稳定温度场的拉普拉斯方程
传热学(第二章)

(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp
拉普拉斯方程

拉普拉斯方程拉普拉斯方程拉普拉斯方程,又名调和方程,是一砍。
因为由法国数学家首先提出而得名。
求解拉普拉斯方程栯、和等领域经常遇到的一类重要的数学问領,因为这种方程以的形式描写了、和等物理对象(一般统称为“保守场”栖“有势场”)的性质。
三维情况下@拉普拉斯方程可由下面的形式描述,闠题归结为求解对实自变量x、y、z二阶的实函数φ :: + + = 0. 上面的方程常常简写作:: \nabla^2 \varphi= 0 或: \operatorname\,\operatorname\,\varphi = 0,其中div表示的(结果是一个),grad表示标量场的(结果是一个矢量场),或者简写作 :\Delta \varphi = 0 其中Δ称为 . 拉普拉斯方程的解称为。
如果等号右边是一个给定的函数f( , y,z),即:: \Delta \varphi = f 则该方程称为。
拉普拉斯方程和泊松方程是最简单?? 。
偏微分算子\nabla^2或\Delta(可以在任意维空间中定义这样的算堐)称为,英文是Laplace operator 或简称作Laplacian。
拉普拉斯方程的可归结为求解在区域D内定义的函数φ,使得\varphi在D的边界上等于某给定的函数。
为方便堙述,以下采用拉普拉斯算子应用的其䠭一个例子——作为背景进行介绍:固定区域边界上砄温度(是边界上各点位置坐标的函数,直到区域内部热传导使温度分布达堰稳定,这个温度分布场就是相应的狄頌克雷问题的解。
拉普拉斯方程的不直接给出区域D边界处的温度函数φ本身,而是φ ??D的边界法向的。
从物理的角度看,这种边界条件给堺的是矢量场的势分布在区域边界处的堲知效果(对热传导问题而言,这种效栜便是边界热流密度)。
拉普拉斯方稠的解称为,此函数在方程成立的区域内是。
任意两个函数,如果它们都满足拉栮拉斯方程(或任意线性微分方程),蠙两个函数之和(或任意形式的线性组堈)同样满足前述方程。
泊松方程与拉普拉斯

泊松方程与拉普拉斯泊松方程与拉普拉斯方程是数学领域中重要的偏微分方程,它们在物理学、工程学、计算机科学等各个领域有着广泛的应用。
本文将介绍泊松方程和拉普拉斯方程的定义、性质以及它们在实际问题中的应用。
泊松方程是一个二阶偏微分方程,通常用于描述电位、温度、流体静压力分布等问题。
其一般形式可以表示为:∆u = f(x,y,z)其中,u是待求函数,∆表示Laplace算子,f(x,y,z)是已知的函数。
泊松方程的求解过程包括确定边界条件、选择适当的解析方法等。
在一些特殊情况下,泊松方程可以通过分离变量、格林函数等方法精确求解。
拉普拉斯方程是泊松方程的特殊情况,即f(x,y,z)=0。
它表示了没有源项的稳定状态下的物理量分布。
例如,在无电荷的情况下,电势的分布可以由拉普拉斯方程描述。
泊松方程和拉普拉斯方程在实际问题中具有重要的应用。
下面将介绍它们在物理学、工程学和计算机科学中的具体应用。
一、物理学应用:1. 电场分布:根据泊松方程,可以求解电荷分布对电场的影响。
例如,在计算静电场、电容器以及电场中带电粒子的运动等问题时,泊松方程能够提供准确的分析结果。
2. 热传导问题:热传导是物体内部以及不同物体之间的热量传递过程。
泊松方程可以描述温度分布的稳定状态,因此可以求解热传导问题。
例如,在石油勘探中,泊松方程可用于分析地下温度场的分布。
二、工程学应用:1. 结构力学:泊松方程可用于模拟材料的弯曲、拉伸、压缩等受力状态。
例如,在工程结构设计中,可以利用泊松方程分析材料的变形和应力分布。
2. 流体力学:泊松方程可以用于模拟流体流动中的压力分布。
例如,在空气动力学中,可以用泊松方程求解空气流动的速度场和压力场。
三、计算机科学应用:1. 图像处理:在数字图像处理中,拉普拉斯算子可以用于图像边缘检测。
通过计算图像中像素灰度值的二阶导数,可以突出显示图像中的边缘结构。
2. 数值计算:泊松方程和拉普拉斯方程是数值计算领域中常用的方程之一。
物理学概念知识:拉普拉斯方程和热扩散方程

物理学概念知识:拉普拉斯方程和热扩散方程拉普拉斯方程和热扩散方程是物理学中非常重要的方程,它们在研究热传导、电场分布等问题中起着关键作用。
本文将分别介绍拉普拉斯方程和热扩散方程的概念、应用和数学特性。
拉普拉斯方程(Laplace's equation)是一个重要的偏微分方程,通常用于描述势函数的分布。
拉普拉斯方程在物理学、工程学和数学中都有广泛的应用。
它的数学形式可以写成:Δφ = 0其中Δ是拉普拉斯算子,φ是要求解的未知函数。
在物理学中,拉普拉斯方程通常用于描述势能场的分布。
比如静电势和静磁势的分布,以及流体力学中的速度场和压力场的分布等。
在工程学中,拉普拉斯方程也被广泛应用于热传导、电场分布等问题的分析中。
下面我们来看一下拉普拉斯方程的一个具体应用:热传导问题。
假设一个热导体的温度场由未知函数T(x, y, z)描述,那么它满足的热传导方程可以写成:∂T/∂t = αΔT其中α是热传导系数。
当热传导达到稳态时,也就是说温度场不随时间变化,这时可以假设热传导方程变成拉普拉斯方程:αΔT = 0这样,我们就可以用拉普拉斯方程来描述热传导问题中的温度场分布。
另外,拉普拉斯方程在数学上也有很多重要的性质。
比如它是一个椭圆型偏微分方程,对应的边值问题通常有唯一解,这些都使得拉普拉斯方程成为了偏微分方程理论中的一个研究重点。
接下来,我们来看一下热扩散方程。
热扩散方程(heat diffusion equation)是一个描述热传导行为的偏微分方程。
它的数学形式通常可以写成:∂u/∂t = αΔu其中u是未知的温度分布函数,α是热扩散系数,Δu是u的拉普拉斯算子。
热扩散方程的一个典型的应用是描述固体材料中的温度分布随时间的演化。
这个方程也可以被用来描述其他扩散现象,比如化学物质的扩散等。
与拉普拉斯方程类似,热扩散方程在数学上也有很多重要的性质。
比如它是一个抛物型偏微分方程,对应的初边值问题通常有唯一解。
数学物理方程与特征函数-01

确定所要研究的物理量: 电势u
根据物理规律建立微分方程:
u E E /
对方程进行化简:
E (u) u 2u /
2u /
泊松方程
2u 0
拉普拉斯方程
非齐次的拉普拉斯方程
次、阶、元
热传导
确定所要研究的物理量: 温度 u(x, y, z,t)
根据物理规律建立微分方程并化简:
边界条件:
初始速度
u(x,0)
t
第一类边界条件,固定端、恒温端、恒压端
u(a, t) u |xa u |S 0 u(a,t) f 第二类边界条件,自由端、绝热端
u(a,t) 0 x
第三类边界条件,弹性支承端、热交换端
T u(a,t) ku(a,t) x
u(a,t) k u(a,t) u(a,t) u(a,t) 0
t 2
x 2
什么是方程的解
古典解:如果将某个函数u代入偏微分方程中,能使方程成 为恒等式,则这个函数就是该偏微分方程的解,也 就古典解。
通解: 如果解中含有相互独立的和偏微分方程阶数相同的 任意常数,称为通解。
特解: 通过约束条件确定了解中的任意常数后得到的为特解。
形式解:未经过验证的解为形式解。
sin
s in
T
dx
2u t 2
sin tan 1 tan2
tan u
x
T
dx
2u t 2
u(x dx,t) x
u( x, t ) x
dx
u(
x dx, x
t
)
u ( x, x
t)
dx
dx
2u ( x, x 2
t
)
2u T 2u a2 2u
关于调和函数

0
F
u f ( x ), x , 2 牛曼内问题 u 有解的必要条件是 n ( x )
dS 0.
因为
V
(u 2 v v 2u )dV (u
S
v u v )dS n n
,则
设u在内是调和函数 且 取 v 1 ,
1 u(M 0 ) 2 4 a
Байду номын сангаас
ka
udS
4 极值原理
对不恒等于常数的调和 函数u( x , y, z ), 其在区域的任何 内点上的值都不可能达 到它在上的上界和下界 .
例如,稳定的温度场,热量由外面流入,经过物体内部 流出,达到动态平衡,因此当物体内部没有热源时,温 度分布不可能在内部有最高点或最低点.
u S n dS 0
于是
u ( x) n
dS 0.
函数
1 v( M 0 ) 4
是泊松方程
rM M d
0
F
v F
一个特解 .
3 平均值公式
调和函数在其定义域 内任一点的值等于它在 以该点为心且 包含于的球面上的平均值:
5 拉普拉斯方程解的唯一性问题 狄氏问题的解唯一确定,牛曼问题的解除了相差一常数 外也是唯一确定的。
1 u(M 0 ) 4
1 1 u S (u n ( r ) r n )dS
如果u在 S上有连续的一阶偏导数在区域内, u F , 则 ,
1 u(M 0 ) 4
1 1 1 u S (u n ( r ) r n )dS 4
rM M d
第三章 调和方程
方程
laplace方程

Laplace方程一、介绍Laplace方程是一个重要的偏微分方程,它在应用数学领域起着重要的作用。
Laplace方程的形式如下:∇²φ = 0其中∇²是拉普拉斯算子,φ是未知函数。
这个方程描述了未知函数在给定区域内的二阶空间导数等于零的情况。
在本文中,我们将全面、详细、完整地探讨Laplace方程及其在物理学和数学中的应用。
二、物理学中的应用2.1 稳态问题Laplace方程常常用于描述稳态问题,即与时间无关的问题。
例如,当我们研究电势场或温度分布时,可以使用Laplace方程来描述系统的平衡状态。
通过求解Laplace方程,我们可以得到电势场或温度分布的解析解,从而更好地理解系统的行为。
2.2 电势与电荷分布在电磁学领域中,Laplace方程与电荷分布和电势之间存在联系。
根据电场的高斯定律,我们可以得到∇²V = -ρ/ε₀,其中V是电势,ρ是电荷密度,ε₀是真空介电常数。
当系统中的电荷密度为零时,即没有自由电荷,Laplace方程成为∇²V = 0。
因此,Laplace方程可以描述无电荷分布下的电势分布。
2.3 势流与速度场在流体力学中,Laplace方程与势流和速度场之间存在联系。
势流是无旋流体的流动描述,它满足Laplace方程。
通过求解Laplace方程,我们可以得到势流的解析解,从而更好地理解流体的运动规律。
在涡流较小的情况下,可以将流体的速度场表示为势流函数的梯度,进而通过Laplace方程求解速度场。
三、数学中的应用3.1 边界值问题Laplace方程在数学中的一个重要应用是解决边界值问题。
边界值问题是指在给定区域内,找到满足Laplace方程以及一些特定边界条件的解。
通过给定边界条件,我们可以唯一确定Laplace方程的解,进而得到满足特定条件的函数。
3.2 谐函数满足Laplace方程的函数被称为谐函数。
谐函数在数学中有广泛的应用。
例如,谐函数在电势场、温度分布以及其他物理问题中经常出现。
大学物理-方程的分类 定解问题的适应性

第一、二、三类边界条件可以统一地表示为
其中 是边界上的变点;
表示物理量 沿边
界外法线方向的方向导数;, 为常数,它们不同时为
零。除了这三类常见的边界条件之外,还有其它边界条
件。如有界条件、周期性条件和衔接条件,我们将在必
要时叙述。
在某些情况下 (例如无界弦),边界的影响可忽略, 此时会遇到只有初始条件但是没有边界条件的问题,这 类问题称这初值问题 (或柯西问题)。
边界条件 (三类:第一、二、三类边界条件) 其他条件:衔接条件、有限性条件、周期性条件、…
在均匀外电场 E0 中置入半径为 r0 的导体球,若导体 球接有电池,使球与地保持电势差 u0。试写出电势 u 满 足的泛定方程与定解条件。设导体置入前球心位置的电
势 u (0) = 0。
解:选 z 轴沿均匀外电场 E0 的方向,见图1。
椭圆方程
稳定场方程
物理上,这三类方程反映三种本质上不同的物理过 程,波动方程对应时间可逆的过程;输运方程对应时间 不可逆的过程;稳定场方程对应与时间无关的过程。
除了以上三类典型的数学物理方程之外,还有各种 各样的方程。
例如:量子力学中微观粒子波函数 所满足薛定谔方程
现代光学中描述光学孤子的非线性薛定谔方程
定解问题是否符合实际,在数学理论上可以从以下两 个方面进行研究。
1. 存在性和唯一性; 2. 稳定性。
如果一个定解问题存在唯一且稳定的解,则称此问题 是适定的。但是单单寻求正规解还不足以解决许多实际问 题。因此引入广义解的概念,广义解是正规解的极限。
如果对初始条件 u(x,0) = (x),正规解不存在,则考虑 一函数序列 n (x),它一致收敛于(x);对应 n (x) 存在正
(泊松方程)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.稳态温度场的分布(拉普拉斯方程第一边值问题数值解)
已有 665 次阅读2010-10-13 01:21|个人分类:课程实验|系统分类:科研笔记|关键词:laplace equation, numerical resolve
需要上机练习编程:差分法解拉普拉斯方程的第一边值问题。
自己编制的程序如下:
文件名:Lap-Eq Numerical answer.m
clc;clear;
tic
N=50
%划分的网格数======================
for m=1:N n=1:N-1;
u(m,n)=0;
u(m,N)=sin((m-1)*pi/(N-1));
end
%定义边界条件=======================
delta=ones(N,N);
while delta>1e-6
for m=2:N-1 n=2:N-1;
a(m,n)=u(m,n);
u(m,n)=(u(m+1,n)+u(m-1,n)+u(m,n+1)+u(m,n-1))/4;
delta(m,n)=abs(u(m,n)-a(m,n))/u(m,n);
end
end
X=1:N;Y=1:N;
mesh(X,Y,u(X,Y))
toc
所用的计算时间为Elapsed time is 3.672000 seconds.
1.考虑程序中的循环控制条件“while delta>=10e-6”的意义。
经过单步调试,得知这个表达式只是对最后一个delta进行比较,而不是所有的delta,因此并不满足计算条件。
结果是错误的。
要求每个计算点的delta都要<10e-6,因此需要该在程序。
clc;clear;
tic
N=50
%划分的网格数======================
for m=1:N n=1:N-1;
u(m,n)=0;
u(m,N)=sin((m-1)*pi/(N-1));
end
%定义边界条件=======================
delta=ones(N,N);
for m=2:N-1 n=2:N-1;
while delta(m,n)>1e-4
for m=2:N-1 n=2:N-1;
a(m,n)=u(m,n);
u(m,n)=(u(m+1,n)+u(m-1,n)+u(m,n+1)+u(m,n-1))/4;
delta(m,n)=abs(u(m,n)-a(m,n))/u(m,n);
end
end
end
X=1:N;Y=1:N;
mesh(X,Y,u(X,Y))
delta
delta>1e-6
toc
这样一来,所有的点都满足了。
但是这种算法做了太多的冗余计算。
对每个点的delta分别调到误差范围,所作的计算次数太多太多了。
从时间可看出
Elapsed time is 144.610000 seconds.需要进行算法改进,考虑每次计算结束得到一个delta的矩阵,只要矩阵中的最大者满足误差范围则所有的点都满足了,因此改为:
clc;clear;
tic
N=50
%划分的网格数======================
for m=1:N n=1:N-1;
u(m,n)=0;
u(m,N)=sin((m-1)*pi/(N-1));
end
%定义边界条件=======================
delta=zeros(N,N);
maxd=1;
whilemaxd>1e-4
for m=2:N-1 n=2:N-1;
a(m,n)=u(m,n);
u(m,n)=(u(m+1,n)+u(m-1,n)+u(m,n+1)+u(m,n-1))/4;
delta(m,n)=abs(u(m,n)-a(m,n))/u(m,n);
end
maxd=max(delta(:));
end
X=1:N;Y=1:N;
mesh(X,Y,u(X,Y))
maxd<1e-4
toc
现在就完全解决了上述问题了。
Elapsed time is 1.954000 seconds.
若误差要求改为1e-5,则运行时间为Elapsed time is 3.797000 seconds.
若误差要求改为1e-6,则运行时间为Elapsed time is 5.687000 seconds.
若划分的网格节点数N=500,tolerance=1e-5=> Elapsed time is 3794.234000 seconds.
几点需要说明的:
1) 对于二维或多维矩阵,找其最大值的表达式为max(A(:)),A代表矩阵名称。
A(:)代表矩阵A的所有元素以单序号方式引用。
这样找到的最大值才是一个数值。
若单纯的使用max(A)则对于二维矩阵会得到一个行矩阵,对应于A中每列的最
大值。
2) maxd<1e-4的作用,是检验是否所有的delta都已经满足误差要求了。
若满足,该式子的返回值为1,即为真。
另外,改变delta的存储情况也可减少存储空间,加快计算。
以下是不用矩阵存储delta,因为我们不需要知道每个delta值的表现形式,因此可以对每个delta 进行比较只用一个值来存储它。
程序如下:
%椭圆型方程的数值计算典型例题,Laplace方程的第一边值问题。
clc;clear;clf;
tic
N=5 %划分的网格节点数
tol=1e-5 %差分误差tolerance要求
%计算精度控制参量======================
for m=1:N n=1:N-1;
u(m,n)=0;
u(m,N)=sin((m-1)*pi/(N-1));
end
%定义边界条件=======================
delta=1;%用于存储两次计算的相对误差
%maxd=1;%N*N个相对误差中最大的一个
toi=0;%times of iteration迭代计算次数
while delta>tol
for m=2:N-1 n=2:N-1;
a(m,n)=u(m,n);
u(m,n)=(u(m+1,n)+u(m-1,n)+u(m,n+1)+u(m,n-1))/4;
delta=max(abs(u(m,n)-a(m,n))/u(m,n));%注意这种形式的意义。
end
toi=toi+1;
%maxd=max(delta(:));
end
X=1:N;Y=1:N;
u
mesh(X,Y,u(X,Y))
delta<tol
toi
toc
另外,在进行判断时对delta进行的比较也可这样编写:while delta>tol
delta=0;
for m=2:N-1 n=2:N-1;
a(m,n)=u(m,n);
u(m,n)=(u(m+1,n)+u(m-1,n)+u(m,n+1)+u(m,n-1))/4;
delta=max(abs(u(m,n)-a(m,n))/u(m,n),delta);
end
toi=toi+1;
%maxd=max(delta(:));
end
附:找矩阵中的最大值及其位置。
分情况(一维、二维或三维)而言:
i.一维阵,[a,b]=max(A)即可,a为最大值,b为位置;
ii.二维矩阵
a=max(A(:));
[x,y]=find(A==a);
iii.三维
a=max(A(:));
ind = find(a==max(a(:)));
[x,y,z] = ind2sub([m n d],ind);。