人教版七年级数学上册有理数 拔高及易错题精选
最新人教版初中七年级上册数学《有理数中的易错题》精品课件

课后小知识
学习方法指导
同学们,天道酬勤,一个人学习成绩的优劣取决于他的学习 能力,学习能力包括三个要素:
规范的学习行为; 良好的学习习惯; 有效的学习方法。 只要做好以上三点,相信你一定会成为学习的强者。 加油!加油!加油!
课后反思
1、今天的学习结束,你收获了什么? 2、引导学生归纳本课知识重点。 3、同桌之间交流一下学习心得与学习方法。
ቤተ መጻሕፍቲ ባይዱ
类型二:与运算有关的符号判断不准确 计算:-2-(-3) 解:-2-(-3)= -2 +3=1
类型三:运算法则、运算顺序及符号错误
计算:⑴
2
1 4
3
4 5
解:原式= 9 19 = 171 4 5 20
⑵
4 7
3 7
2
1 3
.
解:原式=
4 7
3 7
7 3
=4 1
7
= 3 .
7
⑶
类型五:多种情况时漏解
点A在数轴上距原点3个单位,将A点向右移动4个单位长度,此时A点表示的数 是____________.
–5 –4 –3 –2 –1 O
1
2
3
4
5
–5 –4 –3 –2 –1 O
1
2
3
4
5
解:点A所表示的数可能是+3,也可能是-3,若为+3,则移动后所表示的数为 7;若原为-3,则移动后所表示的数为1,故正确答案为1或7.
有理数中的易错题
我们初学有理数,在理解有理数概念及计算方面容易出现常见性的错误, 严重影响本章的学习效果.
本节课的学习目标是熟悉并理解有理数、有理数计算时容易出现的误区, 欢迎认真学习本节课.
人教版 七年级上第一章有理数知识点总结及易错题

新课标人教版数学七年级(上)知识要点概括第一章有理数1.(1)正数:大于零的数;(2)负数:小于零的数(在正数前面加上负号“—”的数);注意:①0既不是正数也不是负数,它是正负数的分界点;②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数;③字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
④正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.有理数的概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数的分类⑴按有理数的定义分类⑵按性质符号来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。
4. 规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一。
(4)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。
5.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右侧的点表示,负有理数可用原点左侧的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
2023年人教版七年级上有理数知识点总结及易错题

新课标人教版数学七年级(上)知识要点概括第一章有理数1.(1)正数:不小于零旳数;(2)负数:不不小于零旳数(在正数前面加上负号“—”旳数);注意:①0既不是正数也不是负数,它是正负数旳分界点;②对于正数和负数,不能简朴理解为带“+”号旳数是正数,带“—”号旳数是负数;③字母a可以表达任意数,当a表达正数时,-a是负数;当a表达负数时,-a是正数;当a表达0时,-a仍是0。
④正数有时也可以在前面加“+”,有时“+”省略不写。
因此省略“+”旳正数旳符号是正号。
2.有理数旳概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数旳形式,这样旳数称为有理数。
理解:只有能化成分数旳数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数旳分类⑴按有理数旳定义分类⑵按性质符号来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。
4. 规定了原点,正方向,单位长度旳直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸旳直线;⑵原点、正方向、单位长度是数轴旳三要素,三者缺一不可;⑶同一数轴上旳单位长度要统一。
(4)数轴一般取右(或向上)为正方向,数轴旳原点旳选定,正方向旳取向,单位长度大小确实定都是根据实际需要规定旳。
5.数轴上旳点与有理数旳关系⑴所有旳有理数都可以用数轴上旳点来表达,正有理数可用原点右侧旳点表达,负有理数可用原点左侧旳点表达,0用原点表达。
⑵所有旳有理数都可以用数轴上旳点表达出来,但数轴上旳点不都表达有理数,也就是说,有理数与数轴上旳点不是一一对应关系。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
人教版初中七年级数学上册《有理数》易错题汇总

人教版初中七年级数学上册《有理数》易错题易错点1 (对“0”的认识错误)1.给出下列说法:①0可以表示没有,也可以表示具体的意义;②0是最小的正整数;③0是最小的有理数;④0既是负数又是正数;⑤0是最小的自然数.其中正确说法的序号是________.易错点2 (误认为带负号的数一定是负数)2.有理数﹣a是()A.负数B.正数C.0D.正数或负数或0 易错点3 (对π的认识错误)3.在数﹣2,0.3,+6,π,﹣0.3,15中,有理数的个数是()A.6B.5C.4D.34.化简|π﹣3.14|的结果是()A.0B.π﹣3.14C.3.14-πD.以上都不对易错点4 (对相反数的几何意义理解不透)5.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点DB.点A与点CC.点B与点DD.点B与点C易错点五(在条件|a|=﹣a下,误认为a的值一定是负数)6.已知|a|=﹣a,则a的值是()A.正数B.负数C.非正数D.非负数易错点6 (混淆绝对值符号或括号)7.下列式子中成立的是()A.﹣|﹣6|>5B.﹣8<﹣(﹣8)C.﹣|﹣7|=7D.|﹣8.5|<8疑难点1(数轴上的点与有理数的关系)1.下列说法正确的是( )A.数轴上的每一个点都表示一个整数B.数_上的每一个点都表示一个分数C.数轴上的每一个点都表示一个有理数D.每一个有理数都可以用数轴上的点表示疑难点2(有理数的大小比较)2.若﹣1<x <0,则x ,1丨x 丨,﹣x 的大小关系是( ) A.x >1丨x 丨>﹣x B 1丨x 丨>x >﹣x C.1丨x 丨>﹣x >xD.﹣x >1丨x 丨>x 疑难点3(绝对值问题中数形结合思想的应用)3.我们知道,点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离AB=|a -b|,所以|x ﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.(1)若|x ﹣3|=5,则x=______;(2)若|x ﹣3|=|x+1|,则x=______.参考答案1.①⑤2.D【解析】解决本题的关键是知道a可以是正数、负数或0,则﹣a是负数、正数或0.故选D.易错分析当有理数是用一个字母表示时,要对这个字母分三种情况讨论求解,否则容易造成漏解.3.B【解析】解决本题的关键是知道π不是3.14,有理数.在﹣2,0.3,﹢6,π,﹣0.3,15中,除了π不是有理数外,其余各数都是有理数,所以共有5个有理数.故选B.易错分析小学数学解题经常用到π,因此受到习惯思维的影响而认为π就是有理数:实际上π是圆周率,不是整数,也不能化为分数,因此π不是有理数.4.B【解析】解决本题的关键是知道π不是3.14,π是一个比3.14大的数,因此π﹣3.14是一个正数,所以|π﹣3.14|=π﹣3.14.故选B.易错分析小学数学解题用到π时,一般把π看成3.14去计算,这样就习惯了遇到π就以为是3.14,实际上π是3.1415926535…,是一个大于3.14的数,这一点在解题中要注意.5.A【解析】由点A,B,C,D到原点的距离分别为2,1,0.5,2,知点A,D 到原点的距离相等,且在原点的两侧,所以点A与点D互为相反数.故选A.技巧点拨判断数轴上两个点所表示的数是否互为相反数,就是要看它是否满足两个条件:一是点在原点的两侧,二是点到原点的距离相等.6.C【解析】当a<0时,|a|=﹣a;当a=0时,|a|=a=﹣a.因此a的值是非正数.故选C.易错分析本题容易出现漏掉a=0的情况,从而错选B.7.B【解析】选项A,﹣|﹣6|=﹣6<5,所以A错误;选项B,﹣(﹣8)=8,﹣8<8,所以B正确;选项C,﹣|7|=﹣7 7,所以C错误;选项D,|﹣8.5|=8.5>8,所以D错误.故选B.易错分析本题的易错之处是对绝对值的意义理解不透,化简时由于受到负号的干扰导致出错.求一个数的绝对值通常有两种方法,分别为代数方法和几何方法,其中代数方法就是直接依据:绝对值的代数定义,即“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”;几何方法就是通过数轴,直接根据绝对值的几何定义(数轴上表示数a的点与原点的距离),结合图形,求出长度,即可得到答案.过疑难1.D【解析】选项A,虽然每一个整数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示整数,如﹣32所以A错误;选项B,虽然每一个分数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示分数,如1,所以B错误;选项C,虽然每一个有理数都可以用数轴上的点表示,但反过来,数轴上的每一个点不都表示有理数,如数轴上还有表示π的点,而π不是有理数,所以C错误.故选D.2.C【解析】因为﹣1<x<0,所以取x=﹣12,则1丨x丨=2,﹣x=12.因为2>12>﹣12,所以1丨x丨>﹣x>x.故选C.名师点睛本题的疑难点是比较大小的不是具体的数,不知道从哪入手解题.作为选择题可用特殊值代入法,可而化题目,降低难度.3.(1)﹣2或8;(2)1【解析】(1)|x﹣3|=5的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离为5,所以x=﹣2或8;(2)|x﹣3|=|x+1|的几何意义是数轴表示有理数3的点与表示有理数x的点之间的距离等于表示有理数﹣1的点与表示有理数x的点之间的距离,所以x=1.。
人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)

第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
七年级有理数易错题和易错点

七年级上册有理数中的3种易错题型分析
一、对有理数的概念理解不清
例题1:下列说法正确的是()
A.最小的正整数是0;
B.-a是负数
C.符号不同的两个数互为相反数;
D.-a的相反数是a
分析:0既不是正数也不是负数,0是整数;-a可能是正数、负数,也可能是0;相反数需要满足两个条件:(1)符号不同;(2)绝对值相等,仅仅满足符号不同的两个数不一定互为相反数,比如-1与2、-2与3等等;-a的相反数是a,a的相反数为-a,没有问题。
在数学上,定义类问题让很多同学忽视,觉得不重要,但是在做题目时,却往往犯各种各样的错误,要特别注意。
二、化简出错,忽略分类讨论思想
例题2:如果一个数的绝对值等于它本身,那么这个数一定是()分析:正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数,即绝对值等于它本身的数为正数或0.注意:当a≥0时,|a|=a;当a≤0时,|a|=-a.
三、对括号使用不当引起的错误
例题3:-10-(-2+3-5)
分析:在计算时要注意括号,如果括号前面是负号,去括号时要注意变号;如果括号前面是加号,可以直接去掉括号。
比如本题,原式=-10+2-3+5=-6.。
最新人教版七年级上册数学 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.2.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-4GF E D C BA 人教版七年级数学上册有理数 拔高及易错题精选一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( ) A. 0=+b a B.1-=baC. 2a ab -=D. b a = 3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -= B. 22a a = C. 33)(a a -= D. )(33a a --= 6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-1 10. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( ) A. 8 B. 2 C. -8或-2 D. 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )A. 464010⨯B. 56410⨯C. 66410⨯.D. 6410⨯7.12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( ) A. 万位 B. 十万位 C. 百万位 D. 千位 二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b=.2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 如果x 2=9,那么x 3= .6. 如果2-=-x ,则x = .7. 化简:|π-4|+|3-π|=.8. 绝对值小于2.5的所有非负整数的和为,积为.9. 使25++-xx值最小的所有符合条件的整数x有.10. 若a、b互为相反数,c 、d互为倒数,则(a+b)10-(cd) 10=.11.若a、b互为相反数,c、d互为倒数,3=x,则式子2(a+b)-(-cd)2016+x的值为.12. 已知()0422=-++yx,求x y的值为.13. 近似数2.40×104精确到位,它的有效数字是.14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是.15. 观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……猜想:(1)1+3+5+7…+99 =;(2)1+3+5+7+…+(2n-1)=.(结果用含n的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.三、解答题(共82分) 1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121…999110001-2. (5分)计算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值. 其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.7. (6分)已知│a│=4,│b│=3,且a>b ,求a 、b 的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a +b 的值.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)十字框中的五个数的和与中间的数16有什么关系?bac(2)设中间的数为x ,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
10. (6分)已知有理数a ,b ,c 在数轴上的对应点如图所示,化简:a b b c c a -+---.12. (6分)如果有理数a 、b 满足0)1(22=-+-b ab ,试求+++++++)2)(2(1)1)(1(11b a b a ab ……()()201720171++b a 的值.13. (6分)已知abc |abc|=1,求|a|a +|b|b +|c|c的值. 14. (6分)已知c b a 、、均为非零的有理数,且1-=++cc bb aa ,求abcabc 的值.参考答案一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( B ) A. 0=+b a B.1-=baC. 2a ab -=D. b a = 3. 若│a│=│b│,则a 、b 的关系是( C )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( D )A. 22)(a a -=B. 22a a =C. 33)(a a -=D. )(33a a --= 6. -52表示( D )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7. -42+ (-4) 2的值是( B )A. –16B. 0C. –32D. 328-4GFE D C BA 8. 已知a 为有理数时,1122++a a =( A )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( A )A. 0B. 1C. -1D. 1或-1 10. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( D ) A. 8 B. 2 C. -8或-2 D. 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( C ) A. 464010⨯ B. 56410⨯ C. 66410⨯. D. 6410⨯7.12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( B ) A. 万位 B. 十万位 C. 百万位 D. 千位 二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 0 .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 1或-5 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 -2 ;表示原点的是点 C .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 -4.5或8.5 . 4.-⎪⎪⎪⎪⎪⎪-23的相反数是 23 .5. 如果x 2=9,那么x 3= ±27 .6. 如果2-=-x ,则x = ±2 .7. 化简:|π-4|+|3-π|= 1 .8. 绝对值小于2.5的所有非负整数的和为 0 ,积为 0 .9. 使25++-x x 值最小的所有符合条件的整数x 有 -2,-1,0,1,2,3,4,5, . 10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = -1 . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 2或-4 .12. 已知()0422=-++y x ,求x y 的值为 16 .13. 近似数2.40×104精确到 百 位,它的有效数字是 2,4,0 .14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 7 .15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = 502 ;(2) 1+3+5+7+…+(2n -1)= n 2 .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2它跳第100次落下时,落点处离O 点的距离是 50 个单位. 三、解答题(共82分) 1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++- 解:原式=(371012-)+(37153)+(414-)+(375-)+(2115)+(49-)=[(371012-)+(375-)+(37153)]+[(414-)+(49-)+(2115)]=-9+9 =0(2)10.12512(16)(2)2-⨯⨯-⨯-解:原式=[-0.125×(-16) ]×[12×(25-)] =2× (-30) =-60(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-解:原式=[(7111-)×51+716×51]+[(31137-)÷5+(31112)÷5]=[(7111-+716)×51]+[(31137-+31112)÷5]=[(-5)×51]+[(-25)÷5]=-1+(-5) =-6(4)+-+-+-31412131121 (999)110001-解:原式=1-21+21-31+31-41+…+9991-10001 =1-10001999 2. (5分)计算1-3+5-7+9-11+…+97-99.解:原式=(1-3)+(5-7)+(9-11)+…+(97-99) =-2 ×250(提示:1~100其中奇数和偶数各50个,50个奇数分成25组) =-2×25 =-50.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些? 解:∵点A 和原点的距离为2,∴点A 对应的数是±2.当点A 对应的数是2时,则点B 对应的数是2+1=3或2-1=1;当点A 对应的数是-2时,则点B 对应的数是-2+1=-1或-2-1=-3.4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值. 其中x 和y 满足21()|13|02x y ++-=.解:∵21()|13|02x y ++-=∴x +21=0,1-3y=0∴x =21-,y=31∴x y *=xyyx +=31213121⨯-+-=6161--=15.(6分)已知()0212=-++ba,求(a+b)2016+a2017.解:∵()0212=-++ba∴a+1=0,b-2=0∴a=-1,b=2∴(a+b)2016+ a2017=(-1+2)2016+(-1)2017=1+(-1)=0.6. (6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:201720162)()()(cdbacdbax-+++++-.解:∵a,b互为相反数,c、d互为倒数,x的绝对值为5∴a+b=0,cd=1,x=±5∴x2-(a+b+cd)+(a+b) 2016+(-cd) 2017=(±5)2-(0+1)+0 2016+(-1) 2017=25-1+0+(-1)=237. (6分)已知│a│=4,│b│=3,且a>b,求a、b的值.解:∵|a|=4,|b|=3∴a=±4,b=±3∵a>b∴a=4,b=±3.8. (6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.解:∵|a|=2,|b|=5∴a=±2,b=±5∵ab<0∴a=2,b=-5或a=-2,b=5.∴a+b =2+(-5) =-3或a+b =(-2)+5=3.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。