变化率与导数及计算
15导数的概念及计算

导数的概念及计算一、知识概述导数的概念及其基本运算是本周学习的重点内容,导数有着丰富的实际背景和广泛应用,通过对平均变化率的分析入手,层层深入,展现了从平均变化率到瞬时变化率的过程,指明了瞬时变化率就是导数,介绍了导数的一般定义.并借助函数图象,运用观察与直观分析阐明了曲线的切线斜率和导数间的关系.导数的计算主要包括两个方面,首先是几个常见函数的导数,然后是基本初等函数的导数公式和导数的运算法则,关键在于使用这些公式与法则求简单函数的导数.二、重难点知识归纳1.变化率与导数(1)平均变化率通常把式子称为函数f(x)从x1到x2的平均变化率.令,,则平均变化率可表示为(2)导数的概念一般地,函数y=f(x)在x=x0处的瞬时变化率是则称它为函数y=f(x)在x=x0处的导数(derivative),记作或,即当x变化时,便是x的一个函数,则称它为f(x)的导函数(derivative funtion)(简称导数),记作或,则.(3)注意事项:弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系,可以从以下几个方面来认识.①函数在一点处的导数,就是在该点的函数改变量与自变量的改变量之比的极限,它是一个常数,不是变数.②导函数(导数)是一个特殊的函数,它的引出和定义始终贯穿着函数思想,对于每一个确定的值x0,都对应着一个确定的导数,根据函数的定义,在某一区间内就构成了一个新函数,即导数.③函数y=f(x)在点x0处的导数就是导函数在x=x0处的函数值,即=.这也是求函数在x=x0处的导数的方法之一.(4)导数的几何意义函数y=f(x)在点x0处的导数就是曲线y=f(x)在点处的切线的斜率k,即.2.导数的计算(1)基本初等函数的导数公式①若f(x)=c,则;②若,则;③若f(x)sinx,则;④若f(x)=cosx,则;⑤若f(x),则(a>0);⑥若f(x),则;⑦若f(x),则(a〉0,且a1);⑧若f(x),则.(2)导数运算法则①;②;③(3)复合函数的求导法则(难点)设函数在点x处有导数,函数y=f(u)在点x的对应点u处有导数或写作.复合函数求导法则:复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,即.三、典型例题剖析例1.利用导数的定义,求出函数y=x+的导数,并据此求函数在x=1处的导数.[解析]例2.求等边双曲线在点处的切线斜率,并写出切线方程.[解析]例3.设f(x)是定义在R上的函数,且对任何x1,x2R都有f(x1+x2)=f(x1)·f(x2).若f(0)0,。
导数与函数的变化率

导数与函数的变化率在微积分中,导数是一个十分重要且常见的概念。
导数可用于描述函数在某一点处的变化率,如何计算导数、导数的应用以及导数与函数的关系是微积分学习中的基本内容。
在本文中,我们将探讨导数与函数的变化率。
一、导数的定义及计算方法导数的定义可描述为函数$f(x)$在某一点$x_0$处的变化率,它表示函数在该点处的瞬时变化率。
一般来说,导数的计算包括以下几种方法:1.使用导数定义公式$$f'(x_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中,$\Delta x$取极限时表示函数$f(x)$在$x_0$处的微小增量,即无穷小。
它也可以表达为$\frac{dy}{dx}$ 或$\frac{df}{dx}$。
2.使用常用导数公式,这是一些几乎所有微积分学生都需要熟记的公式。
例如:$$\frac{d}{dx}(c)=0$$$$\frac{d}{dx}(x^n)=nx^{n-1}$$$$\frac{d}{dx}(\sin x)=\cos x$$$$\frac{d}{dx}(\ln x)=\frac{1}{x}$$其中 $c$ 为常数,$n$ 为整数,$\sin$ 和 $\ln$ 分别表示正弦函数和自然对数。
3.使用基本的微积分运算法则,包括链式法则、求导法则和反求导法则等。
二、导数的应用导数在其他学科中也有许多应用,例如:1.物理学中,利用导数可以求解物体的速度和加速度。
2.经济学中,利用导数可以求解生产函数和边际收益。
3.生命科学中,利用导数可以解决动力学问题,例如药物的生物利用度和峰浓度时刻。
三、导数与函数的关系导数和函数之间的关系也十分重要,它们之间存在很多有趣的特性,例如:1.导数可以揭示函数的增长趋势和极值,帮助人们了解函数的行为。
2.函数的导数是连续的,导数为0的点对应着函数的极值(局部极大值或局部极小值)。
第一节 变化率与导数、导数的计算-高考状元之路

第三章 导数及其应用复习备考资讯考纲点击1.变化率与导数、导数的计算(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)能根据导数定义求函数xy x y x y c y 1,,,2====的导数. (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.2.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(3)会利用导数解决某些实际问题.考情分析1.导数的运算是导数的基本内容,在高考中每年必考,一般一单独命题,而在考查导数应用的同时考查.2.导数的几何意义是高考考查的重点内容,常与解析几何知识交汇命题,多以选择题、填空题的形式出现,有时也出现在解答题中关键的一步.3.利用导数研究函数的单调性、极值、最值以及解决生活中的优化问题,巳成为近几年高考炙手可热的考点。
4.选择题、填空题,侧重于利用导数确定函数的单调性和极值;解答题,侧重于导数与函数、解析几何、不等式、数列的综合应用,一般难度较大,属中高档题,第一节 变化率与导数、导数的计算预习设计 基础备考知识梳理1.函数)(x f y =从1x 到2x 的平均变化率函数)(x f y =从1x 到2x 的平均变化率为若),()(,1212x f x f y x x x -=∆-=∆则平均变化率可表示为2.函数)(x f y =在0x x =处的导数(1)定义;称函数0)(x x x f y ==在处的瞬时变化率 = 为函数)(x f y =在0x x =处的导数,记作,|)(0/0/x x y x f =或即=∆=---ΛAxy x r lim )(0 (2)几何意义:函数)(x f 在点0x 处的导数)(0/x f 的几何意义是在曲线)(x f y =上点 处的 .相应地,切线方程为3.函数)(x f 的导函数称函数=)(/x f 为)(x f 的导函数,导函数有时也记作/y4.基本初等函数的导数公式5.导数运算法则=±/)]()]()[1(x g x f=/)]()()[2(x g x f=/])()()[3(x g x f ).0)((=/x g典题热身1.设,ln )(x x x f =若,2)(0/=x f 则=0x ( )2.e A e B . 22ln .c 2ln .D2.(2011.山东高考)曲线113+=x y 在点P(l ,12)处的切线与y 轴交点的纵坐标是( )9.-A 3.-B 9.C 15.D3.(2010.全国课标卷)曲线123+-=x x y 在点(1,O)处的切线方程为( )1-=⋅x y A 1+-=⋅x y B 22-=⋅x y C 22+-=⋅x y D4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a1.A 21.B 21.-c 1.-D5.(2011.湖南高考)曲线21cos sin sin -+=x x x y 在点)0,4(πM 处的切线的斜率为 ( ) 21.-A 21.B 22.-c 22.D 课堂设计 方法备考【例1】 已知P ,Q 为抛物线y x 22=上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__ __.【例2】已知曲线 ⋅+=34313x y (1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.例3已知函数)(x f y =的图象是折线段ABC ,其中).0,1().5,21()0,0(C B A 函数x x xf y ≤=0)(()1≤的图象与x 轴围成的图形的面积为解题思路解析 由已知可得⎪⎪⎩⎪⎪⎨⎧∈+-∈=],1,21(,1010],21,0[,10)(x x x x x f 则⎪⎩⎪⎨⎧∈+-∈==],1,21(,1010],21,0[,10)(22x x x x x x xf y 画出函数图象,如图所示,所求面积+=⎰+dx x s )10(20+=+-⎰++0321|310)1010(x dx x x +=+-+125|)5310(123x x )41581310()5310(⨯+⨯--+-⋅=45题型三 导数的几何意义及其应用【例3】设函数),,(1a )(z b a bx x x f ∈++=曲线)(x f y =在点(2,,f(2))处的切线方程为.3=y (1)求)(x f 的解析式;(2)证明函数)(x f y =的图像是一个中心对称图形,并求其对技法巧点1.函数求导的方法和步骤求导数时,先化简再求导是运算的基本方法.一般地,分式函数的求导,要先观察函数的结构特征,可否化为整式函数或较简单的分式函数;对数函数的求导,先化为和、差形式,再求导;三角函数求导,先应用三角公式转化为和或差的形式.2.与导数的几何意义有关的两类问题有关导数几何意义的题目一般有两类:一类是求曲线韵切线方程,这类题目要注意审好题,看到底是在某点处的切线还是过某点的切线,在某点处的切线一般有一条,过某点的切线可能有两条或更多;另一类是已知曲线的切线求字母的题目,已知曲线的切线一般转化为两个条件,即原函数一个条件,导函数一个条件,导函数的条件一般不会忽视,但原函数的条件很容易被忽视。
函数的导数与变化率

函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。
在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。
本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。
一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。
形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。
导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。
二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。
2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。
3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。
三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。
当自变量的变化量很小时,导数可以近似地表示函数的变化率。
函数的变化率可以分为平均变化率和瞬时变化率两种。
平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。
瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。
四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。
以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。
在经济学中,边际成本和边际收益也可以通过导数来计算和分析。
导数还可以用于优化问题、曲线拟合和图像处理等领域。
五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。
导数与变化率的概念与计算方法

瞬时变化率
定义:瞬时变化 率是指在某一时 刻附近,函数值 随自变量变化的
趋势和快慢
计算方法:通 过求导数来计 算瞬时变化率
几何意义:瞬 时变化率可以 理解为函数图 像在该点的切程学等领域有广 泛的应用,如速 度、加速度等物
理量的计算
变化率的几何意义
变化率描述的是函数图像上两点间距离的相对变化 变化率等于函数图像上切线斜率 变化率可用于分析函数图像的形状和趋势 变化率的概念在导数定义中有着基础地位
热传导:导数可以用来描述热量的传递过程,例如物体温度随时间的变化规律和热传导方程的求 解。
电磁学:导数可以用来描述电场和磁场的变化规律,例如电场强度和磁场强度的计算。
导数在经济分析中的应用
边际分析:导数 用于研究经济活 动中各变量的变 化趋势和极限状 态,帮助决策者 做出最优决策。
弹性分析:导数 用于计算各种经 济指标的弹性, 从而分析各因素 对经济指标的影 响程度。
利用导数求瞬时变化率
定义:导数描述 了函数在某一点 处的切线的斜率
计算方法:通过 求导公式或导数 定义进行计算
应用场景:在物理学、 工程学等领域中,利 用导数求瞬时变化率 具有广泛的应用
注意事项:导数在 某些点可能不存在, 需要注意函数的可 导性
导数与变化率的 应用
导数在几何中的应用
导数在研究曲线上某点的切线 斜率中应用
经济分析:在经济学中, 变化率用于分析经济增 长、通货膨胀和利率等 经济指标的变化情况。
预测模型:在气象学 和统计学中,变化率 用于建立预测模型, 例如预测股票价格和 天气变化趋势。
控制系统:在控制工 程中,变化率用于设 计和分析控制系统, 例如调节汽车发动机 的油门和温度。
感谢您的观看
《2.11变化率与导数、导数的计算》 教案

教学过程一、课堂导入1.从近几年的高考试题来看,导数的几何意义是高考的热点.2.题型既有选择题、填空题,又有解答题,难度中档左右.3.命题切入点:在考查导数的概念及其运算的基础上,又注重考查与解析几何结合的相关知识.二、复习预习导数的概念、几何意义及其运算是运用导数解决问题以及导数在实际生活中的应用的基础,虽然相关知识点的考查为A,B级,但是在许多综合题目中都会涉及本节知识点,需要学生在运用本节知识点理解题意的基础上进一步的运用导数。
对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的作用,在实施化简时,要注意变换的等价性,避免不必要的失误.对于某些不满足求导法则条件的函数,可适当进行恒等变形,步步为营,使解决问题水到渠成.三、知识讲解考点1 导数的概念函数)(x f y =在0x x =处的导数一般地,函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,称其为函数)(x f y =在0x x =处的导数,记作)(0x f '.考点2 导函数当x 变化时,)(x f '称为)(x f 的导函数,则xx f x x f y x f x ∆-∆+='='→∆)()(lim)(000特别提醒:注意)(x f '与)(0x f '的区别,)(x f '是一个函数,)(0x f '是常数,)(0x f '是函数)(x f '在点0x 处的函数值.考点3 导数的几何意义函数)(x f y =在0x x =处的导数的几何意义,就是曲线)(x f y =在点),(00y x P 处的切线的斜率,过点P 的切线方程为:))((000x x x f y y -'=-.特别提醒:求函数)(x f y =在点),(00y x P 处的切线方程与求函数)(x f y =过点),(00y x P 的切线方程意义不同,前者切线有且只有一条,且方程为))((000x x x f y y -'=-,后者可能不只一条.考点4 几种常见函数的导数考点5 导数运算法则(1))()(])()([x g x f x g x f '±'='±; (2))()()()(])()([x g x f x g x f x g x f '+'='; (3))()()()()(])()([2x g x g x f x g x f x g x f '-'=',)0)((≠x g考点6 复合函数的导数(理)设函数)(x ϕμ=在点x 处有导数)(x ϕμ'=',函数)(μf y =在点x 的对应点μ处有导数)(μf y '=', 则复合函数))((x f y ϕ=在点x 处也有导数,且x x y y μμ'⋅'='四、例题精析【例题1】【题干】求下列函数的导数(1)y=x+x5+sin xx2;(2)y=(x+1)(x+2)(x+3);(3)y=11-x+11+x;(4)y=cos 2xsin x+cos x.【解析】(1)∵y =x 12+x 5+sin x x 2=x 32-+x 3+sin xx 2,∴y ′=(x 32-)′+(x 3)′+(x -2sin x )′=-32x 52-+3x 2-2x -3sin x +x -2cos x .(2)y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(3)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2.(4)y =cos 2xsin x +cos x =cos x -sin x ,∴y ′=-sin x -cos x .【例题2】【题干】求下列复合函数的导数:(1)y=(1+sin x)2;(2)y=ln x2+1;(3)y=1(1-3x)4;(4)y=x1+x2.【解析】(1)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x .(2)y ′=(ln x 2+1)′ =1x 2+1·( x 2+1)′ =1x 2+1·12(x 2+1)12-·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5. (4)y ′=(x 1+x 2)′=x ′·1+x 2+x () 1+x 2′=1+x 2+x 21+x 2=1+2x21+x 2 .【例题3】【题干】已知函数f (x )=2 x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x 轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝ ⎛⎭⎪⎫-23,233,求△AOB 的面积.【解析】(1)f′(x)=1x+1,则f′(x0)=1x0+1,则曲线y=f(x)在点P(x0,f(x0))的切线方程为y-f(x0)=1x0+1(x-x0),即y=xx0+1+x0+2x0+1.所以当x0=1时,切线l的方程为x-2y+3=0.(2)当x=0时,y=x0+2x0+1;当y=0时,x=-x0-2.S△AOB=12⎪⎪⎪⎪⎪⎪x0+2x0+1·(x0+2)=(x0+2)22 x0+1,∴S△AOB =⎝⎛⎭⎪⎫-23+222 -23+1=839.【例题4】【题干】若函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________.【答案】 π2【解析】∵f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ, ∴f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6+θ. 于是y =f ′(x )+f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ+3cos ⎝ ⎛⎭⎪⎫3x +π6+θ =2sin ⎝ ⎛⎭⎪⎫3x +π6+θ+π3=2sin ⎝ ⎛⎭⎪⎫3x +θ+π2 =2cos(3x +θ),由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数,∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2.四、课堂运用【基础】1.(2013·永康模拟)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是()解析:选D据函数的图象易知,x<0时恒有f′(x)>0,当x>0时,恒有f′(x)<0.2.已知t为实数,f(x)=(x2-4)(x-t)且f′(-1)=0,则t等于() A.0 B.-1C.12D.2解析:选C f′(x)=3x2-2tx-4,f′(-1)=3+2t-4=0,t=1 2.3.(2013·大庆模拟)已知直线y=kx与曲线y=ln x有公共点,则k的最大值为()A.1 B.1 eC.2e D.2e解析:选B从函数图象知在直线y=kx与曲线y=ln x相切时,k取最大值.y′=(ln x)′=1x =k,x=1k(k≠0),切线方程为y-ln 1k =k⎝⎛⎭⎪⎫x-1k,又切线过原点(0,0),代入方程解得ln k=-1,k=1e.【巩固】4.已知f(x)=x2+2xf′(1),则f′(0)=________.解析:f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),即f′(1)=-2. ∴f′(x)=2x-4.∴f′(0)=-4.答案:-45.若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x =0有正实数解.∴5ax 5=-1有正实数解.∴a <0.故实数a 的取值范围是(-∞,0).答案:(-∞,0)【拔高】6.求下列各函数的导数: (1)(x )′=12x 12-;(2)(a x )′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ;(4)⎝ ⎛⎭⎪⎫x x +1′=1x +1,其中正确的有( )A .0个B .1个C .2个D .3个解析:选B根据函数的求导公式知只有(1)正确.7.函数y=x2(x>0)的图象在点(a k,a2k)处的切线与x轴的交点的横坐标为a k+1,其中k∈N*.若a1=16,则a1+a3+a5的值是________.解析:∵y ′=2x ,∴点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点为(a k +1,0),∴a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12.∴a 3=4,a 5=1.∴a 1+a 3+a 5=21.答案:218.如图,从点P1(0,0)作x轴的垂线交曲线y=e x于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x 轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;P n,Q n,记P k点的坐标为(x k,0)(k=1,2,…,n).(1)试求x k与x k-1的关系(k=2,…,n);(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|.解:(1)设点P k -1的坐标是(x k -1,0),∵y =e x ,∴y ′=e x ,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k -1),令y =0,则x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1,∴x k =-(k -1),∴|P k Q k |=e x k =e -(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-ne -1,即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.课程小结1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别与联系(1)曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,切线斜率为k=f′(x0)的切线,是唯一的一条切线.(2)曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点.点P可以是切点,也可以不是切点,而且这样的直线可能有多条.。
2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。
变化率与导数

导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.导数的概念
(1)f(x)在 x=x0 处的导数
函数 y=f(x)在 x=x0 处的瞬时变化率是
fx0+Δx-fx0= Δx
ΔΔxy,称其为函数 y=f(x)在 x=x0
处的导数,记作 f′(x0)=
fx0+ΔΔxx-fx0.
(2)导函数
如果一个函数 f(x)在区间(a,b)上的每一点 x 处都有导数,导数
f′(x)=ex f′(x)=xl1na
f′(x)=1x
4.导数运算法则 (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)gfxx′=f′xgx[g- xf]2xg′x(g(x)≠0).
【基础自测】
1.f′(x)是函数 f(x)=13x3+2x+1 的导函数,则 f′(-1)的值为
3x-y-3=0.
答案:C
3.已知函数 y=f(x)=2x2 图像上一点(1,2)及附近一点(1+Δx,2
+Δy),则ΔΔxy等于(
)
A.3+2Δx B.4+Δx C.4+2Δx D.3+Δx
解析:∵ቤተ መጻሕፍቲ ባይዱy=2(1+Δx)2-2=2Δx2+4Δx,
∴ΔΔxy=2Δx2Δ+x 4Δx=2Δx+4,故选 C.
第11课时 变化率与导数、导数的计算
1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y=c(c 为常数),y=x,y=x2,y=x3, y=1x,y= x的导数. 4.能利用给出的基本初等函数的导数公式和导数的四则运算法 则求简单函数的导数.
【知识梳理】 1.平均变化率及瞬时变化率 (1)f(x)从 x1 到 x2 的平均变化率是ΔΔxy=fxx22- -fx1x1.
考向一 导数的定义 用导数定义,求函数 y= x在 x=1 处的导数.
【审题视点】 利用导数定义求解.
【解】 ∵f(x)= x,
∴Δy=f(1+Δx)-f(1)= 1+Δx-1,
∴ΔΔxy= 1+ΔΔxx-1=Δx1+1+ΔxΔ2x-+112
= Δx
Δx 1+Δx+1
= 1+1Δx+1.
当 Δx→0 时,ΔΔxy→12,∴f′(1)=12.
◆一条原则 函数求导的原则: 对于函数求导,一般要遵循先化简,再求导的基本原则,求导 时,不但要重视求导法则的应用,而且要特别注意求导法则对求导 的制约作用,在实施化简时,首先必须注意变换的等价性,避免不 必要的运算失误.
◆两个关系 (1)“函数在一点处的导数”、“导函数”、“导数”的关系 ①函数 f(x)在点 x0 处的导数 f′(x0)是一个常数; ②函数 y=f(x)的导函数,是针对某一区间内任意点 x 而言的.如 果函数 y=f(x)在区间(a,b)内每一点 x 都可导,是指对于区间(a,b) 内的每一个确定的值 x0 都对应着一个确定的导数 f′(x0).这样就在 开区间(a,b)内构成了一个新函数,就是函数 f(x)的导函数 f′(x).在 不产生混淆的情况下,导函数也简称导数.
值记作 f′(x):f′(x)=
fx+ΔΔxx-fx,则 f′(x)是关于 x 的
函数,称 f′(x)为 f(x)的导函数,通常也简称为导数.
(3)导数的几何意义 函数 y=f(x)在 x0 处的导数,是曲线 y=f(x)在点(x0,f(x0))处的 切线的斜率. (3)导函数也简称导数.所以 “导数”f导x函在数一点x0处的导数个别与 一般 (4)函数 y=f(x)在 x=x0 处的导数 f′(x0)就是导函数 f′(x)在点 x =x0 处的函数值.
3.基本初等函数的导数公式 原函数
f(x)=c(c 为常数) f(x)=xα(α 是实数)
f(x)=sin x f(x)=cos x
f(x)=ax
f(x)=ex
f(x)=logax
f(x)=lnx
导函数 f′(x)=0 f′(x)=αxα-1 f′(x)=cos_x f′(x)=-sin_x f′(x)=axln_a
答案:C
4.(教材改编题)函数 f(x)=(x+2a)(x-a)2 的导数为________. 解析:f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2). 答案:3(x2-a2) 5.(2011·高考江西卷改编)若 f(x)=x2-2x-4ln x,则 f′(x)>0 的解集为________. 解析:令 f′(x)=2x-2-4x=2x-2xx+1>0,解得 x>2. 答案:(2,+∞)
【方法总结】 根据导数的定义,求函数 y=f(x)在 x=x0 处导 数的方法是:
(1)求函数值的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)计算导数 f′(x0)=liΔmx→0
Δy Δx.
1.用导数定义求函数 f(x)=x+1 2的导数. 解:ΔΔxy=fx+ΔΔxx-fx =x+21+ΔΔxx-x+1 2 =Δxx+x2+-2xx++22++ΔΔxx =x+2-x+12+Δx,
∴f′(x)=liΔmx→0
Δy Δx
=liΔmx→0
-1 x+2x+2+Δx
=-x+1 22.
考向二 导数的计算 求下列函数的导数.(1)y=(3x3-4x)(2x+1);
(2)y=x2sin x; (3)y=xl2n+x1; (4)y=ln(2x+5). 【审题视点】 观察所给的函数形式,化简变形后,利用导数 公式和求导法则求导.
(2)曲线 y=f(x)在“点 P(x0,y0)处的切线与”过点 P(x0,y0)的切 线的关系
曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,若切线斜率 存在时,切线斜率为 k=f′(x0),是唯一的一条切线;曲线 y=f(x) 过点 P(x0,y0)的切线,是指切线经过 P 点,点 P 可以是切点,也可 以不是切点,而且这样的直线可能有多条.
()
A.1
B.3
C.1 或 3
解析:∵f′(x)=x2+2,∴f′(-1)=3.
D.4
答案:B
2.曲线 y=x2-1x在点(1,0)处的切线方程为(
)
A.3x-y+3=0
B.x+3y-3=0
C.3x-y-3=0
D.x+3y-1=0
解析:∵k=f′(1)=2x+x12=3,∴切线方程为 y=3(x-1),即