变化率、导数及其计算(师)

合集下载

变化率与导数

变化率与导数

变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。

高中数学变化率问题导数的概念(老师版)

高中数学变化率问题导数的概念(老师版)

变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。

函数的导数与变化率

函数的导数与变化率

函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。

在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。

本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。

一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。

形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。

导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。

二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。

2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。

3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。

常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。

三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。

当自变量的变化量很小时,导数可以近似地表示函数的变化率。

函数的变化率可以分为平均变化率和瞬时变化率两种。

平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。

瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。

四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。

以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。

在经济学中,边际成本和边际收益也可以通过导数来计算和分析。

导数还可以用于优化问题、曲线拟合和图像处理等领域。

五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。

变化率与导数

变化率与导数

导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

∴瞬时速度为4a,即4a=8.∴a=2.
Δ
即为平均速度,
Δ
答案:A
=
5-3(1+Δ)2 -5+3×12
=-3Δt-6.
Δ
探究一
探究二
探究三
思维辨析
瞬时变化率
1
【例2】 已知s(t)= 2gt2,其中g=10 m/s2.
(1)求t从3 s到3.1 s的平均速度;
(2)求t从3 s到3.01 s的平均速度;
(3)求t在t=3 s时的瞬时速度.
(2)函数y=3x2+2在区间[2,2+Δx]上的平均变化率为
(2+Δ)-(2)
Δ
=
3(2+Δ)2 +2-(3×22 +2)
Δ
=
12Δ+3(Δ)2
=12+3Δx.
Δ
反思感悟求函数平均变化率的步骤
第一步,求自变量的改变量Δx=x2-x1,
第二步,求函数值的改变量Δy=f(x2)-f(x1).
Δ
=
4Δ+(Δ)2
=4+Δt,
Δ
∵≤5,∴4+Δt≤5,∴Δt≤1.
又∵Δt>0,∴Δt的取值范围是(0,1].
答案:(0,1]
探究一
探究二
探究三
思维辨析
因错用平均变化率公式而致误
【典例】 已知曲线y=-2x3+2和这条曲线上的两个点P(1,0),Q(2,14),求该曲线在PQ段的平均变化率.
名师点拨对平均变化率的理解
(1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在区间[x1,x2]
上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.

人教版高数选修2-2第1讲:变化率与导数(教师版)

人教版高数选修2-2第1讲:变化率与导数(教师版)

变化率与导数____________________________________________________________________________________________________________________________________________________________________1、平均变化率的概念、函数在某点处附近的平均变化率;2、理解导数的几何意义;一、变化率问题:知识导入:问题1 气球膨胀率将班内同学平均分成4组,每组发一只气球,各有一位同学负责将气球吹起,其他同学观察气球在吹起过程中的变化,并做好准备回答以下问题:(1)气球在吹起过程中,随着吹入气体的增加,它的膨胀速度有何变化? (2)你认为膨胀速度与哪些量有关系? (3)球的体积公式是什么?有哪些基本量?(4)结合球的体积公式,试用两个变量之间的关系来表述气球的膨胀率问题?总结:可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--h可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )=-4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.1、平均变化率:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f --表示什么?直线AB 的斜率二、导数的概念:1、瞬时变化率:从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlim x x f x x f x fx x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-三、导数的几何意义:1、平均变化率与割线的斜率、瞬时变化率与切线的斜率: (一)曲线的切线及切线的斜率: 如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?x 1x 2O yy =f (x )f (x 1) f (x 2) △x = x 2-x 1 △y =f (x 2)-f (x 1)x我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. 2、导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.类型一:求函数的平均变化率例1、求221y x =+在0x 到0x x +∆之间的平均变化率,并求01x =,12x ∆=时平均变化率的值.思路点拨: 求函数的平均变化率,要紧扣定义式00()()f x x f x y x x+∆-∆=∆∆进行操作. 解析:当变量从0x 变到0x x +∆时,函数的平均变化率为220000()()[2()1][21]f x x f x x x x x x+∆-+∆+-+=∆∆042x x =+∆当01x =,12x ∆=时,平均变化率的值为:141252⨯+⨯=. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式,其他就迎刃而解.举一反三:【变式1】求函数y=5x 2+6在区间[2,2+x ∆]内的平均变化率。

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. (2011· 山东高考)曲线 y=x3+11 在点 P(1,12)处的切线与 y 轴交点的纵坐标是( A.-9 C.9 B.-3 D.15
[解答] y′=3x2,故曲线在点 P(1,12)处的切线斜率是 3,故切线方程是 y-12=3(x-1),令 x=0 得 y=9. [答案] C 5.(教材习题改编)曲线 y= sin x 在点 M(π,0)处的切线方程是________. x -π 1 ∴f′(π)= 2 =- . π π
【典型例题讲解】
导数的计算
[例 1]、求下列函数的导数
1
y x13 ;
2 y
x3 ;
3 y x 3 ;
1
4 y 5 x2 ;
5 y 2 x 2 3 3 x 2 ;
6
1 1 y x x2 3 ; x x
1
拓扑教育
直线可能有多条.
纳百川,容学问,立德行,善人品
(2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的
3.过圆上一点 P 的切线与圆只有公共点 P,过函数 y=f(x)图象上一点 P 的切线与图象也只有公共点 P 吗? 提示:不一定,它们可能有 2 个或 3 个或无数多个公共点. 2.几种常见函数的导数 原函数 f(x)=c(c 为常数) f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ax f(x)=ex f(x)=logax f(x)=ln x 导函数 f′(x)=0 f′(x)=nxn
-1
f′(x)=cos_x f′(x)=-sin_x f′(x)=axln_a f′(x)=ex 1 f′(x)= xln a 1 f′(x)= x
3.导数的运算法则 (1)[f(x)± g(x)]′=f′(x)± g′(x); (2)[f(x)· g(x)]′=f′(x)g(x)+f(x)g′(x); f′xgx-fxg′x fx (3) ′= (g(x)≠0). gx [gx]2
Δx 0
f′(x0)= lim →
fx0+Δx-fx0 Δy = lim . Δx Δx→0 Δx
(2)导数的几何意义: 函数 f(x)在点 x0 处的导数 f′(x0)的几何意义是在曲线 y=f(x)上点 P(x0,y0)处的切线的斜率(瞬时速度就是位 移函数 s(t)对时间 t 的导数).相应地,切线方程为 y-y0=f′(x0)(x-x0). (3)函数 f(x)的导函数: 称函数 f′(x)= lim →
Δx 0
fx+Δx-fx 为 f(x)的导函数. Δx
[探究] 1.f′(x)与 f′(x0)有何区别与联系? 提示:f′(x)是一个函数,f′(x0)是常数,f′(x0)是函数 f′(x)在 x0 处的函数值. 2.曲线 y=f(x)在点 P0(x0,y0)处的切线与过点P0x0,y0)的切线,两种说法有区别吗? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,斜率为 k=f′(x0)的切线,是唯一的一条切线. 专注孩子的未来
解析:由题意知 f′(5)=-1, 专注孩子的未来
5
拓扑教育
f(5)=-5+8=3, ∴f(5)+f′(5)=3-1=2. 答案:2
纳百川,容学问,立德行,善人品
7.(2012· 广东高考)曲线 y=x3-x+3 在点(1,3)处的切线方程为________. 解析:∵y′=3x2-1,∴y′
|x
1 1.(教材习题改编)f′(x)是函数 f(x)= x3+2x+1 的导函数,则 f′(-1)的值为( 3 专注孩子的未来
4
)
拓扑教育
A.0 C.4 B.3 7 D.- 3 ∴f′(-1)=3.
纳百川,容学问,立德行,善人品
1 解析:选 B ∵f(x)= x3+2x+1,∴f′(x)=x2+2. 3 2.曲线 y=2x-x3 在 x=-1 处的切线方程为( A.x+y+2=0 C.x-y+2=0
拓扑教育
纳百川,容学问,立德行,善人品
拓 扑 教 育 学 科 教 师 讲 义
副校长/组长签字: 签字日期:
年 级 :高二 课 题
课 时 数 :2
姓 名 :李尚真
科目 :数学
教师 : 崔丹丹
导数及其应用 2015 年 月 日 :00 — :00 a.m
授课日期及时段
1..理解导数的几何意义.
教 学 目 的
导数的几何意义
1.求曲线切线方程的步骤 (1)求出函数 y=f(x)在点 x=x0 处的导数,即曲线 y=f(x)在点 P(x0,f(x0))处切线的斜率; (2)由点斜式方程求得切线方程为 y-y0=f′(x0)· (x-x0). 2.求曲线的切线方程需注意两点 (1)当曲线 y=f(x)在点 P(x0,f(x0))处的切线平行于 y 轴(此时导数不存在)时,切线方程为 x=x0; (2)当切点坐标不知道时,应首先设出切点坐标,再求解.
—————
—————————————— 导数几何意义应用的三个方面
导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点 A(x0,f(x0))求斜率 k,即求该点处的导数值:k=f′(x0); (2)已知斜率 k,求切点 A(x1,f(x1)),即解方程 f′(x1)=k; 专注孩子的未来
x· cos x-sin x sin x 解析:∵f(x)= ,∴f′(x)= , x x2 1 ∴切线方程为 y=- (x-π),即 x+πy-π=0. π 答案:x+πy-π=0
6.(教材习题改编)如图,函数 y=f(x)的图象在点 P 处的切线方程是 y=-x+8,则 f(5)+f′(5)=________.
1 · x-ln x x ln x ln x ′ x - x ′ ln x 1-ln x (8)y′= x ′= = = . x2 x2 x2 sin x sin x′cos x-sin xcos x′ cos xcos x-sin x-sin x 1 (9)y′= = = 2 . cos x′= cos2x cos2x cos x (10)y′=(3xex)′-(2x)′+e =(3x)′ex+3x(ex)′-(2x)′=3x(ln 3)· ex+3xex-2xln 2=(ln 3+1)· (3e)x-2xln 2.
7 y
x2 ; sin x
ln x (8)y= ; x
(9)y=tan x;
(10)y=3xex-2x+e.
专注孩子的未来
2
拓Байду номын сангаас教育
纳百川,容学问,立德行,善人品
[自主解答] (5) y ' 18x 2 8x 9 (6) y 3 x
' 2
2 x3
(7)
x2 sin x x cos x sin 2 x
2 (2)法一:设切点为(x0,y0),则直线 l 的斜率为 f′(x0)=3x0 +1, 2 ∴直线 l 的方程为 y=(3x0 +1)(x-x0)+x3 0+x0-16,又∵直线 l 过点(0,0), 2 ∴0=(3x0 +1)(-x0)+x3 0+x0-16,
整理得,x3 0=-8,∴x0=-2. ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26). 法二:设直线 l 的方程为 y=kx,切点为(x0,y0), y0-0 x3 0+x0-16 则 k= = , x0 x0-0 x3 0+x0-16 又∵k=f′(x0)=3x2 =3x2 0+1,∴ 0+1, x0 解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26). x (3)∵切线与直线 y=- +3 垂直,∴切线的斜率 k=4. 4
1 2. 能根据导数定义求函数 y=c(c 为常数),y=x,y=x2,y=x3,y= 的导数.
x
3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 导数的基本运算多涉及三次函数、指数函数与对数函数、三角函数等,主要考查对基
重 难 点
本初等函数的导数及求导法则的正确利用.




=1
=3×12-1=2.
∴该切线方程为 y-3=2(x-1),即 2x-y+1=0. 答案:2x-y+1=0 8.函数 y=xcos x-sin x 的导数为________. 解析:y′=(xcos x)′-(sin x)′ =x′cos x+x(cos x)′-cos x =cos x-xsin x-cos x =-xsin x. 答案:-xsin x 9.求下列函数的导数. (1)y=ex· ln x; 解:(1)y′=(ex· ln x)′ 1 1 =exln x+ex·=ex ln x+x. x 1 2 (2)∵y=x3+1+ 2,∴y′=3x2- 3. x x 1 1 x2+ + 3; (2)y=x x x
3
拓扑教育
纳百川,容学问,立德行,善人品
fx1-fx0 (3)已知过某点 M(x1,f(x1))(不是切点)的切线斜率为 k 时,常需设出切点 A(x0,f(x0)),利用 k= 求 x1-x0 解. 例 3.已知函数 f(x)=x3+x-16. (1)求曲线 y=f(x)在点(2,-6)处的切线的方程; (2)直线 l 为曲线 y=f(x)的切线,且经过原点,求直线 l 的方程及切点坐标; 1 (3)如果曲线 y=f(x)的某一切线与直线 y=- x+3 垂直,求切点坐标与切线的方程. 4 解:(1)可判定点(2,-6)在曲线 y=f(x)上. ∵f′(x)=(x3+x-16)′=3x2+1, ∴在点(2,-6)处的切线的斜率为 k=f′(2)=13. ∴切线的方程为 y=13(x-2)+(-6),即 y=13x-32.
相关文档
最新文档