工程热力学0资料重点
工程热力学复习大纲

工程热力学复习大纲第一章基本概念及定义1.热力学系统(开放和封闭;绝热和隔离),区分定义和相互关系2。
区分过程量和状态量。
3、平衡状态(注意区分与均匀和稳定状态的关系)、准平衡过程、可逆过程4、总能的概念如:u、h,比参数u,h5、热效率的定义式,正向循环和逆向循环。
6、工质的内可逆过程。
第二章:热确定性定律1、热力学第一定律的表达式。
2.能够利用开式系统的能量方程解决实际问题(如充气、热力设备(汽轮机等)第三章气体和蒸气的性质1.理想气体状态方程2,R,RG的意义和关系。
3.比热容的定义和特征4、水、水蒸气的各种状态,干度定义第四章气体和蒸汽的基本热力学过程1、p-v图和t-s图上各种热力过程的关系。
能量的变化关系及其判据。
119页图4-72、水蒸气的基本热力过程在p-v图和t-s图上的表示,如等温、等压等。
3.等压过程的焓变等于热交换,等压过程的热力学能变化等于过程的热交换。
4.给定多变系数,各种热力学过程将绘制在PV图和TS图上。
它可以指出工作区域和热量,并判断热量的吸收和释放;以及内能和焓的变化。
5、理想气体的内能和焓是温度的单值函数,指的是比参数。
第五章热的第二定律1、熵是状态量,与过程无关;熵变与可逆过程还是不可逆的关系。
2.深刻理解卡诺定理和热力学第二定律:卡诺定理的两个推论都是可逆的吗循环的热效率都等于卡诺循环?熟悉开氏表述和克氏表述。
3、热熵流表达式,与总熵和熵产关系。
4、熵定义式,及其适用条件。
5、熵方程的应用。
第七章气体和蒸汽的流动喷管的形状选择与那些因素有关?背压对喷管性能有何影响?温度有何变化规律和影响?第八章至第十二章1、压气机,实际过程与理想过程的关系,采用级间冷却,多级压缩的好处?在图上如何表示2.蒸汽压缩制冷与空气压缩制冷的联系和区别,蒸汽压缩制冷的优点,设备上的差异和原因。
3、朗肯循环及其再热循环原理及在t-s图上表示。
4.汽油机和柴油机循环的区别。
以及它们在P-V和T-S图上的表示。
《工程热力学》知识点复习总结

第一部分 (第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
工程热力学知识点.docx

工程热力学复习知识点一、知识点基本概念的理解和应用(约占40% ),基本原理的应用和热力学分析能力的考核(约占60% )。
1.基本概念掌握和理解:热力学系统 (包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统 )。
掌握和理解:状态及平衡状态 ,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2.热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3.热力学第二定律掌握和理解:可逆过程与不可逆过程 (包括可逆过程的热量和功的计算 )。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温 - 熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4.理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5.实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v 和 T-s 图上的一点、二线、三区和五态)。
工程热力学复习大纲资料重点

• 不可逆循环的热效率一定小于可逆循环的热效率。 ()
判断正确性
• 经历一个不可逆过程后,系统能恢复原来状态。 ()
• 热力学第一定律解析式 适用于可逆过程,任何 工质。 ( )
• 孤立系统的熵与能量都是守恒的。 ()
• 不管过程可逆与否,绝热系统的技术功总是等 于初、终态的焓差。 ( )
式
第一知识点 闭口系基本能量方程式
闭口系,
Q U W q u w
δQ dU δW δq du δw
第一定律第一解析式— 热 功的基本表达式
讨论:
Q U W q u w
δQ dU δW δq du δw
1)对于可逆过程 δQ dU pdV
2)对于循环
δQ dU δW Qnet Wnet
)两个解析式的关系
δq dh vdp d u pv vdp
du pdv du δw膨
总之: 1)通过膨胀,由热能
功,w = q –Δu
2)第一定律两解析式可相互导出,但只有在开系中 能量方程才用焓。
技术功(technical work)—
技术上可资利用的功 wt
wt
ws
1 2
cf2
膨胀线在压缩线上方;吸热线在放热线上方。
热力循环的评价指标
正循环:净效应(对外作功,吸热)
动力循环:目的在于净功 用热效率η评价
T1 Q1
h 收益
代价 净功 = W
吸热 Q1
W
Q2 T2
循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency)
ht
wnet q1
热能工程与动力类专业知识点--工程热力学知识点讲义整理

工程热力学知识点1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用[1]热能:能量的一种形式[2]来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
[3]利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性[1]过程的方向性:如:由高温传向低温[2]能量属性:数量属性、,质量属性 (即做功能力)[3]数量守衡、质量不守衡[4]提高热能利用率:能源消耗量与国民生产总值成正比。
1. 1 热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。
非均匀系统:由两个或两个以上的相所组成的系统。
单元系统:一种均匀的和化学成分不变的物质组成的系统。
多元系统:由两种或两种以上物质组成的系统。
工程热力学知识点电子版

工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。
2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。
3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。
4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。
5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。
6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。
7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。
8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。
9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。
10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。
11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。
以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。
工程热力学复习资料

第一章 基本概念及定义工质——实现热能和机械能相互转化的媒介物质。
作为工质的要求:1)膨胀性 2)流动性 3)热容量 4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取热源——工质从中吸取或向之排出热能的物质系统。
(前者为高温热源,后者为低温热源)闭口系(控制质量CM )—没有质量越过边界 开口系(控制体积CV )—通过边界与外界有质量交换 绝热系——与外界无热量交换;孤立系——与外界无任何形式的质能交换注:孤立系必定是绝热系,但绝热系不一定是孤立系简单可压缩系——由可压缩物质组成,无化学反应、与外界有交换容积变化功的有限物质系统状态参数(与过程无关): P, V , T, U, H, S广延量——与系统质量成正比,具有可加性,如 体积V , 热力学能U, 焓H, 熵S强度量——与系统质量无关,如(绝对)压力P ,温度T注:广延量的比参数具有强度量的性质,不具可加性系统两个状态相同的充要条件:所有状态参数一一对应相等 简单可压缩系两状态相同的充要条件:两个独立的状态参数对应相等T=t +273.15K当绝对压力大于大气压力时, 二者的差值称为表压力;当绝对压力小于大气压力时, 二者的差值称为真空度x平衡不一定均匀,但单相平衡一定均匀;稳定不一定平衡,但平衡一定稳定。
理想气体状态方程其中,R=M Rg准静态过程——偏离平衡态无穷小,随时恢复平衡的状态变化过程b e b ()p p p p p =+>b v b ()p p p p p =-<63252N 1P a 11M P a 110P a 1kP a 110P am1bar 110P a1atm 101325P a 760m m H g1m m H g 133.32P a 1m m H O 9.80665P a=⇒=⨯=⨯=⨯====mV v =m Vρ=ρ1=v g pv R T =g pV m R T=nRTpV =23Pa N/m m /kg Kp v T ⎡⎤⎡⎤---⎣⎦⎣⎦8.3145J/(mol K)R =⋅可逆过程——系统可经原途径返回原来状态而在外界不留下任何变化的过程。
工程热力学知识点

工程热力学知识点1.热力学系统:热力学系统是指研究对象的一部分,可以是一个物体、一堆物体或者由物质组成的一部分空间。
根据与外界的能量交换情况,热力学系统可分为开放系统、封闭系统和孤立系统。
2.热力学性质:热力学性质指描述热力学系统状态的物理量,包括温度、压力、体积、能量等。
温度是衡量系统热平衡程度的物理量,通常用摄氏度或开尔文度量;压力是物质单位面积上的力,常用帕斯卡表示。
3.热平衡和热平衡态:当一个系统与外界无能量和物质交换,且系统各个部分之间没有内部驱动力时,系统处于热平衡态。
在热平衡态下,系统各点的温度相等。
4.热力学过程:热力学过程是指研究对象从一个状态到另一个状态的转变。
常见的热力学过程有等温过程、绝热过程、等容过程和等压过程。
5.理想气体状态方程:理想气体状态方程描述了理想气体的状态。
根据理想气体状态方程,PV=nRT,其中P为气体压力,V为气体体积,n为气体物质的摩尔数,R为气体常数,T为气体的绝对温度。
6.热力学第一定律:热力学第一定律也称能量守恒定律,它表明能量在系统中的转换是不会消失的,只会从一种形式转化为另一种形式。
7.热力学第二定律:热力学第二定律是关于热能转化的限制性规律,它确立了自然界中热能转化的方向,即热量只能从高温物体传向低温物体。
8.热力学循环:热力学循环是指一系列经历各种热力学过程的系统,最终回到初始状态。
常见的热力学循环有卡诺循环、布雷顿循环等。
9.温度计和热工计量:温度计是测量温度的仪器,根据热胀冷缩原理,例如温度计中的水银柱上浮下沉来表示温度的高低。
热工计量是测量热力学过程中能量转换的仪器,例如蒸汽流量计和压力计等。
10.热力学循环的效率:热力学循环的效率是指从热量到机械能转化的效率,表示为循环获得的净功与输入的热量之比。
根据卡诺定理,所有工作于相同温度范围内的可逆循环具有相同的效率,而实际循环的效率往往低于理论值。
综上所述,这些是工程热力学的一些重要知识点,热力学是研究能量转化和利用的基础,对于工程学科的学习和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
wnet , act q1
T wnet
q1
Tt
coT
c
1
T0 T1
与实际循环相当的卡诺循环热效率
t
wnet q1
与实际循环相当的内可逆循环的热效率
o
t c
相对热效率,反映该内部可逆循环因 与高、低温热源存在温差(外部不
可逆)而造成的损失
T
wnet , act wnet
相对内部效率反映内部摩擦引起的损失
10-5 燃气轮机装置循环
一、燃气轮机装置简介
定压燃烧燃气轮机装置流程图
二、燃气轮机装置定压加热理想循环-布雷顿循环 定压加热理想循环
热效率
t
wnet q1
1 q2 q1
1 h4 h1 h3 h2
1 T4 T1 T3 T2
1
T1
(
T4 T1
1)
T2
(
T3 T2
1)
1 T1 T2
T3 T1
T4 T3
T3 T1
T2 T1
1)
c pT1 (
1k
k
k 1 k
1)
由 dwnet/ dπ=0 可
k
得 wn et ,max
2(k 1)
wnet,max cpT1( 1)2
10-6 燃气轮机装置的定压加热 实际循环
燃气轮机相对内效率:
T
实际膨胀作出的功= wT' 理想膨胀作出的功 wT
10–2 活塞式内燃机实际循环的简化
活塞式内燃机分类: 按燃料:煤气机、汽油机和柴油机; 按点火方式:点燃式和压燃式; 按冲程:四冲程和二冲程
1、实际开式循环抽象成 闭式的以空气为工质 的理想循环;
2、定容及定压燃烧加热 燃气的过程简化成工 质从高温热源可逆定 容及定压吸热过程;
3、忽略实际过程的摩擦 阻力及进、排气阀的 节流损失;
(T3
T5 T1 T2 ) k(T4
T3)
tm
1
k 1[(
k 1 1) k(
1)]
压缩比:ε=v1/v2 定容增压比:λ=P3/p2 定压预胀比:ρ=v4/v3
结论:ε,,
二、定压加热理想循环
q1 cp (T3 T2 )
q2 cV (T4 T1)
tp
1
k 1 k1k( 1)
结论:ε,
1
1
k 1
p2 p1
k
定义:循环增压比 π=P2 / P1
循环增温比 τ=T3 / T1
t 1
1
k 1
k
结论:与π有关,与 τ无关
最佳增压比:
在循环增温比一定时, 存在一最佳增压比,使得 循环净功最大。
最佳增压比:
wnet wt wC (h3 h4 ) (h2 h1)
c
pT1
(
损失的部位、大小、原因及改进办法。
三.分析动力循环的方法 1)第一定律分析法
2)第二定律分析法 熵分析法 分析法
以第一定律为基础,以能 量的数量守恒为立足点。
综合第一定律和第二定律 从能量的数量和质量分析。
熵产 作功能力损失
损
效率
3) 内部热效率i
——不可逆过程中实际作功量和循环加热量之比。
其中
压气机绝热效率:
c,s
wc,s wc'
wn' et
wT'
wc'
T (h3
h4
)
1
c,s
(h2
h1)
q1'
h3 h2'
h3
h1
1
c,s
(h2
h1)
循环内部热效率:
i
w' net
q' net
k 1
k
T
1
c,s
k 1 k
1
1
1
c,s
结论:
1)循环增温比越大, 热循环的热效率越高;
2)存在最佳循环增压 比,使循环热效率有 一极大值。
3)减小不可逆因素, 内部热效率提高。
4、膨胀和压缩过程忽略 热交换,简化为可逆 绝热过程。
10-3 活塞式内燃机的理想循环
一、混合加热理想循环
q1 q1,V q1, p cV (T3 T2 ) cp (T4 T3 )
q2 cV (T5 T1)
tm
1
cv (T3
cv (T5 T1) T2 ) cp (T4
T3)
1
三、定容加热理想循环
q1 cV (T3 T2 )
q2 cV (T4 T1)
tv
1
1
k 1
结论:ε
循环最高温度不变, ε活塞式内燃机各种理想循 环热力比较
一、压缩比相同、吸热量相同时的比较
tv tm tp
二、循环最高压力和最高温度相同的比较
tv tm tp
第十章 气体动力循环
10-1 分析动力循环的一般方法
一.分析动力循环的目的 在热力学基本定律的基础上分析循环能量转化的
经济性,寻求提高经济性的方向及途径。
二.分析动力循环的一般步骤 抽象、简化
1)实际循环(复杂不可逆)
可逆理论循环
分析可逆循环 影响经济性的主要因素和可能改进途径
指导改善
实际循环 2)分析实际循环与理论循环的偏离程度,找出实际