边界层理论

合集下载

流体流动的边界层理论与应用

流体流动的边界层理论与应用

流体流动的边界层理论与应用引言流体流动是自然界中普遍存在的现象,广泛应用于各个领域,如航空航天、机械工程、气象学等。

边界层是流体流动中十分重要的概念,它描述了流动的边缘区域,包括流动的速度梯度和压力变化。

边界层理论和应用研究的目的是为了更好地理解流体流动的本质和优化相关应用。

边界层理论的基本原理边界层理论是描述流体流动的边缘区域的理论框架。

它的基本原理包括以下几个方面:粘性边界层理论中的基本假设之一是流体具有一定的粘性。

粘性导致了流体的内摩擦力和黏滞性。

在流体流动中,粘性扮演着重要的角色,影响了流动的速度分布和边界层的厚度。

动量守恒边界层的形成是由于流体在固体表面附近的动量交换。

边界层理论基于动量守恒原理,描述了流体速度的变化情况。

边界层内的速度梯度决定了局部的动量传输。

能量守恒边界层理论还基于能量守恒原理,描述了流体流动中的热传输现象。

热量可以通过边界层传递,影响流体的温度分布。

边界层理论的应用边界层理论在各个领域都有广泛的应用,以下列举了其中几个典型的应用:空气动力学在航空航天工程中,边界层理论被广泛用于研究飞行器的气动性能。

通过分析边界层的厚度和速度分布,可以评估飞行器的阻力和升力特性,并进行优化设计。

涡街流量计涡街流量计是一种常用的流量测量仪器,利用边界层理论原理实现流量的测量。

通过将流体引导到一个弯曲的管道内,使流体形成旋涡,并通过测量旋涡的频率来计算流体的流量。

边界层控制边界层控制是一种改变流动边界层结构的技术,通过控制或改变边界层内的速度分布和压力变化,可以实现对流体流动的操控。

边界层控制在飞行器设计和汽车空气动力学中有着重要的应用,可以减少阻力、增加升力以及改善气动性能。

污染扩散在大气科学中,边界层理论被用于研究大气中污染物的扩散和传输现象。

通过分析边界层内的流动特性,可以预测污染物的传播范围和浓度分布,为环境管理和污染控制提供科学依据。

结论流体流动的边界层理论是研究流体流动基本原理和应用的重要工具。

第四章 边界层理论

第四章  边界层理论
描述不可压缩流体在边界 层中作稳态二维流动的微 分方程
普兰德首先发现,当Re较 大时,边界层的厚度<<x。 可以通过比较数量级简化 方程。
普兰德边界层方程
通过数量级比较得到的简化方程:
普兰德边 界层方程
u x u x 1 dP 2u x ux uy x y dx y 2 u x u y 0 x y
【例】沿平壁层流边界层的计算
温度为20℃的空气在常压下以5m/s的速度流过一块宽1 m的平板壁 面。试计算距平板前缘0.5m处的边界层厚度及进入边界层内的质量 流率,并计算这一段平板壁面的曳力系数与承受的摩擦曳力。假设 临界雷诺数Rexc=5×105。 解:
(1)判断边界层流型:20oC空气, 1.81105 Pa.s 1.205kg / m3 Re0.5 1.664 105 5 1050.5处的边界层为层流边界层
4.2曳力系数和范宁摩擦因数
圆柱体在流体中的运动:
Fd ' CD
u0
2
2
D
Fd’-流体对圆柱体所施加的总曳力(drag force) u0-圆柱体的运动速度 CD-曳力系数(drag coefficient) D-圆柱体的直径 球体或其他形状的物体在流体中的运动 u0 2 2 Fd Fd CD A CD 2 u0 2 A A-物体在垂直于它的运动方向的平面上的投影面积 流体在圆管中流动所受到的摩擦阻力,习惯上采用范宁摩擦因数: τs-流体流过管壁的剪应力 2 s f= f-Fanning friction factor ub2 ub-流体的主体流速
递过程和质量传递过程有着密切的关系。
边界层概念
Prandtl(1904)提出边界层概念,把统一 的流场,划分成两个区域,边界层和外 流区;其流体流动(沿流动方向和沿与 流动方向垂直的方向)有不同的特点。 边界层:流体速度分布明显受到固体壁 面影响的区域。 边界层的形成: 壁面处流体的“不滑脱”no-slip 流体的“内摩擦”作用 边界层厚度δ U=00.99 U0

边界层理论在流体力学中的应用

边界层理论在流体力学中的应用

边界层理论在流体力学中的应用引言流体力学研究的是流体在受力作用下的运动规律和性质。

在理论研究和工程应用中,边界层理论是流体力学的一个重要组成部分。

边界层理论描述了流体在靠近壁面的区域内,流动速度、压力、温度等物理量的变化规律。

本文将介绍边界层理论在流体力学中的应用,包括边界层的定义、边界层分析的方法以及边界层理论在实际工程中的应用案例。

1. 边界层的定义边界层是指流体靠近壁面的区域,其性质与远离壁面的流体存在明显差异。

一般来说,边界层的厚度相对较小,但对流体运动和传热传质过程有着重要影响。

边界层理论的研究对象主要是属于牛顿流体的不可压缩流体情况。

2. 边界层分析的方法边界层分析是研究边界层的关键方法之一,常用的方法包括速度边界层分析和能量边界层分析。

2.1 速度边界层分析速度边界层分析主要考虑流体在边界层内的速度分布情况。

一般来说,边界层靠近壁面时流速接近零,随着距离壁面的增加逐渐增大。

根据速度剖面的特征,可以将边界层划分为无滑移层、过渡层和主层三个区域。

•无滑移层:靠近壁面的区域,流体速度接近壁面速度,可以视为无滑移状态。

•过渡层:在无滑移层之上的区域,流体速度逐渐增大,但流体分子之间还存在相对滑移。

•主层:在过渡层之上的区域,流体速度增大趋势基本保持不变。

2.2 能量边界层分析能量边界层分析主要研究流体在边界层内的温度和压力变化情况。

在无滑移层内,温度和压力基本保持不变;在过渡层和主层内,存在温度和压力的变化。

3. 边界层理论在实际工程中的应用案例边界层理论在实际工程中有着广泛的应用,下面将介绍一些典型的案例。

3.1 汽车空气动力学研究汽车行驶时会与周围空气发生相互作用,而边界层理论可以帮助研究汽车在高速行驶时的空气动力学特性。

通过分析边界层的速度和压力分布,可以优化汽车外形和设计,减小空气阻力,提高燃油经济性。

3.2 航空气动力学研究在航空工程中,边界层理论被广泛应用于飞机机翼和机身的设计和改进。

边界层理论

边界层理论

1•边界层理论概述 (1)1.1边界层理论的形成与发展 (1)1.1.1边界层理论的提出 (1)1.1 边界层理论存在的问题 (2)1.2边界层理论的发展 (2)2边界层理论的引入 (3)3边界层基础理论 (4)3.1边界层理论的概念 (4)3.2边界层的主要特征 (6)3.3边界层分离 (7)3.4层流边界层和紊流边界层 (9)3.5边界层厚度 (10)3.5.1排挤厚度 (11)3.5.2动量损失厚度 (11)3.5.2能量损失厚度 (12)4边界层理论的应用 (14)4.1边界层理论在低比转速离心泵叶片设计中的应用 (14)4.2边界层理论在高超声速飞行器气动热工程算法中的应用 (14)4.3基于边界层理论的叶轮的仿真 (15)参考文献 (17)1.边界层理论概述1.1边界层理论的形成与发展1.1.1边界层理论的提出经典的流体力学是在水利建设、造船、外弹道等技术的推动下发展起来的,它的中心问题是要阐明物体在流体中运动时所受的阻力。

虽然很早人们就知道,当粘性小的流体(像水、空气等)在运动,特别是速度较高时,粘性直接对阻力的贡献是不大的。

但是,以无粘性假设为基础的经典流体力学,在阐述这个问题时,却得出了与事实不符的“ D'Alembert之谜”。

在19世纪末叶,从不连续的运动出发,Kirchhoff ,Helmholtz,Rayleigh等人的尝试也都失败了。

经典流体力学在阻力问题上失败的原因,在于忽视了流体的粘性这一重要因素。

诚然,在速度较高、粘性小的情况下,对一般物体来说,粘性阻力仅占一小部分;然而阻力存在的根源却是粘性。

一般,根据来源的不同,阻力可分为两类:粘性阻力和压差阻力。

粘性阻力是由于作用在表面切向的应力而形成的,它的大小取决于粘性系数和表面积;压差阻力是由于物体前后的压差而引起的,它的大小则取决于物体的截面积和压力的损耗。

当理想流体流过物体时,它能沿物体表面滑过(物体是平滑的);这样,压力从前缘驻点的极大值,沿物体表面连续变化,到了尾部驻点便又恢复到原来的数值。

边界层理论

边界层理论

边界层理论边界层理论始于20世纪50年代,是一种以社会学中的社会心理学为基础的理论。

由于受到社会中的文化差异的影响,社会的边界层不同于一般的社会结构,它是一种身份认同和社会化过程的实质性结构。

其主要内容包括边界层的组成、功能、社会定位和边界层的调整等。

边界层理论主要聚焦于社会层次之间的关系,侧重考察如何管控不同社会层次之间的实证关系,揭示边界层的特征和机理,也为不同社会层次的社会活动提供了一种新的研究框架。

边界层理论告诉我们,每一个社会都由不同的社会层次组成,而每一个社会层次都有它自己的特点,例如在国家层次,就存在不同国家之间的文化差异和经济利益分配差异;在社会机构层次,就存在社会经济地位差异等。

边界层是社会层次之间连接的桥梁,在不同层次上,边界层有着不同的功能。

首先,边界层能够承载社会分类信息,从而使每个社会层次的身份认同更加清晰,例如在民族层次上,边界层有着民族特征,即民族分类的功能,而在宗教层次上,边界层有着宗教的认同,也就是运用边界层的宗教特征来区分每一个宗教信仰。

其次,当边界层作用于不同社会层次之间时,它还具有一种吸引力,它能够将不同社会层次之间的交流促进,以此来实现平等和融合。

这种吸引力可以表现为模仿或认可他人的行为,获得他人的认可和关注,以此来拓展自身的社会地位,最终可以实现融合或社会化。

最后,边界层理论还提供了一些有效的措施来加强边界层的建设,首先,政策立法应该重视社会层次之间的不平等问题,加强社会层次之间的调整,如政府可以以财政补贴的形式来实现资源分配的公平,减少社会层次之间的不公平。

其次,政府需要加强文化教育,确保建立一种同理心的文化氛围,减少不同社会层次之间的文化冲突,从而让边界层的建设更加有效。

社会的发展和进步,不仅需要不同社会层次之间的动力,而且也需要有效的边界层,只有社会的边界层得到加强和完善,才能有效地联系不同的社会层次,推动社会的发展。

边界层理论给我们提出了一种新的观点,用于解读不同社会层次之间的联系,进而让边界层更加有效地联结不同的社会层次,从而为社会发展提供了全新的基础。

边界层理论在工程流体力学中的应用

边界层理论在工程流体力学中的应用

边界层理论在工程流体力学中的应用工程流体力学是研究流体在工程领域中运动和相互作用的学科。

边界层理论作为工程流体力学中重要的理论工具,在实际工程应用中起着关键的作用。

本文将介绍边界层理论在工程流体力学中的应用,并探讨其在不同工程领域的优势和挑战。

边界层是流体流动中离开壁面一段距离处的区域,其厚度与壁面形状、流体性质等相关。

边界层理论描述了在稳定流动的情况下,流体在边界处的运动特性。

在工程流体力学中,边界层理论应用广泛,例如在飞机、汽车、输油管道等领域。

首先,在空气动力学领域,边界层理论的应用十分重要。

飞机在空中运动时,与空气产生相对运动,会形成空气流动的边界层。

通过边界层理论,可以分析空气流动的速度分布、压力分布等参数,这些参数对于飞机设计和性能优化至关重要。

例如,可以通过调整飞机表面的纹理来改变空气流动的特性,以减少飞行阻力,提高飞机的燃油效率。

其次,在液体输送管道设计中,边界层理论也发挥着重要作用。

在输油管道中,流体与管道壁面之间的摩擦力对管道流体的输送有很大影响。

通过边界层理论,可以确定管道内流体的摩擦系数,从而确定管道的流量和输油能力。

边界层理论的应用还可以帮助设计高效的管道减阻器,减少管道中的压降,并降低能耗。

此外,边界层理论在汽车工程中也有广泛应用。

汽车行驶时,空气流经车身表面形成边界层,对车辆的气动性能产生影响。

通过边界层理论,可以研究车辆表面压力分布,评估气动阻力和升力。

这些数据对于改善汽车的稳定性、减少燃油消耗具有重要意义。

同时,边界层理论还应用于车身表面流场控制研究,通过改变车身表面形状和纹理,减少气动噪音和气动振动。

然而,边界层理论在工程流体力学中的应用也面临一些挑战。

首先,实际工程中流体流动往往涉及复杂的流动模式和边界条件,需要进一步的数值模拟和实验验证。

其次,边界层理论中的假设和简化有时难以准确描述实际情况,需要结合实验和经验进行修正。

此外,边界层理论需要考虑流体的非定常性和湍流特性,这对于流动的稳定性和控制具有挑战。

流体力学中的边界层理论

流体力学中的边界层理论

流体力学中的边界层理论流体力学是研究流体运动和相互作用的学科。

在流体力学中,边界层理论是一个重要的概念,它描述了流体靠近固体壁面时的流动特性。

本文将介绍流体力学中的边界层理论,从基本原理到应用实例,全面探讨这一理论的重要性和实际价值。

一、边界层现象的定义和意义在流体力学中,边界层是指流体流动中靠近固体表面的一层,其流动特性与远离边界的无限远处的流体不同。

边界层现象的产生和发展对于很多实际问题都具有重要意义。

例如,当空气流过汽车的外表面时,边界层的存在会对气流的分离和阻力产生影响。

准确理解和掌握边界层理论,对于优化设计和改善物体运动性能具有重要作用。

二、边界层理论的基本原理1. 平衡条件边界层理论的基本假设是边界层内的流动是定常流动和局部平衡的。

在这一假设下,可以利用物理量的守恒方程和牛顿运动定律来进行分析和计算。

2. 边界层方程边界层方程是描述边界层内流体运动的关键方程组。

它包括连续性方程、动量方程和能量方程。

这些方程考虑了流体内部各个物理量的平衡和变化,并通过求解边界层方程组可以得到流体在边界层内的运动状态。

3. 粘性效应粘性是边界层理论考虑的一个重要因素。

由于流体的粘性特性,边界层会出现剪切应力和速度剖面变化。

这些粘性效应对于固体表面的摩擦力和阻力产生重要影响,因此必须在边界层理论中加以考虑。

三、边界层理论的应用实例1. 空气动力学在航空航天工程中,边界层理论被广泛应用于翼型设计和气动力分析。

通过准确计算边界层内的流动特性,可以优化飞行器的升力和阻力性能,提高飞行效率。

2. 水力学在水力学领域,边界层理论被用于河流和水泥工程的设计和分析。

通过控制边界层内的水流运动,可以减小底摩擦阻力,提高水流的输送能力。

3. 汽车工程在汽车设计中,边界层理论被用于研究车体表面的空气流动。

通过优化车体形状和减小边界层厚度,可以降低空气阻力,提高汽车的燃油经济性。

四、结语流体力学中的边界层理论是研究流体流动与固体界面相互作用的重要理论框架。

工程流体力学中的边界层理论与应用

工程流体力学中的边界层理论与应用

工程流体力学中的边界层理论与应用在工程流体力学中,边界层理论是一种重要的理论工具,用于研究流体与固体界面之间的相互作用过程。

边界层理论的应用范围广泛,涉及到多个工程领域,包括工程设计、流动控制、能源开发等。

边界层是流体靠近固体表面处的一层流动区域,其特点是速度梯度大、压力梯度小。

边界层理论的研究主要关注以下几个方面:1. 边界层的形成与发展:在流体运动中,边界层的形成是由于流体与固体表面间接触而发生的。

随着流体沿着固体表面流动,边界层逐渐发展,由初始边界层转变为稳定边界层。

边界层的形成与发展过程对于理解流体力学现象具有重要意义。

2. 边界层中的速度剖面特征:边界层中,流体速度与距离固体表面的距离之间存在一定的关系。

速度剖面特征可以通过边界层厚度、速度剖面形状等参数来描述。

深入研究边界层中速度剖面的特征,有助于预测流体力学现象,优化工程设计。

3. 边界层与摩擦阻力:在工程流体力学中,减小摩擦阻力是一个重要的目标。

边界层的理论研究可以揭示与摩擦阻力相关的机理,提供降低摩擦阻力的方法。

例如,在飞机设计中,通过改变机翼表面的纹理,可以改善边界层的流动特性,减小阻力。

4. 边界层的控制技术:边界层理论的研究还涉及到边界层的控制技术。

通过改变固体表面的形状或施加外部控制手段,可以调控边界层的发展,从而实现对流体运动的控制。

例如,在汽车设计中,通过改变车身形状和设计尾翼来控制边界层的发展,减小阻力,提高汽车的燃油经济性。

边界层理论在工程流体力学中的应用主要包括以下几个方面。

1. 工程设计:边界层理论可以用于优化工程设计,提高流体系统的性能。

例如,通过研究边界层的流动特性,可以确定合适的管道尺寸、形状和布局,以减小阻力、提高流量。

边界层理论还可以用于研究涡轮机械中叶轮叶片的设计,以减小流体与叶片间的阻力,提高能量转化效率。

2. 流动控制:边界层理论可以指导流动控制技术的设计与实施。

通过对边界层的控制,可以改变流体的速度剖面和流动阻力,实现对流动的精确控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



0
eue dy eue
其中, ue 为边界层外缘速 度。由于粘性的存在,实 际流体通过的质量流量为


0
u dy
此处 u 是边界层中距物面为 y 处的流速。上述两部 份流量之差是


0
( eu e u)dy
EXIT
5.1、边界层近似及其特征
这就是设想各点皆以外流速度流动时比实际流量多
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.2、平面不可压缩流体层流边界层方程 2. 平壁面上边界层方程 根据Prandtl边界层概念,通过量级比较,可对N-S方程 组进行简化,得到边界层近似方程。对于二维不可压缩流动 ,连续方程和N-S方程为:
个典型的例子。 那么,如何考虑流体的粘性,怎样解决扰流物
体的阻力问题,这在当时确实是一个阻碍流体力学 发展的难题。
EXIT
5.1、边界层近似及其特征 直到1904年流体力学大师德国学者 L.Prandtl 通
过大量实验发现,虽然整体流动的Re数很大,但在
靠近物面的薄层流体内,流场的特征与理想流动相 差甚远,沿着法向存在很大的速度梯度,粘性力无 法忽略。 Prandtl 把这一物面近区粘性力起重要作用的薄 层称为边界层(Boundary layer)。
第5章下
边界层理论及其近似
5.1、边界层近似及其特征 5.2、平面不可压缩流体层流边界层方程 5.3、平板层流边界层的相似解 5.4、边界层动量积分方程 5.5、边界层的分离现象
EXIT
5.1、边界层近似及其特征
1、边界层概念的提出 我们已知道,流动Re数(O.Reynolds,1883年,英国流体 力学家)是用以表征流体质点的惯性力与粘性力对比关系 的。根据量级分析,作用于流体上的惯性力和粘性力可表 示为: 惯性力:
选取长度特征L,速度尺度ue,时间尺度t=L/ue,边界层 近似假定:
EXIT
5.2、平面不可压缩流体层流边界层方程 (1)根据边界层定义,纵向偏导数远远小于横向偏导数。

L
~
1 1 1 , L, ~ , ~ , x L y x y Re
(2)法向速度远远小于纵向速度。
v 1 L v~ ~ ue , ~ , u ~ ue , v u t L / ue L ue t Re
(3)边界层内的压强量级与外流速度的平方成正比。
2 p ~ ue



将这些量级关系式代入到N-S方程中,得到
EXIT
5.2、平面不可压缩流体层流边界层方程
N-S方程组与各项量级比较:
这就说明了,在粘性流体中,不均匀的涡量场 是不断变化的,涡较强的部分要变弱,而涡较弱的
部分要变强。总的说来,趋向于涡量场强度“拉平
”,就好像旋涡在扩散一样。
EXIT
5.1、边界层近似及其特征
(3)边界层厚度的量级估计 根据边界层内粘性力与惯性力同量级的条件,可估算边
界层的厚度。以平板绕流为例说明。设来流的速度为U,在
*

0
u 1 u dy e
u u 1 dy u e ue
u u2 1 2 dy ue ue
EXIT

**

0
***

0
5.1、边界层近似及其特征
(5)几点说明 (a)实际流动中,边界层流动与理想流动是渐近过渡的, 边界层的外边界线实际上是不存在的,因此边界层的外边界 线不是流线,而是被流体所通过的,允许边界层内流体穿过 边界线流动。也就是说,在边界层内流线是相对于边界层的 边界是向内偏的,而相对于物面是向外偏的。
失厚度为:eue2 ** ueu uudy


**

0
u u 1 dy e ue ue
0
EXIT
5.1、边界层近似及其特征 (c)边界层能量损失厚度 在边界层内,在质量流量不变的条件下,以外 1 2 流速度(理想流体)通过的动能为: ue udy 0 2 1 2 由于粘性的存在,实际流体通过的动能为: 0 2 u udy 上述两项之差表示粘性存在而损失的动能。 这部分动能损失用主流流速 ue(理想流体)折 算的动能损失厚度为:
u v 0 x y ue ue 1 ue L L L
两项为同一量级 右括号中第一项比第二项 低2个量级可略。边界层内 粘性力与惯性力同量级不 可忽略,故ν 的量级为
2 ue 2 , L
u u u 1 p 2u 2u u v fx 2 2 t x y x x y ue2 ue2 ue ue2 ue2 ue ue ue 2 2 L L L L L L
造成的。因此,称其为排移厚 度或位移厚度。作理想流场模
型的外形修正时,应该加上这
一位移厚度。
EXIT
5.1、边界层近似及其特征 (b)边界层动量损失厚度
在边界层内,在质量流量不变的条件下,理想 流体通过的动量为:ue udy
0
由于粘性的存在,实际流体通过的动量为


0
u 2 dy
上述两项之差表示粘性存在而损失的动量,这部分 动量损失用外流流速ue(理想流体)折算的动量损
道路。可以说从此以后,才开始有了为飞机服务的现
代空气动力学。因此称其为近代流体力学的奠基人。
EXIT
5.1、边界层近似及其特征
普朗特生平简介 普朗特( Ludwig Prandtl ,1875~ 1953) 德国物理学家,流体力学大师, 近代力学奠基人之一。1875年出生于德国 弗赖辛, 1953年在哥廷根病故。 普朗特在流体力学方面的主要贡献有: (1)边界层理论 (2)风洞实验技术 (3)机翼理论 (4)湍流理论 (5)此外还有亚声速相似律(普朗特-葛涝渥法则)和可压 缩绕角膨胀流动(普朗特-迈耶尔流动)。
EXIT
5.1、边界层近似及其特征 这也是早期发展理想流体力学的重要依据,而
且确实较成功地解决了与粘性关系不大的一系列流
动问题,诸如绕流物体的升力、波动等问题。 但对绕流物体阻力、涡的扩散等问题,理想流
体力学的解与实际相差甚远,且甚至得出完全相反
的结论,圆柱绕流无阻力的D’Alembert疑题就是一
1 2 1 *** ue eue ue2u u 3 dy 2 2 0


***

0
u u 2 1 2 dy e ue ue
EXIT
5.1、边界层近似及其特征 上述各种厚度的计算公式,对于不可压缩流体 而言,变为:

x 方向的长度为 L,边界层厚度为δ 。
惯性力: 粘性力:
FJ m
F
dV U ~ L2 LU 2 dt t
dV U A ~ L2 dy
由惯性力与粘性力同量级得到
F ~ FJ
LU 2 ~
U

L2层的厚度远小于被绕流
1 Re
物体的特征长度。
u v 0 x y u u u 1 p 2u 2u u v fx 2 2 t x y x x y v v v 1 p 2v 2v u v fy 2 2 t x y y x y
EXIT
5.1、边界层近似及其特征 (b)边界层各种厚度的定义式,既适用于层流, 也适用于湍流。 (c)边界层各种厚度的大小与边界层内流速分布 有关。 边界层厚度δ >位移厚度δ *>动量损失厚度δ 边界层厚度δ >能量损失厚度δ
**
***>动量损失厚度δ **
EXIT
5.2、平面不可压缩流体层流边界层方程 1 边界层流动图画 粘性流体流经任一物体(例如机翼与机身)的问题,归结 为在相应的边界条件下解N—S方程的问题。由于N—S方程太复 杂,在很多实际问题中,不能不作一些近似假设使其简化,以 求问题得以近似地解决。简化时,必须符合物理事实,因此首 先看看空气流过静止物体(例如翼型)的物理图画:
2 z 2 z z z 2 2 t y x
EXIT
5.1、边界层近似及其特征
在z

2 z 2 z 的极小值点, 2 2 0 x y
,因而
z 0 t


2 z 2 z z 0 的极大值点, ,因而 0 z 2 2 x y t
dV 3V FJ m ~ L L2V 2 dt t
dy
粘性力: F dV A ~ VL
2 2 FJ L V LV LV Re 惯性力/粘性力: F VL
因此,在高Re数下,流体运动的惯性力远远大于粘性力。
这样研究忽略粘性力的流动问题是有实际意义的。
EXIT
5.1、边界层近似及其特征 Prandtl边界层概念的提出,为人们如何计入粘
性的作用开辟了划时代的途径,因为有了它,无粘流
的理论就可以无所顾忌地大踏步向前发展了;另一方 面粘流计算限制在薄薄的边界面层内,使纳维—斯托 克斯方程得以大大地简化,使许多有实用意义的问题 能得到解答;这样粘性流理论也得到了一条新的发展
EXIT
5.1、边界层近似及其特征
普朗特重视观察和分析力学现象,养成了非凡的直观洞察能力,善 于抓住物理本质,概括出数学方程。他曾说:“我只是在相信自己对物 理本质已经有深入了解以后,才想到数学方程。方程的用处是说出量的 大小,这是直观得不到的,同时它也证明结论是否正确。” 普朗特 指导过 81 名博士生,著名学者 Blasius 、 Von Karman 是其学生之一。我 国著名的空气动力学专家、北航流体力学教授陆士嘉先生(女, 1911– 1986)是普朗特正式接受的唯一中国学生,唯一的女学生。
相关文档
最新文档