,(xx x O r δ∈,则,当,y x r r y x =⇔≠,所以}|{~E x r E x ∈,故ξ≥∈=}|{E x r E x .E 正交可数.19.设|{0x E R E n=⊂,}的内点是E x 称为E 的内点集,证明:0E 是开集; 证明:0E x ∈∀,因为x 为E 的内点,0>∃ε使得:E x x ⊂+-),(εε,现在证:),(E x x ⊂+-εε事实上,),(εε+-∈∀x x y ,取0|y -x |>-=εδ则E x x y y ⊂+-⊂+-),(),(εεεε,故0E y ∈,从而,0),(E x x ⊂+-εε,即0E 中每个点都是0E 得内点因此,0E 为开集21.假设f(x)是a,b 上唯一有限实函数,证明:它的第一类间断点的全体是可数的; 证明:a,b 中右极限存在的间断点是至多可数的. 令)0()(lim |),[{+=∈=+→'x f x f b a x S xx 有限},N ∈∀n ,作:}0|),[{>∃∈=δb a x E n ,时,使得),[),(,b a x x x x δδ+-∈'''∀ 则:1),{)(1b a x f E n n 在是∞= 上连续点的集合事实上,0,10>∀⋂∈∀∞=εn n E x ,取)1(1εε<>nn 即 因n E x ∈0,故),[),(,,000b a x x x x ⋂+-∈'''∀>∃δδδ有ε<-|)()(|0x f x f 即,)(x f 在0x 点连续;2n E S N n -∈∀,,因)()(lim 0+→'='+x f x f xx 有限,故0>∃x δ使得),[),(b a x x x x ⊂+∈'∀δ ,nx f x f 21|)()(|0<-'+,故,),,(,x x x x x δ+∈'''∀有nx f x f 1|)()(|<''-',从而,n x E x x ⊂+),(δ.现在证:}|),{(n x E S x x x A -∈+=δ 是两两不相交的开区间集,,2121x x E S x x n ≠-∈∀,不妨设 21x x <,如果∅≠++),(),(212211x x x x x x δδ ,取),(),(212211x x x x x x x δδ++∈*则 1121x x x x x δ+<<<*即,n x E x x x ⊂+∈),(2112δ,这与n E S x -∈2矛盾,故A 两两不相交,从而n E S -可数故)(11n n n E S S -⋃=⋂-∞=∞=至多可数;即,),[b a 中第一类间断点至多可数; 20.证明nR 中孤立点集是至多可数集证明:设F 是点集E 中一些孤立点所构成的集合0,>∃∈∀x F x δ,有}{),(x E x O x = δ现在先证:}|)2,({F x x O x∈δ是两两不相交的事实上,2121,,x x F x x ≠∈∀,如果)2,()2,(2121xxx O x O y δδ⋂∈∃,则),(),(),(2121x y y x x x ρρρ+≤22122x xxδδδ≤+<不妨设21x x δδ≤,故}{),(2,212x E x O x x =⋂∈δ,这与21x x =矛盾.所以,}|)2,({F x x O x∈δ是两两不相交的.F x ∈∀,取有理点)2,(xx x O r δ∈,故Q F x r F x ⊂∈}|{~,从而,0C Q F =≤22.证明:nR 中直线上每个闭集必是可数个开集的交,每个开集必是可数个闭集的并. 证明:设F 是R '中的一个闭集,先证:0>∀δ,),(δF O =R ∈x {|}),(δρ<F x 是R 中的开集,其中}|),(inf{),(F y y x F x ∈=ρρ),(δF O x ∈∀,则δρ<),(F x ,取δρδε<-=),(F x ,故),(δF O ),(δF O ⊂事实上,),(εx O t ∈∀,所以),(δF O 是开集 现在证:)1,(1nF O F n ∞== 、事实上,N n ∈∀,)1,(n F O F ⊂,所以)1,(1nF O F n ∞=⊂ .反过来,)1,(1n F O x n ∞=∈∀ ,有nF x 1),(<ρ.故0),(=F x ρ.F x ∉,即F R x -∈.0>∃δ,使),(δx O F R -⊂.所以),(δx O ∅=F .故,δρ≥),(F x ,这与0),(=F x ρ矛盾.所以F x ∈,从而)1,(1nF O F n ∞== .再来证:每个开集必是可数个闭集的并.事实上,若G 是开集,则G R -是闭集.所以存在可数个开集N n n O ∈}{,使得}{n O G R =-,所以)(}{11n n n n Q R O R G -=-=∞=∞= .即G 是可数个闭区间集∞=-1)}{(n n Q R 的并.23.假设∞=1}{i i I 是一列开区间,如果∅≠∞=i i I 1,证明i i I ∞=1是一个开区间证明:N ∈∀i ,记}N ∈=i i |inf{αα,}N ∈=i i |sup{ββ ,其中),(i i i I βα=,因为∅≠∞=i n I 1,所以可取),(10βα⊂∈∈∞=i i n I I x现在我们证:i i I ∞==1),( βα因为N i ∈∀,),(),(βαβα⊂=i i i I ,故),(1βα⊂∞=i i I反过来,),(βα∈∀x ,即βα<<x ,当0x x ≤时,因为x <α,所以N ∈∃1i ,有ββαα≤<≤<<<110i i x x x .所以i i i i i I I x ∞=⊂=∈1),(111 βα. 如果β<≤x x 0,N ∈∃2i ,使220i i x x x β<≤<,故i i i i i I I x ∞=⊂=∈12111),( βα,从而i i I ∞==1),( βα24.设R E '⊂,}|{A B ∈λλ是E 的一个开覆盖,证明:}|{A B ∈λλ中必存在至多可数个}|{N ∈i B i λ,使得iB E i λN∈⊂ .证明:不妨设}|{A B ∈λλ中每一个元都是开区间.E x ∈∀,存在A x ∈λ,有x B x λ∈,故有:R ∃端点的开区间),(R r x x =δ,使得x B x x λδ⊂⊂.即,ix Ex E δ∈⊂ .又因为}|),({E x R r x x x ∈=δ~Q Q E x R r x x ⨯⊂∈}|),{(所以}|{E x x ∈δ可数.不妨设}|{E x x ∈δ=}|{N n x ∈δ,又记=∈}|{E x B n λ}|{N n B n ∈λ.其中,n B n λδ⊂}(N n ∈∀故n B E n n x λδδNn NEx ∈∈∈⊂=⊂25.已知:可数集},21,21,21,1{2 n E =,开区间列)1,1(εε+-,)21,21(εε+-, ),21,21(,n n εε+-,覆盖了它,这里210<<ε,从此覆盖中能否选出集E 的有限子覆盖.答:不能,证明如下:证明:反正如果k n n n ,,21∃,N k ∈,使得)21,21(1n nki E εε+-⊂= ,不妨设 k n n n <<< 21,因为)1(k i i ≤≤∀,12122112121+=->-≥-kk k i n n n n εε,则121+k n)21,21(1k k n n ki εε+-∉= .这与E k n ∈+121矛盾.所以不真.26.设}|{A F ∈λλ是一簇集合,如果A n ∈∀λλλ,,,21 ,有∅≠=i F ni λ1,则称集合簇}|{A F ∈λλ具有有限交性质.证明:如果}|{A F ∈λλ是具有有限交性质的非空有界闭集簇,那么∅≠∈λλF A.证明:取A ∈0λ,令}1),(|{0<∈=λρF x R x G n ,其中=),(0λρF x}|),(inf{0λρF y y x ∈,∑=-=ni i iy xy x 12)(),(ρ,则G 是n R 中开集.且G F ⊂0λ,如果∅=∈λλF A,则)(0λλλλλF G F G G F AA-=-=⊂∈∈ .由Borel 有限覆盖定理P27 定理9,存在m λλλ,,,21 ,使得⊂0λFi mi mi F G F G i λλ11)(==-=- .从而,∅====i mi i mi F F F λλλ01)(0 ,这与}|{A F ∈λλ具有有限交性质矛盾.27.试用Borel 有限覆盖定理证明:Bolzano-Weiestyass 定理P24定理4,若E 是是一个有界无穷点集,则∅≠'E .证明:设E 是nR 中的有界无穷点集,如果∅='E ,则E x ∈∀,0>∃x δ,使得}{),(x E x O x = δ,则),(x Ex x O E δ∈⊂ .由Borel 有限覆盖定理,E x x x n ∈∃,,,21 ,有),(1i x i m i x O E δ=⊂ ,从而)],([1i x i m i x O E E δ== =),(1i x i m i x O E δ ==}{1i mi x = =},,,{21n x x x ,这与E 为无穷集矛盾,从而∅≠'E .29.可数个开集的交称为δG 型集,可数个闭集的并称为σF 型集.证明:有理数集不是δG 型集,但是σF 型集.证明:设Q 为R '中全体有理数所构成的集合.如果Q 是δG 型集,即n n G Q ∞==1,其中n G 是开集,由开集的结构,N n ∈∀,),(k k n n kn G βα =,其中k n n k k )},{(βα是互不相交的开区间. 不是一般性,设 ≤≤≤≤<≤<11111n n n n n n k βαβαβα这是,必有1-∞=1n α事实上,如果-∞≠1n α,即r ∃为有理数,1n r α<.因为N k ∈∀,k n n r αα<<1,故Q G G r n n n n n kk k =⊃=∉∞=1),( βα,这与Q r ∈矛盾.2N k ∈∀,1,,+=k n k n αβ如果N k ∈∃*,1,,**+≠k n k n αβ.则1,,**+<k n k n αβ.因此,Q r ∈∃,有1,,**+<<k n k n r αβ.这有:Q G r n n n kkk⊃=∉),(βα 这是一矛盾.3 +∞==}{sup ,k n kn ββ.事实上,若+∞≠n β,则n β为有限实数,Q r ∈∃,使得k ∀,r n k n <≤ββ,,故Q G r n n n kk k ⊃=∉),(βα ,这也是一矛盾.}|{}{),(,,,,k R G R k n kk n kk n k n kn ααβα ==-'=-'},|{}|{}{,,111k N n k G R G R Q R k n k n n n n n n ∈==-'=-'=-'∞=∞=∞=αα 为可数集,这与C Q R =-'矛盾.因为在R '中单点集是闭集,所以Q r ∈∀,令}{r F r =,则F 为闭集,所以r Qr F Q ∈= ,故Q 为σF 型集.30.定义在]1,0[上的任何函数的连续点构成的集合是一个δG 型集.92'.证明:开区间)1,0(中有理点的全体不是一个δG 型集,但是一个δG 型集.30.是否存在]1,0[上的的函数满足:在有理点处连续,而在无理点处都不连续 是证明你的结论. 回答:不存在.为此,只需证明如下命题命题:开区间)1,0(中的任何函数的连续点构成的集合是一个δG 型集.这是因为,如果存在]1,0[上的函数f ,使得)()(lim |)1,0({)1,0(x f x f x Q xx ='∈=→'' . 当命题成立时,必有Q )1,0(为δG 型集,这与92'题的结论矛盾. 命题的证明:设)(x f 是开区间)1,0(有定义的一实函数,记)()(lim |)1,0({x f x f x E xx ='∈=→'',下证:E 是一个δG 型集.N n ∈∀,令10|),{(<<<=βαβαn A 且⇒∈∀),(2,1βαx xnx f x f 1|)()(|21<-.又记n n A G =.于是,我们只需证:n N n G E ∈= .事实上,E x ∈∀,因为)()(lim x f x f xx ='→'',所以N n ∈∀,0>∃n δ,使得)1,0(),(⊂+-∈'∀n n x x x δδ,恒有nx f x f 21|)()(|<-',所以 )1,0(),(,21⊂+-∈∀n n x x x x δδ,恒有+-≤-|)()(||)()(|121x f x f x f x fnx f x f 1|)()(|2<-,故n n n G x x ⊂+-),(δδ,所以n n n n n G x x x ∞=∞=⊂+-∈11),( δδ即,n n G E ∞=⊂1反过来,n n G x ∞=∈∀1.⇒+-∈'∀>∃>∀),(,0,0:(n n x x x f δδδε)|)()(|2ε<-'x f x f0>∀ε,取N n ∈0,使得ε<01n .因为001n n n n A G G x =⊂∈∈∞=所以R ∈∃βα,:10<<<βα,使得),(βα∈x ,并且),(,21βα∈∀x x 有ε<<-0211|)()(|n x f x f ,取0},min{>--=x x βαδ,故x '∀:δ<-'||x x ,即 x ',),(),(βαδδ⊂+-∈x x x ,所以ε<<-'01|)()(|n x f x f .从而='→'')(lim x f x x)(x f .故E x ∈.因此,n n G E ∞==1 真.31.假设R A '⊂,且对任意R x '∈,存在x 的一个δ-领域),(δδ+-x x ,使得A x x ),(δδ+-最多只有可数个点,证明:A 必有有限级或可列集.证明:因为A x ∈∀,0>∃x δ使得x x x B A x x =+- ),(δδ是一个至多可数集,而),(x x Ax x x A δδ+-⊂∈由24题,A N i x i ⊂∈∃}|{使得:),(1i i x x i n x x A δδ+-⊂∞=又i i i i i x n x x i n x x i n B x x A x x A A ∞=∞=∞==+-=+-=111)),(()],([ δδδδ.即A 至多可数. 32.证明下列陈述相互等价. i A 是无处稠密集ii A 不包含任何非空开区间iii A 是无处稠密集 iv A 的余集A C 是稠密集无处稠密集:nR E ⊂,E 称为是无处稠密的,如果,0>∀δ,nR x ∈∀,),(δx O E ⊄.证明:i ⇒ii.设A 是无处稠密集,即0>∀δ,R x '∈∀有A x x ⊄+-),(δδ. 如果)(,βαβα<'∈∃R ,有A ⊂),(βα.取2βα+=x ,取02>-=αβδ,故A x x ⊂=+-),(),(βαδδ.这与A x x ⊄+-),(δδ得假设矛盾.所以i ⇒ii 真.ii ⇒iii.如果A 不是无处稠密的,即nR x ∈∃0,0>∃δ,使得),(δδ+-x xA ⊂=),(βα.这与A 不包含任何非区间矛盾.iii ⇒iv.设A 无处稠密.现在我们证:R A R '=-'.R x '∈∀,如果A R x -'∉,则A x ∈,所以0>∀δ,有A A x x =⊄+-),(δδ.故∅≠-'+-)(),(A R x x δδ.所以A R x -'∈.iv ⇒i.设R A R '=-',R x '∈∀,0>∀δ,∅≠-'+-][),(A R x x δδ.所以A x x ⊄+-),(δδ.从而,A 无处稠密. 33.证明:若集合E 的聚点0x 不属于E ,则0x 是E 的边界点.定义:0x 称为E 的边界点,如果0>∀δ,有∅≠E x O ),(0δ且∅≠E x O ),(0δ.证明:设E E x -'∈0,则0>∀δ,∅≠=-E x O E x x O ),(}]{),([000δδ.且∅≠-∈)(),(00E R x O x n δ,即,0x 是E 的界点.第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:1先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n nI εεε.故0*=E m .所以E 可测且0=mE .2再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i n IQ I I Q m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM xxni ini i≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i ni i +-⊂∏=.所以+∞<=≤+-≤∑∏==n ni i n i i M M M x M x m Em )2(2],[**113.至少含有一个内点的集合的外测度能否为零解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[. 11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E 得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m I E m n n .另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列不一定可测且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n ii ii n n E m II m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:∆⊂=⊂=∞=∞=A A E E n n n n 11c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将nR 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkEm mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jnnj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因jnj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:1先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=2再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理平移不变性设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE1当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .第三章习题参考解答 1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 注:若),(i i i I βα=,则⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.由题的直接推论.证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个。
实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x mA χ,所以1)(in f=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(i n f su p =≥∈x mA nm N b χ ,即)(i nf lim x nA nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互不相交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 互不相交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈所以 })(|{}1)(|{1a x f x E n a x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即ka a x f 1)(+≤≤,且E x ∈因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,k a x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n nk +≤∞=9设f(x)是定义于e 上的实变函数,a 为常数,证明e(x){f(x)>=a}=∩e{x/f(x)>a -1/n} 由于对任意n 都有e{f(x)≥a}⊂e{f(x)>a-1/n},故e{f(x)≥a}⊂∩e{f(x)>a -1/n} 又对任意x ∈∩e{f(x)>a -1/n},有f(x)>a-1/n,令n→∞,可得f(x)≥a(详细:如果f(x)<a ,则令δ=a -f(x)>0,当N>[1/δ]+1时,得f(x)>f(x),矛盾) 所以x ∈e{f(x)≥a},因此∩e{f(x)>a -1/n}⊂e{f(x)≥a},综上 e{f(x)≥a}=∩e{f(x)>a-1/n}8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是可数的。
实变函数第四章复习题及解答(1)

第四章 复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。
(√ )2、设()f x 是可测集nE R ⊆上的非负简单函数,则()f x 在E 上勒贝格可积。
(× ) 3、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。
(√ )4、设()f x 是可测集nE R ⊆上的非负可测函数,则()d Ef x x ⎰一定存在。
(√ )5、设()f x 是可测集nE R ⊆上的非负可测函数,则()f x 在E 上勒贝格可积。
(× ) 6、设()f x 是可测集nE R ⊆上的非负简单函数,且0()d Ef x x ≤<+∞⎰,则()f x 在E 上勒贝格可积。
(√ )7、设()f x 是可测集nE R ⊆上的可测函数,则()d Ef x x ⎰一定存在。
(× )8、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()d Ef x x ⎰一定存在。
(√ )9、设()f x 是可测集nE R ⊆上的可测函数,且()()f x L E +∈,()()f x L E -∈至少有一个成立,则()f x 在E 上勒贝格可积。
(× )10、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E +∈且()()f x L E -∈,则()f x 在E 上勒贝格可积。
(√ )11、设()f x 是可测集nE R ⊆上的可测函数, 若()()f x L E ∈,则()d Ef x x -∞<<+∞⎰。
(√ )12、设()f x 是可测集n E R ⊆上的可测函数, 若()()f x g x ≤且()()g x L E ∈,则()()f x L E ∈。
第三版实变函数论课后答案

i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,
2
,而 Ak0 E 故 m( E \ Ak0 )
2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )
, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a
证毕.
8
m( E \ Ak0 ) m( Ak0 \ F1 )
8
2
8
4
2
E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集
实变函数课后答案

实变函数课后答案第一章 1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明:(1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=- (1)c c I I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c c I I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。
当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν=== 两两互不相交,而且,111111111kk k k k kk k n k B A A B A B A B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;kk k k k kk k k k k kk k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,于是,两两互不相交;由数学归纳法命题得证。
{}21214.0,,(0,),1,2,,n n n A A n n A n -⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数引论参考答案_曹怀信_陕师大版第一到第四章

习题1.11.证明下F列集合等式7 tticros(>式(1)7(2) A B C A C B C ;(3) A B C A B A C .证明(1)A(B 'C)A(B C c)(A B A c)(A B C c)(A B)(A C)c(A B)(A C).(2)(A B)C(A B)C c(A C c) (B C c)=(A C) (A C).(3) A (B C) A (B C c)A (BC c)cA (B c C)(A B c) (A C)(A B) (A C).2. 证明下列命题.(1)A B B A的充分必要条件是:B A ;(2)A B B A的充分必要条件是:AB?;(3)A B B A B B的充分必要条件是:B ?.[条证明(1)(A B) B (A B c) B (A B) (B c B) A B A的充要是:B A(2) (A B)B(A c c c cB) B (A B ) (B B ) A B必要性.设(A B) B A成立,则A B c A,于是有A B c,可得A B .反之若A B,取x A B,则x A M x B,那么x A且x B与A B c矛盾.充分性.假设A B 成立,则A B c,于是有A B c A,即(A B) B A(3)必要性.假设(A B) B (A B) B,即ABABA C c.若 B ,取x B,则x B c,于是x A B c,但x A B,与 A B A C c矛盾.充分性.假设B 成立,显然A B A B 成立,即 (A B) B (A B) B .3. 证明定理1.1.6 .定理1.1.6 (1) 如果A n 是渐张集列,即AA n 1( n 1),则A n 收敛且lim A n A n ;nn 1(2) 如果A n 是渐缩集列,即A n A n 1( n 1),则A n 收敛且lim A A n .nn 1证明(1)设A n A n 1( n 1),则对任意x A n ,存在N 使得x A N ,从而 x A N ( n N),所以 x lim A n ,贝U A lim A n .1 又因为 lim A n lim A n A n ,由此可见 A n 收敛且 Um A n A n ;nnn 1____nn 1(2)当A n A n 1( n 1)时,对于x 而A n ,存在n k n k 1( k 1)使得x A n k( k 1),于是对于任意的n 1,存在k o 使得n k 0n ,从而x A^A n ,可见lim A n A n .又因为 A n ljm A n lim A n ,所以可知A n 收敛且5lim A n A n .n 1 n 1 n nn n 14. 设f 是定义于集合E 上的实值函数,c 为任意实数,证明:E f 1,有 f (x)c 一 , 那么x E f 1c 另一方面,若x八厂"’' c n 1故 I (1) 对任意的X 成立.即x 1 E E n f 1 c E n 1x E E fn 1 另一方面,设X 由n 的任意性,可知(3)设 x E f证明 f(x) c E f c 得x I E f n c 1 (2)设于是x ,1于是 f(x) c f 匕丄. nf q ,则 f (x)( c ,故有E f n °c,则存在 E E 1f x n [ Z 使得 f q .故 c ,n则存在n o E f nc .则有 从而对任意的 c En 1,则对于任意的丨 1(X ) c ,即K E f c ,故 E fc ,则 f (x) c .由 lim f n (x) f (x)( x E), 的 k Z ,存在 N 使得 |f n (x) f(x)| —n n 一 一 「(呦 1),即 f n (X k c … ,故 E f c km E k1 k 1n limE 忖c ,则对任意kc , 1N),,即 "x f n Z ,都有f(x),有 f(x)E fn 1n1主,nlim n c 可得对于任意1 (k 1) k E f n k ; 有 ni N 1 时, -;又由 k Z ,存在 fn©) f (x) c - 所以 x lim E fn & k 1 n 另一方面,设Xq 血 E f n c E f n c 7 (k k Z ),即对任意 k Z 有 f n (x o ) 1 x E),知 lim f n (x o ) f(X o ),即对任意的 时,有 |f n (X o ) ?&0)| -.取 N max{ N 1,N 2},则有 f n (x o ) 2(X o )| —同时成立,于是有 f(X o ) — f n (X o ) 7,由k 1的任意性知:f(X o ) c ,即x oEf1 1 ck ;E f n 1n N X 0 X 0 _ Z JjmE f n c 7 .k 由下极限的定义知:存在 N 1使得当 1 " ‘|八 - ' 亦―十■ -亠• c lim f n (x) f(x 幷 得当n N 2 与 | f n (X o ) f (X o ) c f (X o ) c ,即 X o c -,从而,故有 综上所述: lim E f nn 1 nUm E f n k1n k k 1N -N 2使 c -5. 证明集列极限的下列性质.E[fc]E f c1 .n 1nE[fc] E f cn 1n若limnf n (x) f(x)( X E), 则对任意实数c 有E[f c],.......... E ............ f『n c 1lim E f n (1) ⑵ ⑶ k 1N 1n N k k 1 n3.建立区间(a,b)与[c,d]之间的一一对应,b a b a b a 解令E {a =,%百悅奇TD (a,b)E .定义:(a,b ) a [c,d]o 为a /、 d c(x) c -n,0d,a c ad 丄 其中 a b,c{c,d,cb ad . d c d 2,c1,2.L ) c L }(1) lim A ,lim A ,;nc n(2) lim A nlim A^;nn(3)lim E A n E lim A ,;n n证明 6. EA m E lim A nn 1 m nn(4) lim E A rn1(E A m )(E A m c )(E (A m c ))n 1 m nn 1 m nn 1m nE (A c m ) E ((A m )c )E (A m )n 1 m nn 1 m nn 1m nEA m E lim A nn 1 m nn(1) lim A ,nB n lim An lim B n ;n ⑵ lim A n B nlim 代 nlim B n ; n⑶ lim A , B n lim A , lim B n . 习题1.2建立区间(0,1)与[0,1]之间的一一对应. 令1111 E {一,,,,L },2 3 4 5E U D , [0,1] FUD . x;1 则(0,1) 1 1 1{0,1 — , — , ,L } , D (0,1) E , 2 3 4 D 定义:(0,1) [0,1]为:(x) n 则 为(0,1) [0,1]之间的一个一一对应.0; x2.建立区间[a,b]与[c,d]之间的一一对应, 1 (n 1,2,L ) n21 其中 a b,c 解定义::[a, b] [c,d]为:d cd c(x)(x a) cx b a b a 可以验证::[a,b] [c,d]为一个一一对应.bc adTT .( x[a,b])(4) lim E A nnc(1)lim A nnc(2)叵 A nn(3) Ijm E A nn如果{A n },{B n }都收敛,则{A n B n }, { A n B .}, {代B n }都收敛且nn n可以验证::(a,b)[c,d]为一个 ---- 对应.4. ------------------------------------------------------------- 试问:是否存在连续函数,把区间[0,1] -------------------------------------------------------------- 映射为区间(0,1)?是否存在 连续函数,把区间[0,1] ------- 映射为[1,2] [3,4]?答 不存在连续函数把区间[0,1] 一一映射为(0,1);因为连续函数在闭区间 [0,1]存在最大、最小值.也不存在连续函数把区间[0,1] --------- 映射为[1,2] U[3,4];因为连续函数在闭区 间[1,2]上存在介值性定理,而区间[1,2] U[3,4]不能保证介值性定理永远成立.5. 证明:区间(0,1) ~ (0,1) (0,1) ~ R 2且R 2 .证明 记 A (0,1),则 A A (0,1) (0,1).任取Jx, y) A A ,设x 0.a 1a 2a 3 L , y 0.b 1b 2b a L ,为实数x,y 正规无穷十 进小数表示令 f(x, y) 0.叭玄2)1 ,则得到单射f : A A A .因此由定 理 1.2.2 知 A A A .若令A A 0.5,则A~A A A .从而由定理1.2.2知:A A A . 最后,根据 Bernstein 定理知:(0,1)~(0,1) (0,1).对于(x,y) (0,1) (0,1),定义:(0,1) (0,1)R 2 为:(x,y) (tg( x -),tg( y -)),则 为(0,1) (0,1) R 2的一个 --- 对应,即(0,1) (0,兮~匡2.又因为:(0,1) ~ R , 则由对等的传递性知:(0,1)~ (0,1) (0,1) ~ R 2 ~ R 且R 2 R .6. 证明:A (x,y):x 2 y 2 1与B (x, y): x 2 y 2 1对等并求它们的基数.1证明 令 E {( x, y):x 2 y 2-(n 1,2,3,L )} , DAE,2n21 ,F {(x,y):x y(n 1,2,3, L )}.n 1则 A EUD,B FUD Q ,定义::A(x B为:D,(x,y)2 2 1 2 21 x2 y 2— ; x 2 y 2 -(n 1,2,3,L ),(x,y) E .可以验证:=:A B 为 --------- 对应n ,即A~ B.又咽为B ~ (0,1) (0,1) ~ R ~ R , 所以A B .7 .证明:直线上任意两个区间都是对等且具有基数 证明 对任意的I ,J R,取有限区间Q,b ; I ,则 (a,b) I R ,则由Bernstern 定理知I ,同理J .故I J习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集 M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而 每个顶点由两个数决定,故六个数可确定一个三角形,所以 M 中的每个元素由 Q 中的六个相互独立的数所确定,即 M 2沁x 6:X 1,X 2, ,X 6 Q},所以M 为 可数集.2•证明:由平面上某些两两不交的闭圆盘之集 M 最多是可数集证明 对于任意的O M,使得f(0) Q .因此可得:f 二M Q .因为 O i 与。
泛函分析答案 第四章习题第一部分(1-18)

第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。
而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实变函数论课后答案第四章4
第四章第四节习题
1. 设于,于,证明:于
证明:,
(否则,若,而,
矛盾),则
()
从而
2. 设于,,且于,证明于
证明:由本节定理2(定理)从知的子列使
于
设,,于,从条件于,设
,,于上
令,则,且
故
,则
令,
故有,从而命题得证
3. 举例说明时定理不成立
解:取,作函数列
显然于上,但当时
,不
故时定理不成立,即于不能推出于
周民强《实变函数》P108
若是非奇异线性变换,,则
()
表示矩阵的行列式的绝对值.
证明:记
显然是个的平移集()的并集,是个()的并集,且有,
现在假定()式对于成立 ()
则
因为,所以得到
这说明()式对于以及的平移集成立,从而可知()式对可数个
互不相交的二进方体的并集是成立的(对任意方体,
)
对一般开集,,为二进方体,互补相交
则
1-1 ,连续,连续 开,则开,从而可测
于是应用等测包的推理方法立即可知,对一般点集()式成立
设为有界集,开,,则开,且不妨设有界,否则令 有界,令即可.
连续,则开,开,可测(),,
故
(开)
若为无界集,令,则,为有界集
,线性,则若,则(后面证)
,则由注释书P69定理3,存在集,,若有界,
则,故 (1-1)
则,故
若无界,则,
线性,若,则
证明:为的基,,
,,,令,则
则(即是连续的)
一边平行于坐标平面的开超矩体
于
,开,连续,则是中开集从而可测,从而是中可测集,由归纳法知
是可测集
若()式成立,则矩体,
,为正方体,则对开集也有,特别对开区间
这一开集有
则可知,若,则
事实上,,开区间,,
令知
若()成立,则将可测集映为可测集,还要看()证明过程
是否用到将可测集映为可测集或推出这一性质!
下面证()成立.任一线性变换至多可分解为有限个初等变换
的乘积
(i)坐标之间的交换
(ii)
(iii)
在(i)的情形显然()成立
在(ii)的情形下,矩阵可由恒等矩阵在第一行乘以而得到
从而可知 ()式成立
在(iii)的情形,此时 ()
而且
(
则
反过来,,则
令则,
则, )
记
,则
(,则,,则
,且,则
反过来,,则存在,,使
,,且
!
,存在,使,
,
,,
反过来,,
,则
则,又
则得证)
由此得到
故()式成立
这里用到,可测,,可测,开,则可测,可测
故还是需要:若为非奇异线性变换,则集,是可测集,从而方块,
可测,可测有了,这就有(),从()知将零测集变为零测集,从而
有将可测集变为可测集
可测为可测集(江则坚P109习题10)
现设连续,则开集,是开集,
记,可证是一个代数,且包含全部开集,从而包含全部集
证1)可测
2)若,则显然也可测,
3)若,则,可测,可测是代数
连续,则,包含全部开集,从而包含全部集
为非奇异线性,显然连续
方体半开半闭(显然为集),可测
为,
事实上,从(当)知
,使当时而当时,,故
(是的子列中的一个元,故,
则时
则)
收敛于,即在上收敛.
若条件改为:是一族一致有界的上的函数族,则结论成立
令则,
,
则是中的有界集,由聚点原理一列和,
同样令 (为上述取定的一列)
故,由聚点原理,存在的子列和()使
,由此用归纳法可作出,(为的子列)使
令,则且有故由定理即知
,
方法②建立十进位小数的展式中缺7的所有无尽十进位小数之集
和上一切无尽九进位小数之集之间的一一对应.集中每个十进位小数
对应中这样的小数,该小数是前一个小数中凡是数字9都有数字7代
替后而得到的,这个对应是一一的(九进小数中不含9,而中不含7,
将97,而其他不动)
显然
周民强书P35思考题:
6.设是定义在上的实值函数族,是可数集,则存在()使得在上
收敛.
我怀疑本题有错:若不假设是上一致有界的,会有反例:
令=,设这里,则显然任取无穷个于,故不会收敛!
时,
故还有:
鄂强91:介于0与1之间,而十进展开式中数字7的一切实数所
成立之集具有什么势?
证明:①从江则坚CH1§题知,且从证明中知与之1-1对应的是,
故中小数点全是0,1两位数字构成的数组成的集合,满足,而十进
展开式中缺数字7的一切实数之集满足
附加题:徐森林书
设为定义在上的实函数列,适用点集
表示点集
证明:江则坚书第一章第一节习题8:若于,则有
即
另一方面,易知
故
思考:若不可测, 也不可测,且,则不可测?
(显然不对, 可测
至少当有一个有界时,结论是对的?
若存在开集使,,不妨设有界, ,则若可测,则
)