数字式PWM可逆直流调速完整系统
第4章 第1讲直流PWM可逆直流调速系统

4.1.2 直流PWM可逆直流调速系统转速反向 的过渡过程
时刻,开始正向制动( ) 在t2时刻,开始正向制动(abc)
给定信号U 从 阶跃下降到“ 给定信号 n*从UnN阶跃下降到“-UnN”, , 对应于反向额定转速“ 对应于反向额定转速“-nN”。 。 由于电枢惯性,使得转速误差信号∆ 由于电枢惯性,使得转速误差信号∆Un突 然下降到“-2UnN”,ASR快速反向饱和, 然下降到“ , 快速反向饱和, 快速反向饱和 Ui*=-Uim。 = 此后在ACR的快速调节下使电枢电流 d 跟 的快速调节下使电枢电流I 此后在 的快速调节下使电枢电流 维持在最大反向电枢电流“ 随“Ui*”维持在最大反向电枢电流“-Idm”, 维持在最大反向电枢电流 ,
PWM变换电源控制特性与数学模型 变换电源控制特性与数学模型
PWM变换器的控制一般采用锯齿 变换器的控制一般采用锯齿 波同步的自然采样调制法, 波同步的自然采样调制法 , 或者 规则采样法。 规则采样法。 图 (b)是单极型 是单极型PWM调制原理, 调制原理, 是单极型 调制原理 占空比和控制电压Uc的关系为 占空比和控制电压 的关系为
U, i +Us Ud E id O t 0 on -Us -Us b) 正向电动运行波形 c) 反向电动运行波形 T t O 0 U, i +Us
γ = 2ρ – 1 γ = –1 ~ 0 ~ +1
ton
T
t id E Ud
4.1 直流 直流PWM可逆调速系统 可逆调速系统
双极式控制的桥式可逆PWM变换器有下列优点: 变换器有下列优点: 双极式控制的桥式可逆 变换器有下列优点 (1)电流一定连续; )电流一定连续; (2)可使电动机在四象限运行; )可使电动机在四象限运行; (3)电动机停止时有微振电流,能消除静磨擦死区; )电动机停止时有微振电流,能消除静磨擦死区; (4)低速平稳性好,系统的调速范围大; )低速平稳性好,系统的调速范围大; (5)低速时,每个开关器件的驱动脉冲仍较宽,有利 )低速时,每个开关器件的驱动脉冲仍较宽, 于保证器件的可靠导通。 于保证器件的可靠导通。
可逆直流PWM调速系统

引言自从全控型电力电子器件问世以后就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。
直流电动机的PWM调速原理,为了获得可调的直流电压,利用电力电子器件的完全可控性,采用脉宽调制技术,直接将恒定的直流电压调制成可变大小和极性的直流电压作为电动机的电枢端电压,实现系统的平滑调速,这种调速系统就称为直流脉宽调速系统。
脉宽调制的基本原理,脉宽调制(Pulse Width Modulation),是利用电力电子开关器件的导通与关断,将直流电压变成连续的直流脉冲序列,并通过控制脉冲的宽度或周期达到变压的目的。
所采用的电力电子器件都为全控型器件,如电力晶体管(GTR)、功率MOSFET、IGBT等。
通常PWM变换器是用定频调宽来达到调压的目的 PWM 变换器调压与晶闸管相控调压相比有许多优点,如需要的滤波装置很小甚至只利用电枢电感已经足够,不需要外加滤波装置;电动机的损耗和发热较小、动态响应快、开关频率高、控制线路简单等。
PWM的占空比决定输出到直流电机的平均电压. PWM不是调节电流的.PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压. 所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节. PWM信号是一个矩形的方波,他的脉冲宽度可以任意改变,改变其脉冲宽度控制控制回路输出电压高低或者做功时间的长短,实现无级调速。
1 系统概述1.1 系统构成本系统主要有信号发生电路、PWM 速度控制电路、电机驱动电路等几部分组成。
数字PWM直流调速系统

目录1 概述 (1)1.1 引言 (1)1.2 PWM直流调速系统的特点 (1)2 设计思路 (3)2.1 系统设计方案 (3)2.2 调节器设计方案 (4)3 调节器的设计及参数计算 (5)3.1 电流调节器的设计 (5)3.1.1 确定时间常数 (5)3.1.2 选择电流调节器结构 (5)3.1.3 计算电流调节器参数 (6)3.1.4 电流调节器的实现 (6)3.1.5 检验近似条件 (7)3.2 转速调节器的设计 (8)3.2.1 确定时间常数 (8)3.2.2 选择转速调节器结构 (8)3.2.3 计算转速调节器参数 (9)3.2.4 转速调节器的实现 (9)3.2.5 检验近似条件 (10)4 PWM控制器电路 (11)5 数字转换电路设计 (13)6 系统软件设计流程图 (15)总结 (15)参考文献 (18)1 概述1.1 引言随着现代化步伐的加快,人民生活水平的提高,对自动化的需求也越来越高。
直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,应用领域越来越大,这就对电动机的控制提出了极高的要求。
应用于直流电机的调速方式很多,其中以PWM脉宽调制调速方式应用最为广泛,而PWM脉宽调制中,H型PWM脉宽调制的性能尤为突出。
数字直流调速装置,它不仅能成功地做到从给定信号、调节器参数设定、直到触发脉冲的数字化,使用通用硬件平台附加软件程序控制一定范围功率和电流大小的直流电机,而且同一台控制器甚至可以仅通过参数设定和使用不同的软件版本对不同类型的被控对象进行控制,强大的通讯功能使它能够和 PLC 等各种器件通讯组成整个工业控制过程系统,具有操作简便、抗干扰能力强等特点。
其方便灵活的调试方法、完善的保护功能、长期工作的高可靠性和整个控制器体积小型化,弥补了模拟直流调速控制系统的保护功能不够完善、调试不方便、体积大等不足。
另外数字控制系统具有查找故障迅速、调速精度高、维护简单等优势,使其具备了极其广阔的应用前景。
第十六讲:可逆PWM直流调速系统分析

可逆直流调速系统的概念及分类
二、分类
㈡励磁电压反接可逆直流调速系统 ——举例: 两组晶闸管相控整流装置反并联的励磁可逆系统
9
可逆直流调速系统的概念及分类
三、可逆直流调速系统实现的难点
——当可控直流电源由电力电子器件实现时,由于电力电子开 关具有单向导电性,故改变可控直流电源的电压及电流方向较 为困难。
二、分类
㈠电枢电压反接可逆系统; (1)手动开关切换的可逆直流调速系统
V
+ U Udd -
KMF
+Id
KMR
~
M KMR
– Id
5
KMF
可逆直流调速系统的概念及分类
二、分类
㈠电枢电压反接可逆系统; (2)晶闸管开关切换的可逆可逆直流调速系统
V
+ Ud -
VT1 +I d M VT2
–Id
6
VT3
VT4
12
可逆PWM直流调速系统工作原理分析
二、可逆PWM变换器的结构
㈠ 常用的主电路结构H型及T
形结构——如图所示被称为H 形桥式结构(简称H桥);
㈡常用的控制方式有双极式、 单极式——我们先讲双极式然 后再讲单极式;
13
可逆PWM直流调速系统工作原理分析
三、双极式H桥可逆PWM变换器的工作原理分析
㈡ 电动机电枢电流方向可变;
2
可逆直流调速系统的概念及分类
二、分类
——根据电机理论,改变电枢电压的极性,或者改变励磁磁通 的方向,都能够改变直流电机的旋转方向。因此,可逆直流调 速系统主要有两种方式: ㈠电枢电压反接可逆直流调速系统;
㈡励磁电压反接可逆直流调速系统。
3
数字化PWM可逆直流调速系统的设计总体设计

摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LCD液晶显示器、光电编码器测速电路、霍尔电流传感器以及拨码开关组成的数字化PWM控制直流电机调速系统。
电源采用78系列和79系列芯片实现+5V、+15V、-15V对电机的调速采用PWM 波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LCD实现对测量数据(速度、电流)的显示。
电机转速利用光电编码器检测输出脉冲,通过51单片机对一定时间方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;H桥驱动电路;LCD显示器;51单片机ABSTRACTDC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control.Keywords:DC motor speed control;H bridge driver circuit;LCD display目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 现行方案的讨论与比较 (1)1.2 选择PWM控制系统的理由 (2)1.3 采用转速电流双闭环的理由 (2)1.4 设计目的与意义 (3)2设计系统的MATLAB仿真 (4)2.1 设计系统的参数计算 (4)2.2 基于Matlab/Simulink的系统仿真建模 (11)3 主电路设计 (16)3.1 PWM信号发生电路设计 (16)3.2 功率放大驱动电路设计 (20)4 单片机控制电路的设计 (26)4.1 单片机基本系统 (26)4.2 A/D接口电路 (26)4.3 显示电路设计 (28)4.4 编码器脉冲输入接口电路 (30)4.5 开关量输入输出电路 (31)4.6 电源电路设计 (31)4.7 PWM控制输出通道及驱动电路 (32)4.8 给定输入设计 (35)4.9 串行通信接口电路的设计 (35)5 控制算法的设计 (37)5.1 主系统框图 (37)5.2 主系统算法 (38)5.3 PI调节算法 (38)5.4 电压电流采样流程图 (41)5.5 转速采样流程图 (42)6 系统的软件设计 (42)6.1系统初始化模块 (42)6.2数据采样 (42)6.3电流环和速度环的控制 (43)心得体会 (45)附录1 (46)附录2 (47)附录3 (48)1 绪论1.1 现行方案的讨论与比较直流电动机的调速方法有三种:(1)调节电枢供电电压U 。
数字化PWM可逆直流调速系统设计MATLAB仿真

摘要本文介绍双闭环PWM直流调速系统原理基础上,根据系统的动、静态性能指标采用工程设计方法设计调节器参数。
调速方案的优劣直接关系到系统调速的质量,根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。
并运用MATLAB的Simulink 和Power System工具箱、面向系统电气原理结构图的仿真方法,实现了转速电流双闭环PWM直流调速系统的建模与仿真。
文章重点介绍了调速系统的建模和PWM发生器、直流电机模块互感等参数的设置。
给出了PWM直流可逆调速系统的仿真模型和仿真结果,验证了仿真模型及调节器参数设置的正确性。
关键词:直流调速;PWM;双闭环;PI调节AbstractAccording to dynamic and static performance,the method uses engineering design to set parameters of controllers based on principle of Double Close Loop PWM speed system.Governor the pros and cons of the program directly related to the quality of the system governor, according to the motor model and parameters to choose the best program to ensure that the system to normal, stable operation.The approach using electrical principle and toolbox of simulink and power system in Matlab has completed the modeling and simulation of system.The model of simulation and parameters controllers and PWM generator is introduced emphatically.As well as mutual inductance parameter in DC motors.The results of simulationale obtained and the results are close to actual situation,it shows the correction of the model and parameters of controllers.Keywords:DC Timing System; PWM;Double Close Loop; PI Adjust1绪言直流调速系统具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
可逆直流PWM调速系统设计

可逆直流PWM调速系统设计专业班级:电气自动化09—40(1)班学生姓名:指导教师:完成日期: 2011-6-2电气与信息工程系课程设计任务书2011/12学年学期2011年6月2日专业电气自动化班级09-40(1)班课程名称电力电子技术课程设计设计题目可逆直流PWM调速系统指导教师起止时间2011年5月30-6月2 周数1周设计地点电力电子实验室设计目的:1.了解并掌握电力电子装置的一般设计方法;2.初步掌握电力电子装置的组装和调试的基本技能;3.提高综合运用所学理论知识独立分析和解决问题的能力;4.进一步掌握电子仪器的使用方法。
设计任务或主要技术指标:1.了解直流电机工作的原理;2.学会Protel99se仿真3.掌握PWM控制及调试过程技术指标:直流电动机220V 10A;二极管1N91;三极管EF152设计进度与要求:第一天:查找相关资料第二、三、四天:进行仿真、调试PWM控制系统第五天:整理实训报告要求:了解电机工作原理熟练掌握PWM调速系统及分析各部分功能主要参考书及参考资料:《电力电子技术辅助教材》内部教材《电力电子应用技术(第三版)》莫正康主编机械工业出版社2000年《电力电子技术课程设计指导书》李久胜等编哈尔滨工业大学2006年教研室主任(签名)系(部)主任(签名)年月日课程设计评定意见设计题目:可逆直流PWM调速系统学生姓名:专业电气自动化班级09—40(1)班评定意见:评定成绩:指导教师(签名):年月日评定意见参考提纲:1.学生完成的工作量与内容是否符合任务书的要求。
2.学生的勤勉态度。
3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。
摘要本文介绍了一种基于PWM信号,采用H桥对直流电机进行调压调速的驱动电路,利用PWM调节导通时间来改变输出波形的宽度,从而达到调压调速的目的。
在这次的电力电子设计中我们小组经过商量讨论后,采用的是二极管的桥式连接和绝缘栅型三极管构成的桥式连接,来调节直流电机可逆,控制宽度调节输出波形的时间,来实现调速,方案制定后我们开始用仿真。
转速电流双闭环的数字式可逆直流调速系统的仿真与设计

转速电流双闭环的数字式可逆直流调速系统的仿真与设计一、设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、设计参数1、直流电动机(1):输出功率为:7.5Kw 电枢额定电压220V电枢额定电流 36A 额定励磁电流2A额定励磁电压110V 功率因数0.85电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数2S 电枢允许过载系数1.5额定转速 1430rpm2、环境条件:电网额定电压:380/220V,电网电压波动:10%环境温度:-40~+40摄氏度,环境湿度:10~90%3、控制系统性能指标:电流超调量小于等于5%空载起动到额定转速时的转速超调量小于等于30%调速范围D=20,静差率小于等于0.03.三系统方案选择(1)可控电源选择直流电动机具有良好的起制动性能在广泛范围内可实现平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。
从生产机械要求控制的物理量来看,各种系统往往都通过控制转速来实现的。
因而直流调速系统是最基本的拖动控制系统。
直流变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:① 转电流机组② 适用于调速要求不高、要求可逆运行的系统但其设备多、体积大、费用高、效率低。
②静止可控整流器可通过调节触发装置的控制电压来移动触发脉冲的相位从而实现平滑调速且控制作用快速性能好提高系统动态性能。
③PWM(脉宽调制变换器)或称直流斩波器利用直流斩波器或脉宽调制变换器产生可变平均电压,与V—M系统相比,PWM系统在很多方面有较大的优越性:主电路线路简单,需要的功率器件少,开关频率高;电流容易连续,谐波少,电机损耗及发热都较小;低速性能好,稳速精度高,调速范围宽;若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;功率开关器件工作在开关状态,道通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高;直流电源采用不控整流时,电网功率因数比相控整流高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计要求:1、调速范围D=20,静差率S≤5%。
再整个调速范围内要求转速无极、平滑可调;2、动态性能指标:电流环超调量δ≤5%:空载启动到额定转速时转速超量δ≤10%直流电动机的参数:2.1控制系统的整体设计直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。
其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。
总体方案简化图如图1所示。
L-2.2桥式可逆PWM变换器的工作原理脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。
桥式可逆PWM 变换器电路如图2所示。
这是电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。
图2 桥式可逆PWM变换器电路双极式控制可逆PWM 变换器的四个驱动电压波形如图3所示。
OOOOU g1U g2U-Usi d图3 PWM 变换器的驱动电压波形他们的关系是:1423g g g g U U U U ==-=-。
在一个开关周期内,当0on t t ≤<时,晶体管1VT 、4VT 饱和导通而3VT 、2VT 截止,这时AB s U U =。
当on t t T ≤<时,1VT 、4VT 截止,但3VT 、2VT 不能立即导通,电枢电流d i 经2VD 、3VD 续流,这时AB s U U =-。
AB U 在一个周期内正负相间,这是双极式PWM 变换器的特征,其电压、电流波形如图2所示。
电动机的正反转体现在驱动电压正、负脉冲的宽窄上。
当正脉冲较宽时,2on Tt >,则AB U 的平均值为正,电动机正转,当正脉冲较窄时,则反转;如果正负脉冲相等,2on Tt =,平均输出电压为零,则电动机停止。
双极式控制可逆PWM 变换器的输出平均电压为21on on on d s s t T t t U U U T T T -⎛⎫=-=- ⎪⎝⎭如果定义占空比ont Tρ=,电压系数d s U U γ=则在双极式可逆变换器中21γρ=-调速时,p 的可调范围为0~1相应的r=-1~1。
当p>0.5时,r 为正,电动机正转;当p<0.5时,r 为负,电动机反转;当ρ=0.5时,r=0,电动机停止。
但电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的。
这个交变电流的平均值等于零,不产生平均转矩,徒然增大电动机的损耗这是双极式控制的缺点。
但它也有好处,在电动机停止时仍然有高频微震电流,从而消除了正、反向时静摩擦死区,起着所谓“动力润滑”的作用。
双极式控制的桥式可逆PWM 变换器有以下优点: 1)电流一定连续。
2)可使电动机在四象限运行。
3)电动机停止时有微震电流,能消除静摩擦死区。
4)低速平稳性好,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。
三、主电路设计桥式可逆直流脉宽调速系统主电路的如图4所示。
PWM 变换器的直流电源由交流电网经不控的二极管整流器产生,并采用大电容6C 滤波,以获得恒定的直流电压s U 。
由于电容容量较大,突加电源时相当于短路,势必产生很大的充电电流,容易损坏整流二极管,为了限制充电电流,在整流器和滤波电容之间传入电阻Rz ,合上电源后,用延时开关将Rz 短路,以免在运行中造成附加损耗。
由于直流电源靠二极管整流器供电,不可能回馈电能,电动机制动时只好对滤波电容充电,这式电容器两端电压升高称作“泵升电压”。
为了限制泵升电压,用镇流电阻Rx 消耗掉这些能量,在泵升电压达到允许值时接通5VT 。
A B C限压图4 桥式可逆直流脉宽调速系统主电路3.1主回路参数的计算及元件的选择 1.整流变压器的选择及计算作为整流装置电源用的变压器称整流变压器。
一般的变压器有整流和变压两项功能,起着整流是把交流变直流。
整流的过程中,采用三相桥式不可控整流电路。
由于△接法是可以给基次谐波提供通路的,可以减少基次谐波的影响,因此整流变压器采用△/Y 接法,接线原理图如下所示:变压器的参数选择:a .变压器二次侧相电压有效值为U 2=0.95U nom /3=0.95×2203=120V 。
b .整流变压器的标称功率为 P t =U nomInom*103-=1.35×220×12.5×103-Kv=3.67Kv注:U nom 为电动机额定电压,取220V ;I nom 为电动机额定电流,取12.5A2.电力二极管的参数计算本设计为双闭环直流调速系统,整流装置采用三相桥式全控整流电路基本数据如下:整流二极管的计算:根据二极管的最大整流平均I F 和最高反向工作电压U R 分别应满足: I F >1.5×I N /2≈1.5×12.5/2= 9.375(A)U R >1.5×2×U2=1.5×2×120=254.52 (V)查表得取二极管型号为ZL06 3.2回路参数计算及元件选择 1.交流侧过压过流保护再变压器副边并联电阻和电容,可以把变压器铁芯释放的磁场的能量转换为电场能量并储存再电容中,因为电容不可以使两端电压突变,所以可以达到抑制过电压的目的,而串入电阻的目的是为了在能量转换的过程中消耗一部分能量,从而防止因变压器漏感和并联电容构成的震荡回路再闭合时产生的过电压,抑制了LC 回路出现震荡,电路图如下所示:其中,C 和R 的计算公式为C ≥6i%S/U 22;R ≥2.3*U 22/S*%I /%U k ;在公式中:S ——变压器每相平均电压计算容量,单位V A U 2—— 变压器二次侧相电压有效值,单位 V I%——变压器激磁电流百分数 U k %——变压器的短路比 2.直流侧的过压过流保护PWM 变换器的直流电源由交流电网经不控的二极管整流器产生,并采用大电容6C 滤波,以获得恒定的直流电压s U 。
由于电容容量较大,突加电源时相当于短路,势必产生很大的充电电流,容易损坏整流二极管,为了限制充电电流,在整流器和滤波电容之间传入电阻Rz ,合上电源后,用延时开关将Rz 短路,以免在运行中造成附加损耗。
由于直流电源靠二极管整流器供电,不可能回馈电能,电动机制动时只好对滤波电容充电,这式电容器两端电压升高称作“泵升电压”。
为了限制泵升电压,用镇流电阻RxVT。
消耗掉这些能量,在泵升电压达到允许值时接通53快速熔断器短路保护熔断器的作用:当电路发生故障或异常时,伴随着电流不断升高,可能损坏电路中的某些重要器件,也有可能烧毁电路甚至造成火灾。
若安装熔断器,则熔断器就会在电流异常升高到一定高度的时候,自身熔断,切断电流,从而起到保护电路的作用。
为了防止由于电流过大而烧毁电力二极管,在二极管回路上加快速熔断器,在主回路中应加入熔断器,入下图所示:3.3 PWM生成电路PWM波可以由具有PWM输出的单片机通过编程来得以产生,也可以采用PWM 专用要求过高,当他频率太低时,其产生的电磁噪声就比较大,在实际用用当中,当PWM 频率在180KHz左右时,效果最好。
在本系统内,采用两片四位数值比较器4585和一片12位串行计数器4040组成了PWM信号发生电路。
两片数值比较器4585,即如图生U2、U3、的A组接12位串行4040计数输出端Q2-Q9,而U2、U3的B组接到单片机的P1端口。
只要改变P1 端口的输出值,就可以使得PWM信号的占空比发生变化,从而进行调控控制。
12位串行计数器4040的计数输入端CLK接到单片机C5晶振的震荡输出XTAL2。
计数器4040每来8个脉冲,其输出Q2-Q9加1,当计数值小于或者等于单片机P1值X 时,图中U2的(A>B)输出端保持低电平,而当计数值大于单片机P1端口输出值X时,图中的U2的(A>B)输出端保持高电平。
随着计数值的增加,Q2-Q9由全"1"变为全“0”时,图中U2的(A<B)输出端又变为低电平,这样就在U2的(A>B)端得到了PWM信号,它的占空比为(255-X/255*100%),那么只要改变X的数值,就可以相应的改变PWM 信号的占空比,从而进行直流电机的转速控制。
使用这个方法是,单片机只需要根据调整量输出X的值,而PWM信号由三片通用数字电生成,这样可以使得软件大大简化,同时也有利于单片机系统的正常的工作。
由于单片机上电复位时P1端输出全为“1”,使得数值比较器4585的B组与P1端口相连,升速时P0端口输出X按一定规律减少,而降速时按一定规律增大。
3.3.1PWM功率放大驱动电路设计该驱动电路采用了IR2110集成芯片,该集成电路具有较强的驱动能力和保护功能。
芯片IR2110性能的特点IR2110时一种双通道高压,高速的功率器件栅极驱动的单片式集成驱动器。
它把驱动高压侧和低压侧MOSFET或IGBT所需的绝大部分功能集成在一个高性能的封装内,外接很少的分立元件就能提供极快的功耗,它的特点在于,将输入逻辑信号转换成同相低阻输出驱动信号,可以驱动同一桥臂的两路输出,驱动能力强,响应速度快,工作电压比较高,可以达到600V,其内设欠压封锁,成本低,易于调试。
高压侧驱动采用外部自举电容上电,与其他驱动电路相比,它在设计上大大减少了驱动变压器和电容的数目,使得MOSFET和IGBT的驱动电路设计大为简化,而且它可以实现对MOSFET 和IGBT的最优驱动,还具有快速完整的保护功能。
IR2110的引脚图以及功能引脚1(L0)与引脚7(HO):对应引脚12以及引脚10的两路驱动信号输出端,使用中,分别通过一电阻接主电路下上通道MOSFET的栅极,为了防止干扰,通常分别在引脚1与引脚2以及引脚7与引脚5之间并接一个10KΩ的电阻。
引脚2(COM):下通道MOSFET驱动输出参考地端,使用中,与引脚13(Vss)直接相连,同时接主电路桥臂下通道MOSFET的源极。
引脚3(Vcc):直接接用户提供的输出极电源的正极,并且通过一个较高品质的电容接引脚2。
引脚5(Vs):上通道MOSFET驱动信号输出参考地端,使用中,与主电路中上下通道被驱动MOSFET的源极相通。
引脚6(Vb):通过一阴极连接到该端阳极连接到引脚3的高反压快恢复二极管,与用户提供的输出极电源相连,对Vcc的参数要求为大于或等于-0.5V,而且小于或等于+20V。
引脚9(VDD):芯片输入级工作电源端,使用中,接用户为该芯片工作提供的高性能电源,为抗干扰,该端应通过一高性能去耦网络接地,该端可与引脚3 (Vcc)使用同一电源,也可以分开使用两个独立电源。