WorkBenchICEMCFD网格划分入门

合集下载

Workbench中直接调用ICEM CFD进行网格划分

Workbench中直接调用ICEM CFD进行网格划分

CAE联盟论坛精品讲座系列Workbench中直接调用ICEM CFD进行网格划分主讲人:流沙CAE联盟论坛版主以前写过一篇关于如何在workbench中调用ICEM CFD进行网格划分的文章,虽然当时调试成功,不过后来据一些网友反映,在一些情况下会出现网格更新时,重复调用ICEM CFD的情况。

在那篇文章中,并没有涉及到ICEM CFD脚本的录制,所以一旦几何发生改变时,由于mesh模块的参数与ICEM CFD中的参数存在差异,会导致重复调用ICEM CFD 的情况。

至于有网友反映,在ICEM CFD中重新定义part后也会导致重复调用ICEM CFD 的情况,虽然我没有碰到过,不过我觉得,在ICEM CFD中重新定义part是不必要的,因为在mesh中可以通过创建selection的方式对边界命名。

下面以两个简单的案例来说明如何在mesh模块中直接调用ICEM CFD进行网格划分。

为简单起见,我们用于测试的模型比较简单,如图1所示。

图1 几何模型在这里对几何进行了参数化处理。

一共包含有6个参数。

其中半球直径Diameter=80mm,HL及VL分别为块体的长与宽,H及V用于定位,DEEP为拉伸深度。

详细尺寸如表1所示。

表1 参数化尺寸1、mesh模块中的设置首先我们需要对边界进行命名。

选中表面,右键选择菜单Created named selection。

如创建三个named selection:底部对称面symmetry,球形表面sphereWall以及内部表面cubeWall。

右击属性菜单上的mesh节点,选择insert > method,进行如图2所示参数设置。

图2 method参数设置图中1:选择几何体。

2:选择网格划分方法为MultiZone。

3:选择Free Mesh Type 参数为Hexa Core。

4:选择Write ICEM CFD Files方式为Interactive。

ICEM-CFD基础教程入门

ICEM-CFD基础教程入门
– 面网格可以单独保存
• 对不完整的几何体有容错能力
2023/10/21
ICEMCFD/AI*Environment 5.0
9
特性: 六面体网格划分
• 强大的六面体网格生成能力 • 自顶向下或自底向上分块方法 • 复杂模型网格的快速生成 • 快速重复操作
– 弹性分块适合相似几何模型 – 对几何尺寸改变后的几何模型自动重划分网格
22
模型树
• 设定窗口显示的图形 • 包含5个主要项目; Geometry几何, Mesh网格,
Properties属性, Parts部分 and Subsets子集 • 单击模型树分枝上的眼镜图标控制可见与否
– 红 X 图标表示 这一分枝(包含所有子分枝) 不显示
– 整个眼镜图标表示这一分枝下所有可显示项均可见

• Tri (STL-like):
– 生成三角面面网格 – 没有内部点
2023/10/21
ICEMCFD/AI*Environment 5.0
11
特性: 混合网格
• 棱柱层
– 在四面体网格中提高边界层计算结果
• 六面体和四面体区域交界处采用棱锥体 网格
2023/10/21
ICEMCFD/AI*Environment 5.0
21
视图操作
1 使用键盘: H – 主视图
Shift X - +X视图 Shift Y - +Y视图
Shift Z - +Z视图
2 单击视图中坐标图标
3 View > View Control
例如: 单击 Y 轴 使Y 轴 垂直屏幕
保存视图
2023/10/21
ICEMCFD/AI*EnvironmenEMCFD/AI*Environment 5.0

ICEM_CFD_网格划分入门

ICEM_CFD_网格划分入门

WorkBench ICEM CFD 网格划分入门【1 】111AnsysWB里集成了一个异常重要的对象:ICEM CFD.它是一个建模.划分网格的集成对象,功效异常壮大.我也只是蜻蜓点水的用了几回,感到确切异常棒,以前碰到庞杂的模子,用过几个划分网格的对象.但这是我认为最便利和最具效力的.网格划分很大程度上影响着后续的仿真剖析——信任列位都有所领会.而ICEM CFD特殊长于划分六面体网格,信任无论是构造或流体(当然铁别是流体),都邑得益于它的威力.ICEM CFD建模的才能不敢奉承,但划分网格确切有其独到之处.教程开端前,作一个简略的道理介绍,方面没有应用过ICEM CFD的同伙懂得重要的义务:111如下图:1:白色的物体是我们须要划分网格的,但是它异常不规矩.2:这时刻你必定想:怎么这个不规矩呢,如果它是一个方朴直正的外形多好(例如红色的谁人外形)01111于是有了如许一种思惟:1:对于异型,我们用一种规矩外形去描写它.2:或者说:假如目标外形异常庞杂,我们就用许多规矩的,简略的外形单元合成在一路,去描写它.之后,将网格划分的设置,做到规矩外形上.最后,这些规矩,经由过程最初的“描写”关系,主动的“映射”到本来的庞杂外形上——问题就得到懂得决ICEM CFD恰是应用了这种思惟.如下是一个三通管,在ProE里做得02在ProE里面直接启动WB进入WB后,选择如下图:03111如下:1:代表工作空间里的实体2:代表某实体的子实体,可以掌握它们的开关状况3:掌握显示的地方04下面须要创建一个Body实体这个实体代表了真实的物体.这个真实的物体的外形由我们导入的外形来界说.——我们导入的外形其实不是真实的实体.这个概念要清楚.但是往后根本上不会对这个真实的实体作什么操纵.这种处理方法主如果为工作空间内有多个物体的时刻预备的.051:点击“创建Body”2.3:点选这两个点4:于是创建出一个叫“Body”的实体操纵中,左键选择,中键确认,右键完成并退出——相似的操纵办法许多地方用到,要多演习,往后就不特殊说清楚明了06下面须要创建我们最须要的器械:谁人“规矩的外形”ICEM CFD里,这个实体叫 Block可以如下方法创建之:07留意到我们如今多了一个黑框,怎么样,够规矩吧?呵呵,开个打趣.还必须对这个黑框进行须要的“裁剪”之后才干用来“描写”我们的目标实体0809修剪Block实体的第一步是一个益智的工作:我们无妨简略绘制一下计谋:因为我们的现实物体像一个变形的“T”形,是以,无妨就用“T”来变形.最后要保存的部分用圆圈暗示,不要得部分用“X”.如下图:10如图:1:选择“Split”对象2:应用默认的第一个办法3:选择“选线”按钮4:在Block的黑线上选择,并“切”出一条黑线.5.6.7.8.9:以此类推.11最后的成果应当相似下图121:选择“Delete Block”2:选择“选择B lock”按钮3:删除不须要的部分.13得到相似的图形:14开端调节点的地位:1:选择“Move 极点”2:选择默认办法3:选择“多选”——填补一个,我们一向应用Y向视图!5:将Y固定掉落4:选择“选择点对象”6:之后调节Block的极点,到相似下图的地位15留意到在每个Pip的弯处,Block与Pip不克不及很好的贴合,这是因为我们的Block照样光滑.是以,须要持续“Split”现有的Block,并持续调节Block的极点.办法就是反复上面的步调,这里就不罗嗦了.细分和调节后的图形相似下图,当然寻求完美的同伙还可以持续细分——不过须要掌控一个度的问题,因为细分得太多,也就掉去“用简略描写庞杂”这个动身点了.16下面要做的是从Block到Pip的“对应关系指定”工作.——尽管现有已经有了描写Pip的Block,但一些细节的地方,须要手工指定它们的对应关系,在庞杂模子中尤为如斯.因为尽管软件有很大程度的智能,但它毕竟无法完整的主动的剖析出我们须要的对应关系来.关于指定“对应关系”的演习,最好请同伙们按照ICEM CFD 自带的教程来做几回.特殊是调节Block的极点技能,和往后流体盘算的网格质量有很大关系,不熟习的同伙须要补补课了.如下图:我们须要将Block上的这四个边同Pip三通处的衔接部分“绑定”在一路.相当于告知软件:“往后这四条边就代表了这两条圆弧哦!”17办法如下:1:选择“Associate”2:选择“Edge to Curve”——Edge是Block上的,Curve是Pip 上的3:选择Edges——留意这时必须要多选.4:再选择“Curve”——这时刻也要多选5:中键确认后,留意到已经制订了对应关系的边变成绿色.18下一步就可以应用主动指定的功效了:1:选择“Associate”2:选择主动捕获3:肯定4:留意到如今Block已经“完美”的包裹住Pip19别的,要将三个管口的Block的Edge和Pip的Curve“指定”对应关系,办法就和上面指定衔接处的时刻一样.请大家自行操纵了.20之后,就可以设定Mesh的参数了.1:打开实体参数设定窗口2:MaxSize设置为5——偏向对了今后往后可以调节到更小.3:HeightRetio设置为0.64:确认21激活适才的设置,为Pre-Mesh做预备1:选择“Pre-Mesh 参数”2:默认更新所有设置3:确认22预览Mesh:1:设置为实体状况2:显示设置的推举选项,同伙们可以自行调节3:成果应当和右图相似23关怀一下Mesh质量:1:打开Mesh质量检讨2:选择“Angle”——有许多种评价网格质量的办法,我比较爱好这个3:右键点选不睬想的部分4:选择“Show”5:这些单元格是今朝的设置情形下,不太幻想的地方24有许多种办法改良单元格的质量比方我在Bolock上,响应的地方添加了一条线,调节的地位后,从新应用一次“主动包裹”——办法同前面的讲述再次更新Pre-Mesh参数后,审查质量,适才的不良已经清除.25重要提醒:1:在制造Block的时刻,Block极点的地位,Bolock细分的后果,都可以在如许的轮回操纵中得到直不雅的成果.2:划分网格,我小我认为无外乎两步:一个清楚的思绪,和不竭的优化.前者须要见多识广,后者须要耐烦细心.假如是做构造剖析,在这一步可以打住了,直接生成最终的单元格文件即可;但做流体的同伙还须要持续:做流体的鸿沟层.1:创见O型格也是一种Split2:选择创建O型格3:选择所有的格体4:选择出.进口(不须要O型构造的面)26不雅察个中一个口:1:绿色的线是本来Block的Edge(因为我们本来制订了它和Pip上物理启齿的对应关系所以变成了绿色)2:小一点的黑色线,代表了往后的O型格体——ICEM CFD创建O型格的工作仍是在Block上开展的.27在O型格上设置鸿沟层的参数1:打开参数设置2:设置“线参数”3:选择一条衔接O型和边沿的联线4:往后鸿沟层为六层,是以格点为75:接近外缘的厚度暂定为0.2——往后可以调剂6:选择“复制参数”的功效7:将这个设置复制到所有相似的线上个中MeshLaw设置很有意思,同往后的求解器,液体属性等均有关系.有兴致的同伙本身去研讨了.我选择的是“Exponential1”28留意到此时O型到边沿的距离,就是我们方才设置了曾数等信息的那条黑线,还比较长是以,做如下修正:1:选择修正Block1.5:选择修正边长2:选择须要修正的边3:输入距离(留意“绝对距离”和“相对距离”的不同)29可以从新勾选“Pre-Mesh”留意到如今已经有O型构造了.30后续的工作中: 1:可以在“Pre-Mesh”上右键,选择“转换为非构造化网格”2:可以应用菜单项,输入须要后续剖析的软件的对应格局.3132结论:1:Ansys 的WB,对ICEM CFD的集成今朝(至少我应用的版本),其实不完美.譬如ZCCBEST同伙提出的若何保持参数化的问题,我也不知道是否能实现.但我想第一,ICEM CFD是异常棒的Mesh对象,重要照样用在庞杂模子的Mesh上,并且着重于Mesh本身.举例说,我用Maya制造的庞杂模子,也可以在ICEM CFD中进行网格划分,并且生成的BLOCK文件可以被单独的保管下来,往后假如修正不大,则直接挪用BLOCK文件,反复应用之即可(当然一般要做一些小的修正).第二:今天或许不克不及实现某些我们愿望的功效,并不是明天不成.我想来论坛的同伙更多的是抱着进修的目标,所以请临时把软件的瑕疵放一放,而不竭地,毫无偏看法去进步本身第三:从Ansys近两年的成长看,我信任我们期望的那些宜用功效,肯定会被完美.比方就我知道的:Ansys正在斟酌将Ansoft,Fluent等才收购的重量级软件也集成到WB中来.是以,我建议大家,在“幻想状况”到来前,不竭地进修进修再进修,从而争夺领先一步,步步领先!2:回想我所发的几个教程,其实很大程度上是想为同伙们抛砖引玉,引诱不熟习仿真软件的同伙懂得这个范畴——毕竟我们在这方面也太落伍了,许多行业根本没有这种意思.同伙们或许为不合的公司打工,但往后的临盆,何尝不都是用的我们中国人的资本.能勤俭点是一点,于公于私都不无大利——至少我们要知道可以怎么样将这些器械用于我们的设计吧.是以我真心的建议大家配合扶植这个板块,忘我的交换日常的心得,真正达到配合进步的目标.唉,不当心写多了.忘却了“少说多做”的原则,但想到确切是发自肺腑的文字,不忍删除,就以之与同伙们共勉吧——好累,抽根烟先!。

ICEM网格拓扑划分

ICEM网格拓扑划分

2D网格1
M1 M2
2D网格2
M1
M2
O-grid
2D网格3
M1
M2
L-grid
2D网格4
M1
M2
2D网格5
初始块
Geometry 块
Blocking
遇折则劈o-grid
网格
实体
Pre_Mesh
多块的索引控制->方便选出特定块进行操作
2D网格6:外O-grid的应用
实体
1、建块: 选中高亮的块,勾选 around block;最后删除中间块 2、关联点线; 3、设置边上节点数
左键 中键
右键
转轮
单击并拖动 旋转 移动
单击
选择
(对某些功能单击并 拖动能框选)
确认
上下移动:缩放 水平移动:2D旋转
取消
缩放 ——
附录2:输出网格的方法
非结构网格: 如果四面体网格,生成网格后选择File——〉Export Mesh,选择求解器, solver选择autodyn ,autodyn patible file输出filename.k 不需要的网格 通过选择none进行屏蔽,比如,不需要壳网格shell elements 选择 none, 在这apply或ok。 如果是六面体网格,生成pre-mesh后,右键在这model tree——〉 Blocking——〉pre-mesh,选择 Convert to unstruct mesh;然后选择 File——〉Export Mesh 。solver选择autodyn ,autodyn patible file输出 filename.k 不需要的网格通过选择none进行屏蔽,比如,不需要壳网格 shell elements 选择 none,在这apply或ok。

ANSYS ICEM CFD从入门到精通三维模型结构网格划分管内叶片模型详解

ANSYS ICEM CFD从入门到精通三维模型结构网格划分管内叶片模型详解

选择在叶片中心的两个块 (35 and 36) 中键确定
注意这些块的垂直边的颜色有青蓝色变成了白色– 因为变成了块的边界
#1
#3
9/9/05
ANSYS ICEMCFD V10
Workshop #2
Inventory #002277
D5-10
ANSYS v11.0
块的坍塌变形
#1 #2
• Blocking > Merge Vertices • 单击右键取消选择 • 选择Collapse Blocks
ANSYS ICEMCFD V10
Inventory #002277
D5-6
ANSYS v11.0
对边进行关联
#1
#2
Workshop
• 选择 Associate > Associate Edge to Curve – 在管的一侧选择4条边 – 在同一侧选择4条曲线
• 在另一边采用相同的操作 • 边的颜色变为绿色说明已经建立了连
+Y
• 选择 Split Block > Split Block
• Split Method 是 Screen Select
• 单击左键并且拖住其中的一条边如图所示– 它变成红色的高 亮线
– 移动鼠标直到新的分割线的位置大体上在叶片的一端时 放开鼠标
– 中键确认
ANSYS v11.0
对块的部分进行修饰
在模型树的Blocking处单击右键 并且选择 Index Control
#4
使用 Index Control panel上的箭头, 设置 ‘I’ 的数
值从2到3
在Parts 中的SOLID处单击右键 并且选择 Add to Part

ICEM_CFD_基础教程_D-网格编辑

ICEM_CFD_基础教程_D-网格编辑

Non-manifold vertices: 与此点其相接的单元的 边不封闭
Unconnected Vertices: 检查并移除不与任何单 元连接的点
2012-11-9
ICEMCFD/AI*Environment 5.0
5
显示网格质量
热键: q


许多质量标准(方法)可以使用
显示为直方图
– – x-轴定义从低到高的网格质量刻度 y-轴显示相应网格质量范围内的网格单元数目
• 如果合并两个四面体网格, 其中一个可以冻结
• 六面体网格在缺省情况下冻结 hexa tetra Prism
– 可以合并四面体与四面体或四面体与六面体 网格
quad tri Pyramid – 在四面体六面体网格交界面创建棱锥体网格
2012-11-9
ICEMCFD/AI*Environment 5.0
18
分割跨度边
Split Spanning Edges 分割跨度边 – 粗糙的网格体在厚度上只有一个网格单元 – 对于突出物, Split Spanning Edges 保证体积 内部的节点
2012-11-9
ICEMCFD/AI*Environment 5.0
19
网格修复
Move Nodes: 移动节点
2012-11-9
ICEMCFD/AI*Environment 5.0
12
网格光滑
•Advanced Options高级选项 (如果选择): – Laplace: 使用Laplace光滑法则使三角形更等边并根据面积 选择不同三角形光滑器 – All elements: 光滑所有网格而不是最差的1/100 – Violate geometry: 对一些降低网格质量的节点设置约束 • 节点移动不会超过用户指定的距离 (用模型的单位

ICEM-CFD 曲面网格划分


Surface Meshing 8
2010年11月28日 星期日
Quad—— ——创建闭环 ICEM CFD Quad——创建闭环
Geometry, Loop, Create
− Screen select • 在所选曲线的基础上创建闭环 − From surfaces • 为所选择的一组曲面创建一个闭环 • Select by family (‘f ’ hotkey) is often useful − From each surface
Surface Meshing 10
2010年11月28日 星期日
Quad – Meshing to Existing Mesh
Mesh to existing mesh or combination of mesh and geometry
− Example: 2-D blower meshed in Hexa, housing meshed with Quad
Surface Meshing 4
2010年11月28日 星期日
三角网格到四边形网格的转化
将三角曲面网格转化为四边形曲面网格
− 菜单:Edit mesh, Change Type Tri->Quad
− 选项: • Quadrization On:
– All-Quad – Finer mesh results
Surface Meshing 11
2010年11月28日 星期日
Quad——为所选单元重新划分网格 Quad——为所选单元重新划分网格 ——
要提高局部网格质量,我们可以为所选单元重 新划分网格
Surface Meshing 12
2010年11月28日 星期日

ICEM CFD 基础教程 C1-六面体网格

非结构块
几何
2D 块
2013-7-10
ICEMCFD/AI*Environment 5.0
7
分块过程 – 构建适合几何体的块结构
自顶向下方法
从环绕整个几何 体的一个块开始 分割块 以捕捉几何体形状
删除无用的块
注意: 缺省情 况下,删除的 块将放入 part VORFN, 在后 面必要时候可 以重新使用
Edge
– Block 块
Vertex
Curve
Point Surfaces
Face
Material point/body Block
2013-7-10
ICEMCFD/AI*Environment 5.0
4
分块过程 – 全部过程
构建能够捕捉几何的块结构
– 自顶向下
• 分割及舍弃无用的块 – 自底向上 • 通过拉伸、创建、复制创建块 在块和几何之间建立关联 – 通常为边与曲线之间建立关联 在几何体上移动块顶点
O-grid C-grid L-grid
– 当块必须位于曲线或曲面上时减少歪斜
没有 O-grid
O-grid
2Environment 5.0
21
绕体O-网格
解决环绕固体区域的边界层问题而不必增加网格点数目
在对象外围创建O-grid
参考: Tutorial Example 3.2, 2-D Car
可以联合使用自顶向下/ 由底向上网格拓扑创建技术
2013-7-10
ICEMCFD/AI*Environment 5.0
2
六面体网格划分的几何要求
可以使用与划分四面体网格相同的几何模型(tetin) – 不需要几何体结构完全封闭
分块

workbench球体划分网格过程

workbench球体划分网格过程
workbench球体网格划分过程如下 1. 在球体中心建立正方体,正方体对角顶点坐标为(-1 -1 -1)、(1 1 1),图一所示。

图一
2. 以原点为圆心,做半球面,半径为4,图二所示。

图二
3( 将正方体与半球面对应的一个面的四条边投影到半球面,得到四条曲线,图三所示。

具体操作为:tools中选择projection,edges中选择正方体其中一个面的4条边线,target中选择半球面
图三
4. 利用步骤3得到的四条曲线,构建曲面,删除步骤2的曲面后,如图四-a 所示,注意,
该曲面为球面的六分之一。

具体操作为:concept中选择surfaces from edges,生成曲面;在create 中选择body operation里选择delete删除步骤2的曲面。

图四 5. 利用步骤4中得到的曲面和正方体的一个相应曲面,建立一个体solid 2,如图五所示,
具体操作为:在skin/loft中选择步骤4中得到的曲面和正方体的一个相应曲面,即可生

图5 6. 将步骤5得到的solid 2分别绕X、Y轴旋转复制,得到一个球体,该球体有一个正方体
(步骤1所得)和6个六面体组成(solid 2及本步骤所得的另外5个)。

具体操作为:在create中选择body operation里选择rotate旋转曲面。

图六
7. 几何模型已经建立完毕,下面可以进行网格化分了,结果如图七所示,对话框如图八所示。

具体操作为:mesh中选择multizone,在控制body sizing 即可
图七
8. 到此结束。

Workbench 网格划分 Chapter 3


• 两种四面体算法都可以用于CFD的边界层识别.
3-5
Meshing Methods for 3D Geometries
四面体网格划分
• 常用参数
– 最小和最大尺寸 – 面和体的尺寸 – Advanced 尺寸功能 (Curvature and/or Proximity) – 增长比 (对CFD逐步变化, 避免突变) – 平滑 (有助于获得更加均匀尺寸的网格) – 统计学 – Mesh Metrics
Training Manual
邻近的面
小孔
3-7
Meshing Methods for 3D Geometries
Patch Conforming 四面体实例
Training Manual
圆孔的识别 考虑面 (和边)
3-8
Meshing Methods for 3D Geometries
Patch Independent 四面体
Training Manual
3-22
Meshing Methods for 3D Geometries
有膨胀的多区网格
Training Manual
3-23
Meshing Methods for 3D Geometries
CFX-网格方法
• •

Training Manual
四面体/棱柱网格划分器,对循环对称 或旋转对称几何划分网格
Training Manual
3-6
Meshing Methods for 3D Geometries
Patch Conforming 四面体
• 右击 Mesh, 插入方法并选择应用此方法的 体. • 将 Method设置为Tetrahedrons 和 Algorithm 设置为 Patch Conforming • 不同部分有不同的方法. 多体部件可混合 使用patch conforming四面体和扫掠方法 生成共形网格 (作业3.1) • Patch Conforming方法可以联合Pinch Controls功能,有助于移除短边。 基于最小 尺寸具有内在网格缺陷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WorkBench ICEM CFD 网格划分入门AnsysWB里集成了一个非常重要的工具:ICEM CFD。

它是一个建模、划分网格的集成工具,功能非常强大。

我也只是蜻蜓点水的用了几次,感觉确实非常棒,以前遇到复杂的模型,用过几个划分网格的工具。

但这是我觉得最方便和最具效率的。

网格划分很大程度上影响着后续的仿真分析——相信各位都有所体会。

而ICEM CFD特别长于划分六面体网格,相信无论是结构或流体(当然铁别是流体),都会得益于它的威力。

ICEM CFD建模的能力不敢恭维,但划分网格确实有其独到之处。

教程开始前,作一个简单的原理介绍,方面没有使用过ICEM CFD的朋友理解主要的任务:如下图:1:白色的物体是我们需要划分网格的,但是它非常不规则。

2:这时候你一定想:怎么这个不规则呢,要是它是一个方方正正的形状多好(例如红色的那个形状)01于是有了这样一种思想:1:对于异型,我们用一种规则形状去描述它。

2:或者说:如果目标形状非常复杂,我们就用很多规则的,简单的形状单元合成在一起,去描述它。

之后,将网格划分的设置,做到规则形状上。

最后,这些规则,通过最初的“描述”关系,自动的“映射”到原先的复杂形状上——问题就得到了解决!!!ICEM CFD正是使用了这种思想。

如下是一个三通管,在ProE里做得02在ProE里面直接启动WB进入WB后,选择如下图:03如下:1:代表工作空间里的实体2:代表某实体的子实体,可以控制它们的开关状态3:控制显示的地方04下面需要创建一个Body实体这个实体代表了真实的物体。

这个真实的物体的外形由我们导入的外形来定义。

——我们导入的外形并不是真实的实体。

这个概念要清楚。

但是今后基本上不会对这个真实的实体作什么操作。

这种处理方式主要是为工作空间内有多个物体的时候准备的。

051:点击“创建Body”2、3:点选这两个点4:于是创建出一个叫“Body”的实体操作中,左键选择,中键确认,右键完成并退出——类似的操作方法很多地方用到,要多练习,今后就不特别说明了06下面需要创建我们最需要的东西:那个“规则的形状”ICEM CFD里,这个实体叫 Block可以如下方式创建之:07注意到我们现在多了一个黑框,怎么样,够规则吧?呵呵,开个玩笑。

还必须对这个黑框进行必要的“裁剪”之后才能用来“描述”我们的目标实体0809修剪Block实体的第一步是一个益智的工作:我们不妨简单绘制一下策略:因为我们的实际物体像一个变形的“T”形,因此,不妨就用“T”来变形。

最后要保留的部分用圆圈表示,不要得部分用“X”。

如下图:10如图:1:选择“Split”工具2:使用默认的第一个方法3:选择“选线”按钮4:在Block的黑线上选择,并“切”出一条黑线。

5、6、7、8、9:以此类推。

11最后的结果应该类似下图121:选择“Delete Block”2:选择“选择Block”按钮3:删除不需要的部分。

13得到类似的图形:14开始调节点的位置:1:选择“Move 顶点”2:选择默认方法3:选择“多选”——补充一个,我们一直使用Y向视图!5:将Y固定掉4:选择“选择点工具”6:之后调节Block的顶点,到类似下图的位置15注意到在每个Pip的弯处,Block与Pip不能很好的贴合,这是因为我们的Block还是粗糙。

因此,需要继续“Split”现有的Block,并继续调节Block的顶点。

方法就是重复上面的步骤,这里就不罗嗦了。

细分和调节后的图形类似下图,当然追求完美的朋友还可以继续细分——不过需要把握一个度的问题,因为细分得太多,也就失去“用简单描述复杂”这个出发点了。

16下面要做的是从Block到Pip的“对应关系指定”工作。

——尽管现有已经有了描述Pip的Block,但一些细节的地方,需要手工指定它们的对应关系,在复杂模型中尤为如此。

因为尽管软件有很大程度的智能,但它毕竟无法完全的自动的分析出我们需要的对应关系来。

关于指定“对应关系”的练习,最好请朋友们按照ICEM CFD 自带的教程来做几次。

特别是调节Block 的顶点技巧,和今后流体计算的网格质量有很大关系,不熟悉的朋友需要补补课了。

如下图:我们需要将Block上的这四个边同Pip三通处的连接部分“绑定”在一起。

相当于告诉软件:“今后这四条边就代表了这两条圆弧哦!”17方法如下:1:选择“Associate”2:选择“Edge to Curve”——Edge是Block上的,Curve是Pip上的3:选择Edges——注意这时必须要多选。

4:再选择“Curve”——这时候也要多选5:中键确认后,注意到已经制定了对应关系的边变成绿色。

18下一步就可以使用自动指定的功能了:1:选择“Associate”2:选择自动捕捉3:确定4:注意到现在Block已经“完美”的包裹住Pip19另外,要将三个管口的Block的Edge和Pip的Curve“指定”对应关系,方法就和上面指定连接处的时候一样。

请大家自行操作了。

20之后,就可以设定Mesh的参数了。

1:打开实体参数设定窗口2:MaxSize设置为5——方向对了以后今后可以调节到更小。

3:HeightRetio设置为0.64:确认21激活刚才的设置,为Pre-Mesh做准备1:选择“Pre-Mesh 参数”2:默认更新所有设置3:确认22预览Mesh:1:设置为实体状态2:显示设置的推荐选项,朋友们可以自行调节3:结果应该和右图类似23关心一下Mesh质量:1:打开Mesh质量检查2:选择“Angle”——有很多种评价网格质量的方法,我比较喜欢这个3:右键点选不理想的部分4:选择“Show”5:这些单元格是目前的设置情况下,不太理想的地方24有很多种方法改善单元格的质量比如我在Bolock上,相应的地方添加了一条线,调节的位置后,从新使用一次“自动包裹”——方法同前面的讲述再次更新Pre-Mesh参数后,检察质量,刚才的不良已经消除。

25重要提示:1:在制作Block的时候,Block顶点的位置,Bolock细分的效果,都可以在这样的循环操作中得到直观的结果。

2:划分网格,我个人觉得无外乎两步:一个清晰的思路,和不断的优化。

前者需要见多识广,后者需要耐心仔细。

如果是做结构分析,在这一步可以打住了,直接生成最终的单元格文件即可;但做流体的朋友还需要继续:做流体的边界层。

1:创见O型格也是一种Split2:选择创建O型格3:选择所有的格体4:选择出、入口(不需要O型结构的面)26观察其中一个口:1:绿色的线是原先Block的Edge(因为我们原先制定了它和Pip上物理开口的对应关系所以变成了绿色) 2:小一点的黑色线,代表了今后的O型格体!!!——ICEM CFD创建O型格的工作仍是在Block上开展的。

27在O型格上设置边界层的参数1:打开参数设置2:设置“线参数”3:选择一条连接O型和边缘的联线4:今后边界层为六层,因此格点为75:靠近外缘的厚度暂定为0.2——今后可以调整6:选择“复制参数”的功能7:将这个设置复制到所有类似的线上其中MeshLaw设置很有意思,同今后的求解器,液体属性等均有关系。

有兴趣的朋友自己去研究了。

我选择的是“Exponential1”28注意到此时O型到边缘的距离,就是我们刚刚设置了曾数等信息的那条黑线,还比较长因此,做如下修改:1:选择修改Block1.5:选择修改边长2:选择需要修改的边3:输入距离(注意“绝对距离”和“相对距离”的差别)29可以从新勾选“Pre-Mesh”注意到现在已经有O型结构了。

30后续的工作中:1:可以在“P re-Mesh”上右键,选择“转换为非结构化网格”2:可以使用菜单项,输入需要后续分析的软件的对应格式。

3132结论:1:Ansys 的WB,对ICEM CFD的集成目前(至少我使用的版本),并不完美。

譬如ZCCBEST朋友提出的如何保持参数化的问题,我也不知道是否能实现。

但我想第一,ICEM CFD是非常棒的Mesh工具,主要还是用在复杂模型的Mesh上,并且侧重于Mesh 本身。

举例说,我用Maya制作的复杂模型,也可以在ICEM CFD中进行网格划分,并且生成的BLOCK文件可以被单独的保存下来,今后如果修改不大,则直接调用BLOCK文件,重复利用之即可(当然一般要做一些小的修改)。

第二:今天或许不能实现某些我们希望的功能,并非明天不行。

我想来论坛的朋友更多的是抱着学习的目的,所以请暂时把软件的瑕疵放一放,而不断地,毫无偏见地去提高自己第三:从Ansys近两年的发展看,我相信我们期望的那些宜用功能,肯定会被完善。

比如就我知道的:Ansys正在考虑将Ansoft,Fluent等才收购的重量级软件也集成到WB中来。

因此,我倡议大家,在“理想状态”到来前,不断地学习学习再学习,从而争取领先一步,步步领先!2:回顾我所发的几个教程,其实很大程度上是想为朋友们抛砖引玉,引导不熟悉仿真软件的朋友了解这个领域——毕竟我们在这方面也太落后了,很多行业根本没有这种意思。

朋友们或许为不同的公司打工,但今后的生产,何尝不都是用的我们中国人的资源。

能节约点是一点,于公于私都不无大利——至少我们要知道可以怎么样将这些东西用于我们的设计吧。

因此我真心的倡议大家共同建设这个板块,无私的交流日常的心得,真正达到共同提高的目的。

唉,不小心写多了。

忘记了“少说多做”的原则,但想到确实是发自肺腑的文字,不忍删除,就以之与朋友们共勉吧!!!——好累,抽根烟先!。

相关文档
最新文档