一致收敛性
函数的一致收敛性与一致连续性

函数的一致收敛性与一致连续性函数的一致收敛性和一致连续性是数学分析中重要的概念,它们对于函数的性质和性质的分析具有重要的作用。
本文将从定义、性质以及与其他概念之间的联系等多个方面对函数的一致收敛性和一致连续性进行探讨。
一、一致收敛性的定义与性质函数序列的一致收敛性是指对于给定函数序列{fn(x)},当自变量x趋向于某个值a时,函数值fn(x)的极限也趋向于某个值f(x),且这种趋向对序列中的每一个函数都成立。
更正式地说,对于任意ε>0,存在正整数N,使得当n>N时,对于所有的x,有|fn(x)-f(x)|<ε成立。
函数序列的一致收敛性具有以下性质:1. 一致收敛性是逐点收敛性的强化。
如果函数序列一致收敛于f(x),那么它也是逐点收敛的,即对于每个x,极限lim(n→∞)fn(x)=f(x)成立。
2. 一致收敛性是逐点收敛性的逆命题不成立的。
即逐点收敛的函数序列未必一致收敛。
3. 一致收敛性的极限函数是唯一的。
一致收敛序列的极限函数f(x)是唯一的,即若序列{fn(x)}和{gn(x)}一致收敛于f(x),则它们极限相等。
4. 一致收敛的函数序列在有界集上一致有界。
若函数序列{fn(x)}一致收敛于f(x),且对于每个x∈A,函数值fn(x)都有界,则极限函数f(x)在A上有界。
5. 一致收敛的函数序列在有界集上一致可积。
若函数序列{fn(x)}一致收敛于f(x),且对于每个x∈A,函数值fn(x)都可积,则极限函数f(x)在A上可积。
二、一致连续性的定义与性质函数的一致连续性是指对于给定函数f(x),当自变量x取值在某个区间上时,函数的变化量可以任意小,并且这种性质对区间上的所有点都成立。
更正式地说,对于任意ε>0,存在Δ>0,使得当|x1-x2|<Δ时,对于所有的x1和x2,有|f(x1)-f(x2)|<ε成立。
函数的一致连续性具有以下性质:1. 一致连续性是局部性质。
高等数学:一致收敛

2n
2
xe
n2 x 2
2(n 1) xe
2
( n 1) 2 x 2
证: 只需证明 x0 [a, b] , lim S ( x) S ( x0 ) .
由于
S ( x) S ( x0 )
x x0
[Sn ( x) rn ( x)] [Sn ( x0 ) rn ( x0 )] Sn ( x) Sn ( x0 ) rn ( x) rn ( x0 )
n 1
un ( x) 一致收敛于和函数S(x)
部分和序列 S n ( x) 一致收敛于S(x)
余项 rn ( x) 一致收敛于 0
机动 目录 上页 下页 返回 结束
几何解释 : (如图)
0, N Z , 当n > N 时, S ( x) S n ( x) 表示 曲线 y S n ( x) 总位于曲线 y S ( x) 与 y S ( x)
之间.
y S ( x)
y S ( x)
y S ( x)
y S n ( x)
I
机动 目录 上页 下页
x
返回 结束
例1. 研究级数 1 1 1 ( x 1)( x 2) ( x 2)( x 3) ( x n)( x n 1)
在区间 [0, +∞) 上的收敛性. 1 1 1 解: (k 1,2,) ( x k )( x k 1) x k x k 1 1 1 1 1 S n ( x) ( )( ) x 1 x 2 x2 x3 1 1 ( ) x n x n 1 1 1 x 1 x n 1
函数项级数一致收敛的定义

函数项级数一致收敛的定义函数项级数指的是形如$\sum_{n=1}^{\infty} f_n(x)$的无穷级数,其中$f_n(x)$表示一个与自变量$x$有关的函数序列。
一个函数项级数的一致收敛性是指当自变量$x$在其中一个区间$I$上时,函数项级数的部分和函数序列$\{S(x,N)\}$在该区间上一致收敛。
具体地说,给定函数项级数$\sum_{n=1}^{\infty} f_n(x)$,它的部分和函数序列定义为$S(x,N)=\sum_{n=1}^{N} f_n(x)$。
那么函数项级数的一致收敛定义如下:对于任意给定的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,对于任意$x\in I$,都有$,S(x,n)-S(x,N_0),<\varepsilon$。
换句话说,对于任意的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,级数的部分和与部分和函数之间的距离都小于$\varepsilon$,也就是说,在该区间$I$上,级数的每一项与级数的和之间的误差都可以无限接近于零。
要理解函数项级数一致收敛的定义,我们可以通过与其他类型的收敛进行比较。
首先,如果函数项级数在其中一点$x_0$处点态收敛,即级数的部分和序列$\{S(x_0,N)\}$收敛到其中一实数$L$,但这个$L$可能依赖于$x_0$,则我们无法将这个级数称为一致收敛的。
因为一致收敛要求对于任意的$x\in I$,部分和函数序列都收敛到同一个极限,也就是说,部分和函数序列不依赖于$x$。
类似地,如果部分和函数序列在其中一个区间上都是逐点收敛的,并且对于每个$x$都收敛到不同的极限,则也不能称为一致收敛。
一致收敛的概念可以看作是逐点收敛的一个强化版。
因为在逐点收敛中,对于每个$x\in I$,都要存在一个正整数$N_0(x)$使得当$n>N_0(x)$时,$,S(x,n)-S(x,N_0(x)),<\varepsilon$,这样的$N_0(x)$依赖于$x$。
函数列一致收敛性定理

函数列一致收敛性定理《函数列一致收敛性定理》是数学分析中一个重要的概念,它的重要性在于它能有效限制函数在某些情况下的收敛特性。
它可以提供有关函数的收敛性的关键信息,可以用来证明某些定理。
函数列一致收敛性定理定义如下:设{f_n}是一个函数列,当n→∞时,若对每一个记号n0,对于所有n≥n0,都有f_n(x)→f(x),则称 {f_n}在x处一致收敛。
函数列一致收敛性定理可以用来证明某些函数数列具有特定收敛性特征。
例如,如果一个函数序列的每一个函数都是正定函数,而且它们的对偶列也具有正定性,那么这个序列必然具有一致收敛性特征。
此外,如果一个序列的函数都具有收敛和可积性,那么这个序列必须具有一致收敛性特征。
函数列一致收敛性定理也可以用来证明函数连续性的概念。
如果一个函数序列的收敛到某一极限,那么就可以利用函数列一致收敛性定理证明其到达的极限是连续的。
函数列一致收敛性定理也可以用来证明一些无穷级数的收敛性性质。
例如,如果一个无穷级数的函数序列具有一致收敛性,则该级数一定收敛,而收敛的极限就是函数序列的极限。
此外,函数列一致收敛性定理还可以用来证明一些积分性质。
例如,如果一个函数序列具有一致收敛性,则可以证明该函数序列的积分是收敛的,而其极限就是函数序列的积分极限。
最后,函数列一致收敛性定理也可以用来验证一些重型定理。
例如,有一些重型定理可以证明一些函数序列的收敛性,这些定理需要利用函数列一致收敛性定理的收敛性性质来验证。
由此可见,函数列一致收敛性定理在数学分析中非常重要,它可以用来证明某些定理,也可以用来验证一些重要定理。
因此,学习并理解函数列一致收敛性定理对于我们的数学学习十分有益。
一致收敛性

n xD n xD
数学分析选讲
多媒体教学课件
三、函数项级数的一致收敛性判别法 定理5(维尔斯特拉斯判别法)设函数项级数un(x)定义 在数集D上, Mn为收敛的正项级数,若对一切xD,有
n 1
由f(x)的连续性,
1 1 k lim f n( x) lim f( x ) f( x t) dt. 0 n n n k 0 n n 1
数学分析选讲
多媒体教学课件
n 1
| fn ( x)
1
0
1 1 k f ( x t )dt || f ( x ) f ( x t )dt | 0 n k 0 n
n n充分大时, x 2 n 2 单调递减收敛于0.故原级数为莱布
尼兹级数.且
n 1 1 | rn ( x ) || 2 , 2 x ( n 1) n 1
故原级数一致收敛.
数学分析选讲
多媒体教学课件
例4 证明函数列
x f n ( x ) n ln(1 )( n 1, 2,) n
k 1 n k n
k | f ( x ) f ( x t ) | dt | n
数学分析选讲
多媒体教学课件
由于
k k 1 t [ , ] n n
所以
k k 1 | x ( x t ) || t | , n n n
故取n 充分大,使1/ n <,则
k | f ( x ) f ( x t ) | . n
n 1
在[a, b]上一致收敛.
数学分析选讲
一致收敛

∞
n= 1
∞
∫x
证: 因为
k= 1
x
0
S(x)d x = ∑ ∫ un(x)d x
n= 1 x0
x
且上式右端级数在 [a, b] 上也一致收敛 .
∑ ∫x
n
x
0
uk (x)d x = ∫
x
x0
k= 1
∑uk (x)d x = ∫x
目录
n
x
0
Sn(x)d x
下页 返回 结束
上页
所以只需证明对任意 x0, x∈[a,b] (x0 < x), 一致有
2 n n− 1
在 [0,1] 上不一致收敛 .
+ 证: Sn(x) = x +(x − x) +L (x − x
)=x
n
0, S(x) = 1,
− xn, 0 ≤ x <1 rn(x) = S(x) −Sn(x) = 0, x =1 1 1, 对无论多么大的正数 N , 取x = (1) N+1, 取正数 ε < 0 2 2
*第六节
第十二章
函数项级数的一致收敛性 及一致收敛级数的基本性质
一、函数项级数的一致收敛性 二、一致收敛级数的基本性质
目录
上页
下页
返回
结束
一、函数项级数的一致收敛性
幂级数在收敛区间上的性质类似于多项式, 但一般函 数项级数则不一定有这么好的特点. 例如, 例如 级数
x +(x − x) +(x − x ) +L+(x − x
2) 正 级 ∑an 收 , 项 数 敛
则函数项级数 ∑un(x) 在区间 I 上一致收敛 .
一致收敛性习题课

04 一致收敛的应用
CHAPTER
在实数列上的应用
实数列的一致收敛性
实数列的一致收敛性是指对于任意小的正数ε,存在一个正整数N,使得当n>N时,对于所有的x,有 |a_n(x)-a(x)|<ε。这种收敛性在实数列的极限、积分和微分等数学问题中有着广泛的应用。
一致收敛的判定方法
判断实数列是否一致收敛,可以通过比较判别法、Cauchy判别法、Weierstrass判别法等方法进行判 定。这些方法可以帮助我们判断实数列是否一致收敛,以及收敛的速度和范围。
2. 几乎处处收敛:如果 存在一个子集$E$,其测 度为1,使得在$E$上函 数序列一致收敛于极限 函数,则称函数序列几 乎处处收敛。
3. 一致收敛与局部收敛、 几乎处处收敛等收敛性 质之间的关系是密切相 关的。例如,如果函数 序列在区间上一致收敛, 则它在该区间上必然局 部收敛和几乎处处收敛。
02 一致收敛的判定方法
的收敛性。
极限判别法
1 2
极限判别法
如果存在某个实数$M$,使得对于所有$n$,有 $|f_{n}(x)| leq M$,则级数$f_{n}(x)$一致收敛。
应用场景
适用于判断级数在全实数域上的一致收敛性。
3
注意事项
需要找到一个合适的$M$,使得所有项的绝对值 都小于等于$M$,同时需要验证级数在全实数域 上的收敛性。
一致收敛性习题课
目录
CONTENTS
• 一致收敛的定义与性质 • 一致收敛的判定方法 • 一致收敛的等价条件 • 一致收敛的应用 • 一致收敛的习题解析
01 一致收敛的定义与性质
CHAPTER
一致收敛的定义
总结词
一致收敛是函数序列的一种收敛性质,它描述了函数项在某个区间上趋于一致 的行为。
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数的一致收敛性是数学分析中的重要概念,对于研究函数项级数的性质和应用具有重要意义。
本文将从一致收敛性的定义开始,介绍一致收敛性的判别定理和具体的应用,希望读者通过本文的了解和学习,能够更好地理解和应用函数项级数的一致收敛性。
一、一致收敛性的定义在介绍一致收敛性的判别定理和应用之前,我们首先来了解一下一致收敛性的定义。
对于一般的数项级数来说,我们只需要关注级数的部分和序列是否收敛即可。
但对于函数项级数来说,因为级数的每一项都是函数,所以我们不仅需要考察级数的部分和序列的收敛性,还需要考察函数序列在定义域上的收敛性。
设对于定义在区间上的函数序列,对于给定的,如果对于任意,都存在一个自然数,使得当时,有∣∣fn(x)−f(x)∣∣<ε那么我们称函数序列在区间上一致收敛于函数,并记作。
换句话说,对于一致收敛的函数序列而言,不仅级数的部分和序列收敛于函数,且对于每一个自然数,其函数项序列在整个区间上都趋向于函数。
二、一致收敛性的判别定理对于函数项级数的一致收敛性,我们有一些判别定理可以帮助我们进行判断。
这里我们简要介绍几个重要的判别定理:1. 魏尔斯特拉斯判别定理(Weierstrass判别定理)魏尔斯特拉斯判别定理是判别函数项级数一致收敛性的重要定理之一。
该定理表述如下:若对于区间上的函数序列,存在一个数项级数使得对于任意和有∣∣fn(x)−an∣∣<bn,则级数在区间上一致收敛。
通过以上判别定理的介绍,我们可以看到,判别函数项级数一致收敛性的方法有多种多样,我们可以根据具体的情况选择不同的方法来进行判断,更好地理解和应用函数项级数的一致收敛性。
三、一致收敛性的应用函数项级数的一致收敛性不仅在理论上具有重要意义,而且在实际问题中也有着广泛的应用。
下面我们将介绍一些函数项级数一致收敛性在实际问题中的应用。
1. 函数项级数的积分和微分操作在实际问题中,我们经常会遇到需要对函数项级数进行积分和微分操作的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fn ( x) f ( x )( n ) , x D.
由定义看到, 一致收敛就是对 D 上任何一点, 函数列 趋于极限函数的速度是 “一致” 的. 这种一致性体现
前页 后页 返回
为: 与 相对应的 N 仅与 有关, 而与 x 在 D 上的
取值无关, 因而把这个对所有 x 都适用的 N 写作
前页 后页 返回
ln n (其中 0 1), 曲线 y x n 就全部落在 ln b y 和 y 所夹成的带状区域内,所以 x n 在
0, b 上是一致收敛的.
定理13.1 (函数列一致收敛的柯西准则) 函数列 { f n } 在数集 D 上一致收敛的充要条件是: 对任给正数 , 总存在正数N, 使当 n, m N , 对一切 x D , 都有
x D.
由上确界的定义, 对所有 n N , 也有 sup | f n ( x ) f ( x ) | .
xD
这就得到了(6)式. 充分性 由假设, 对任给 >0, 存在正整数N, 使得 当n N 时,有 sup | f n ( x ) f ( x ) | . (7)
前页 后页 返回
sin nx , 例2 定义在 ( , ) 上的函数列 f n ( x ) n n 1,2, .
由于对任何实数 x , 都有
sin nx 1 , n n
故对任给的 0, 只要 n N 1
, 就有
sin nx 0 . n
前页 后页 返回
所以函数列 sin nx n 的收敛域为 ( , ), 极限
n
, (8)
由于 f n (0) 0, 故 f (0) lim f n (0) 0.
1 当 0 x 1时, 只要 n , 就有 f n ( x ) 0, x 故在( 0, 1]上有 f ( x ) lim f n ( x ) 0.
n
前页 后页 返回
其中 n 1, 2, 3 的图
的依赖关系), 使当 n N 时, 总有
| f n ( x ) f ( x ) | .
使函数列 { f n } 收敛的全体收敛点集合, 称为函数列
{ f n } 的收敛域.
前页 后页 返回
例1 设 f n ( x ) x n , n 1,2, 为定义在(-, ) 上的 函数列, 证明它的收敛域是 (1, 1] , 且有极限函数 0, | x | 1, f ( x) 1, x 1. 证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
某一正整数 n0 N( 注意: x0 与 n0 的取值与 N 有关 ),
使得
前页 后页 返回
f n0 ( x0 ) f ( x0 ) 0 .
n 由例1 中知道, x 在 (0, 1) 上不可能一致收敛于 0.
下面来证明这个结论.
1 事实上, 若取 0 , 对任何正整数 N 2, 取正整 2
| f n ( x ) f ( x ) || x n |,
ln 只要取 N ( , x ) , 当 n N ( , x ) 时,就有 ln | x |
| f n ( x ) f ( x ) || x |n | x | N .
前页 后页 返回
当 x 0 和 x 1 时, 则对任何正整数 n, 都有 | f n (0) f (0) | 0 , | f n (1) f (1) | 0 .
2
.
(5)
于是当 n, m N ,由(5)得
| f n ( x ) f m ( x ) | | f n ( x ) f ( x ) | | f ( x ) f m ( x ) |
2 2 充分性 若条件 (4) 成立, 由数列收敛的柯西准则,
{ f n } 在D上任一点都收敛, 记其极限函数为 f ( x ),
y 3
2
f2 f3
像如图13-3 所示.
1
f1
f ( x)
图 13 3
O
1 1 1 6 4 3
1 2
1
x
于是 (8) 在[0, 1]上的极限函数 为 f ( x ) 0. 又由于
1 sup f n ( x ) f ( x ) f n n ( n ), x[0, 1] 2n
§1 一致收敛性
对于一般项是函数的无穷级数,其收敛性 要比数项级数复杂得多,特别是有关一致收 敛的内容就更为丰富,它在理论和应用上有 着重要的地位.
一、函数列及其一致收敛性 二、函数项级数及其一致收敛性 三、函数项级数的一致收敛判别法
前页 后页 返回
一、函数列及其一致收敛性
设
f1 , f 2 , , fn , (1)
N ( ).
显然, 若函数列 f n 在 D 上一致收敛, 则必在 D 上 每一点都收敛. 反之, 在 D 上每一点都收敛的函数列, 它在 D 上不一定一致收敛.
sin nx 例2 中的函数列 是一致收敛的, 因为对任意 n
前页 后页 返回
给定的 正数 , 不论 x 取(-,+) 上什么值, 都有
是一列定义在同一数集 E 上的函数,称为定义在E 上的函数列. (1) 也可记为
{ f n } 或 f n , n 1,2,
以 x0 E 代入 (1), 可得数列
f1 ( x0 ), f 2 ( x0 ),
.
, f n ( x0 ),
.
(2)
前页 后页 返回
如果数列(2)收敛, 则称函数列(1)在点 x0 收敛, x0 称 为函数列(1)的收敛点. 如果数列(2)发散, 则称函数 列(1)在点 x0 发散. 当函数列(1)在数集 D E上每一 点都收敛时, 就称(1)在数集 D 上收敛. 这时 D 上每 一点 x 都有数列 { f n ( x )}的一个极限值与之相对应 , 根据这个对应法则所确定的 D 上的函数, 称为函数 列(1)的极限函ቤተ መጻሕፍቲ ባይዱ. 若将此极限函数记作f, 则有
y
y f ( x)
y f ( x) y fn ( x)
y f n ( x ) ( n N ),
都落在曲线 y f ( x )
a
y f ( x)
与 y f ( x ) 所夹的带 状区域之内.
O
b
x
图 13-1
前页 后页 返回
函数列 { x n } 在区间(0, 1) 上
xD
因为对一切 x D, 总有
| f n ( x ) f ( x ) | sup | f n ( x ) f ( x ) | .
xD
前页 后页 返回
故由 (7) 式得 f n ( x ) f ( x ) , 于是 f n 在 D 上
一致收敛于 f .
注 柯西准则的特点是不需要知道极限函数是什么, 只是根据函数列本身的特性来判断函数列是否一致 收敛, 而使用余项准则需要知道极限函数, 但使用 较为方便. 如例2, 由于
这就证明了 { f n } 在( 1 , 1] 上收敛, 且极限就是(3)
式所表示的函数.
又 当 | x | 1 时, 有 | x |n (n ), 当 x 1 时,
对应的数列为 1, 1, 1, 1 , 显然是发散的. 所以
函数列 { x n } 在区间 (1, 1] 外都是发散的. 故所讨论 的函数列的收敛域是 (1, 1].
| f n ( x ) f m ( x ) | . (4)
即对 证 必要性 设 f n ( x ) f ( x ) ( n ), x D ,
前页 后页 返回
任给 >0, 存在正数N, 使得当 n N 时, 对一切
x D, 都有
| f n ( x ) f ( x ) |
lim f n ( x ) f ( x ) ,
n
xD
前页 后页 返回
或
f n ( x ) f ( x ) ( n ) , x D.
函数列极限的 N 定义: 对每一固定的 x D , 任 给正数 , 总存在正数N(注意: 一般说来N值与 和
x 的值都有关, 所以有时也用N( , x)表示三者之间
lim sup
n x( , )
sin nx 1 0 lim 0, n n n
sin nx 所以在( , )上, 0 ( n ). n
前页 后页 返回
例3 定义在[0,1]上的函数列
2 2n x , f n ( x ) 2n 2n 2 x , 0, 1 0 x , 2n 1 1 x , n 1, 2, 2n n 1 x 1, n
函数为 f ( x ) 0.
注 对于函数列, 仅停留在讨论在哪些点上收敛是远
远不够的,重要的是要研究极限函数与函数列所具
有的解析性质的关系. 例如, 能否由函数列每项的 连续性、可导性来判断出极限函数的连续性和可导 性; 或极限函数的导数或积分, 是否分别是函数列 每项导数或积分的极限. 对这些更深刻问题的讨论, 必须对它在 D上的收敛性提出更高的要求才行.
所以函数列 (8) 在 [0, 1] 上不一致收敛.
前页 后页 返回
例4 讨论函数例 { f n ( x ) n xe
2
n2 x 2
}, x [0,1] 的一致
收敛性. 解 为了使用余项准则, 首先求出函数列的极限函数. 易见 f ( x ) lim f n ( x ) lim n xe
前页 后页 返回