九年级数学概率的初步认识
概率的初步认识与计算

概率的初步认识与计算概率是数学中的一个分支,用于描述和解释随机事件发生的可能性。
它可以帮助我们理解事物发展的趋势和规律,并在决策和预测中提供依据。
在本文中,我们将初步认识概率,并介绍一些常用的计算方法。
一、概率的基本概念概率是描述随机事件发生可能性的数值,通常用0到1之间的小数表示。
其中,0表示不可能事件,1表示必然事件。
事件的概率越接近1,表示事件发生的可能性就越高。
二、概率的计算方法1. 经典概率:当所有可能结果的数量相等且事件的可能结果在总数中占有相同比例时,可以使用经典概率来计算。
公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的可能结果数量,n(S)表示所有可能结果的数量。
2. 几何概率:当事件的可能结果与总数不均等时,可以使用几何概率来计算。
公式为:P(A) = 面积(A) / 面积(S)其中,面积(A)表示事件A的可能结果占有的面积,面积(S)表示总面积。
3. 条件概率:当事件A的发生可能会受到另一个事件B的影响时,可以使用条件概率来计算。
公式为:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
4. 乘法法则:用于计算多个事件相继发生的概率。
公式为:P(A∩B) = P(A) * P(B|A)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
5. 加法法则:用于计算多个事件中至少一个事件发生的概率。
公式为:P(A∪B) = P(A) + P(B) - P(A∩B)其中,P(A∪B)表示事件A和事件B至少一个发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
初中数学九年级第二十五章概率初步教材分析

例4的事件在试验时包含了两步,要把两步 可能的结果都列出来,教师可适当让学生了 解: 试验中每一步的可能结果有两个,两
步的所有结果就有2×2=4个。
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
本题每次试验也包含两步,但每一步 可能产生的结果数较多有6个,教科书给 出了一种较为简单的方法——列表法.这 时很容易看出可能结果数为6×6=36个.
O
x
点拨:画出两函数的草图即可得答案
Y=-x-2
四、特殊值法:
选择题中所研究的量可以在某个范围内任意取值,这时可以 取满足条件的一个或若干特殊值代人进行检验,从而得出正确答 案.有些问题从理论上论证它的正确性比较困难,但是代入一些 满足题意的特殊值,验证它是错误的比较容易,此时,我们就可 以用这种方法来解决问题。
)。
4、逻辑排除法 例5、顺次连接平行四边形各边中点所得的四边形一定是( ) A、正方形 B、矩形 C、菱形 D、平行四边形
三、数形结合法
由已知条件作出相应的图形,再由图形的直观性得出正确 的结论。
例6.直线y=-x-2 和y=x+3 的交点在第( )象限。
A. 一
B. 二
C. 三
y
D. 四
Y=x+3
当A沿数轴移动4个单位到点B时,点B
所表示的实数是( )
A2
B -6
C -6或2 D 以上都不对
直接分类法
练习1、商场促销活动中,将标价为 200元的商品,在打8折的基础上,再 打8折销售,现该商品的售价是( ) A 160元 B 128元 C 120元 D 88元
直接计算
2
练8习2、下列与 2 是同类二次根式 的是( 10)
概率的初步认识认识可能性和概率的关系

概率的初步认识认识可能性和概率的关系概率的初步认识:认识可能性和概率的关系概率是概率论中的基本概念,用于描述事件发生的可能性大小。
在日常生活中,我们经常会遇到不确定性的事情,而概率恰好可以提供一个量化的方式,帮助我们理解和分析不确定事件的发生概率。
本文将初步介绍概率的概念、计算方法和与可能性的关系。
一、概率的概念概率是描述某个事件发生可能性的数值,它的取值范围介于0和1之间。
当概率为0时,表示该事件不可能发生;当概率为1时,表示该事件肯定会发生。
而在0和1之间的数值表示事件发生的可能性大小,越接近1表示事件发生的可能性越大,越接近0表示事件发生的可能性越小。
二、概率的计算方法在概率论中,有两种常见的计算概率的方法:古典概率和统计概率。
1. 古典概率古典概率是根据事件的不同结果的数量来计算概率的方法。
它适用于所有结果等可能的情况。
计算公式为:事件发生的次数/总的可能结果的次数。
以掷骰子为例,骰子有6个面,每个面上的数字为1-6,每个面的结果等可能。
那么掷出一个骰子,掷出1的可能性就是1/6,概率为1/6。
2. 统计概率统计概率是根据事件已经发生的情况来估计该事件在未来发生的概率。
它适用于实验不能重复和结果不等可能的情况。
计算公式为:事件发生的次数/实验总次数。
例如,如果要计算掷硬币正面朝上的概率,我们可以多次进行实验,记录正面朝上的次数,然后除以实验总次数得到概率值。
三、概率与可能性的关系概率与可能性有着密切的关系,它们在描述事件发生的可能性上有一定的区别。
可能性是对事件发生的可能性进行主观判断,它没有具体的数值表示。
我们常用"可能"、"不可能"、"可能性较小"等词语来表达事件发生的可能性大小。
而概率则提供了一个量化的方法,通过数值来表示事件发生的可能性大小。
概率是基于统计和实验的,通过观察和记录事件发生的次数,运用数学统计方法来计算概率值。
概率的初步认识

概率的初步认识概率作为一门数学分支,旨在研究随机事件发生的可能性大小。
在我们日常生活中,概率的概念无处不在,无论是预测天气、统计数据,还是赌博、游戏中的胜率计算,都离不开概率的应用。
在本文中,将简要介绍概率的基本概念、计算方法和应用领域。
一、基本概念1. 随机试验随机试验是指在相同条件下可以重复进行的实验,其结果不是确定的,而是与机会有关的。
例如掷骰子、抛硬币等。
2. 样本空间样本空间是指随机试验所有可能结果的集合,记作Ω。
对于掷一颗骰子的试验,样本空间为Ω={1,2,3,4,5,6}。
3. 事件事件是指样本空间中的一些特定结果的集合。
事件通常用大写字母A、B、C等表示。
例如,对于掷一颗骰子,事件A表示出现的点数为偶数。
4. 概率概率是对事件发生可能性的度量。
概率的取值范围在0到1之间,表示事件发生的程度大小。
通常用P(A)表示事件A发生的概率。
二、计算方法1. 古典概型古典概型是指随机试验结果的概率均等且有限的情况。
在古典概型中,通过计算事件的可能性与总体样本空间的比值来确定事件发生的概率。
2. 频率概率频率概率是通过大量重复实验,统计事件出现的次数与总实验次数的比值来估计事件的概率。
当实验次数趋于无穷大时,频率概率趋近于真实概率。
3. 组合概率组合概率是指两个或多个事件同时发生的概率。
对于两个独立事件A、B而言,其组合概率为P(A∩B) = P(A) × P(B)。
这里∩表示两个事件的交集。
三、应用领域1. 统计学概率在统计学中起着重要的作用。
通过样本数据的概率分布,可以推测总体的特征。
例如,通过抽样调查统计,可以估算某个群体中某种特征的概率。
2. 金融与保险概率在金融和保险领域广泛应用。
例如,利用概率模型可以评估股票价格的波动性,从而制定适当的投资策略。
在保险中,利用概率来计算保险赔付的概率和保费的定价。
3. 生物学与医学概率在生物学和医学研究中具有重要地位。
例如,通过分析大量的医学数据,可以推测某种疾病的发生概率,进而制定预防和治疗策略。
人教版初中数学九年级上册教学课件 第二十五章 概率初步 随机事件与概率 随机事件

• R·九年级上册
新课导入
情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺 序,为了体现比赛的公平性,决定采取临时抽签的方式决 定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上 面分别标有出场的数字1,2,3,4,5.小军首先抽签,他 在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取 一张纸签.
摸到黑球的可能性大些,摸到球的可能 性大小与袋子中该种球的多少有关.
•
能否通过改变袋子中某种颜色的球的数量,
使“摸出黑球”和“摸出白球”的可能性大小相
同?
试一试!
• 一般地,随机事件发生的可能性是有大 小的,不同的随机事件发生的可能性的大小 有可能相同.
你能举一些反映随机事件发生的可能性大小 的例子吗?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
2. 桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、
2张红桃.从中随机抽取1张.
【教材P129练习 第2题】
(1)能够事先确定抽取的扑克牌的花色吗? 不能
(2)你认为抽到哪种花色的可能性大? 抽到黑桃的可能性大.
(3)能否通过改变某种花色的扑克牌的數量,使“抽到
黑桃”和“抽到红桃”的可能性大小相同?
件.例如:抛掷一枚质地均匀的骰子,骰子停止后朝上的
点数为9是不可能事件;抛掷一枚质地均匀的骰子,骰子
停止后朝上的点数都小于7是必然事件.
课堂小结
必然事件 在一定的条件下,必然会发生的事件. 不可能事件 在一定的条件下,必然不会发生的事件.
随机事件 在一定的条件下,可能发生也可能不发生的事件.
一般地,随机事件发生的可能性是有大小的.
人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。
本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。
因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。
三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。
2.学会使用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和事件的相互独立性。
2.概率公式的运用和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。
2.通过实例分析,让学生理解概率的概念和事件的相互独立性。
3.运用小组讨论的方式,培养学生的团队合作能力。
六. 教学准备1.教学PPT或黑板。
2.与概率相关的实例和习题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。
提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。
通过PPT或黑板,展示概率的定义和符号表示。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。
提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。
提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。
7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和重点知识点。
人教版初中九年级上册数学课件 《利用频率估计概率》概率初步课件5
3 升华提高
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频 率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率 来估计这一事件发生的概率.
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
概率的统计定义: 一般地,在大量重复试验中, 如果事件发生的频率(m/n) 会稳定在某个常数p附近, 那么,事件发生的概率为p.
需要注意的是:概率是针对大量重复雅的各试布·验伯努而利言(瑞的士),大 量试验反映的规律并非在每一次试验中出165现4-1.705
结论:
更一般地,即使试验的所有可能的结果不是 有限个,或各种可能的结果发生的可能性不 相等,也可以通过试验的方法去估计一个随 机事件发生的概率.只要试验次数是足够大 的,频率就可以作为概率p的估计值.
0.501材1 料
抛掷次数(n)
正面向上次 数(频数m)
频率( m ) n
2048
1061
0.5181
4040
2048
0.5069
1200060190.501624000 30000 72088
12012 14984 36124
05005 0.4996 0.5011
“正面向下” 的概率哪
当重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。 随着抛掷次数的增加,一般地频率呈现出一定的稳定性:在0.5 左右摆动的幅度会越来越小。我们称“正面向上”的概率是0.5
的频率 (m )
n
隶莫弗
2 048
1 061
0.518
布丰
4 040
九年级初步概率知识点总结
九年级初步概率知识点总结概率是数学中一个非常重要的概念,它在我们生活中无处不在。
无论是研究投资风险、棋牌游戏的胜率,还是天气预报的准确性,都离不开概率的运算和分析。
在九年级数学课程中,我们初步认识了概率的基本概念与运算法则。
本文将对九年级初步概率知识进行总结和归纳。
一、概率的定义和基本性质概率的定义是指某件事情发生的可能性,用数值来表示,其取值范围在0到1之间。
当事件A必然发生时,概率为1;当事件A 不可能发生时,概率为0。
性质上,事件A的概率加上事件A的对立事件的概率等于1,即P(A) + P(A') = 1。
二、概率的计算方法1. 等可能性原则:当所有可能发生的结果都是等概率时,可以通过相对频率来计算概率。
比如掷硬币的正反面,抽签时的抽中/不抽中等事件。
2. 集合运算法则:对于事件A和事件B,可以通过集合的交、并、差等运算来计算它们的概率。
比如事件A和事件B同时发生的概率为P(A∩B),表示为事件A和事件B的交集。
3. 频率计数法:当问题无法通过等可能性原则计算时,可以用计数法来求解概率。
比如上台阶的步数问题,每次只能上一阶或两阶楼梯,计算上到第n阶楼梯的步数有多少种可能组合。
三、加法公式与乘法公式1. 加法公式:对于不互斥的事件A和事件B,两者同时发生的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A 和事件B同时发生的概率。
2. 乘法公式:对于独立事件A和事件B,两者同时发生的概率为P(A∩B) = P(A) × P(B)。
其中P(A)和P(B)分别表示事件A和事件B发生的概率。
四、条件概率与贝叶斯定理1. 条件概率:当事件A的发生与事件B的发生有关时,事件B发生的条件下事件A发生的概率定义为P(A|B)。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率。
2. 贝叶斯定理:贝叶斯定理是利用条件概率来计算逆概率的公式。
初中数学概率知识点
初中数学概率知识点初中数学概率知识点初中数学概率知识点篇11.随机试验确定性现象:在自然界中一定发生的现象称为确定性现象。
随机现象:在个别实验中呈现不确定性,在大量实验中呈现统计规律性,这种现象称为随机现象。
随机试验:为了研究随机现象的统计规律而做的的实验就是随机试验。
随机试验的特点:1〕可以在一样条件下重复进展;2〕每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3〕进展一次试验之前不能确定哪一个结果会先出现;2.样本空间、随机事件样本空间:我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。
样本点:构成样本空间的元素,即E中的每个结果,称为样本点。
事件之间的根本关系:包含、相等、和事件〔并〕、积事件〔交〕、差事件〔A-B:包含A不包含B〕、互斥事件〔交集是空集,并集不一定是全集〕、对立事件〔交集是空集,并集是全集,称为对立事件〕。
事件之间的运算律:交换律、结合律、分配率、摩根定理〔通过韦恩图理解这些定理〕3.频率与概率频数:事件A发生的次数频率:频数/总数概率:当重复试验的次数n逐渐增大,频率值就会趋于某一稳定值,这个值就是概率。
概率的特点:1〕非负性。
2〕标准性。
3〕可列可加性。
概率性质:1〕P〔空集〕=0,2〕有限可加性,3〕加法公式:P〔A+B〕=P〔A〕+P〔B〕-P〔AB〕4.古典概型学会利用排列组合的知识求解一些简单问题的概率〔彩票问题,超几何分布,分配问题,插空问题,捆绑问题等等〕5.条件概率6.独立性检验设A、B是两事件,假如满足等式P〔AB〕=P〔A〕P〔B〕那么称事件A、B互相独立,简称A、B独立。
初中数学概率知识点篇2考点1:确定事件和随机事件考核要求:〔1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;〔2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:〔1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;〔2〕知道概率的含义和表示符号,理解必然事件、不可能事件的概率和随机事件概率的取值范围;〔3〕理解随机事件发生的频率之间的区别和联络,会根据大数次试验所得频率估计事件的概率。
人教版九年级数学上册《概率》概率初步PPT优质课件
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 概率的进一步认识
3.1.2 用树状图或表格求概率
求真•博学•自强•和谐
1、用树状图 和列表法计算 涉及两步实验的随 机事件 发生的概率.
2、能利用概率解决一 些简单的实际问题.
探索之旅
求真•博学•自强•和谐
1.小石、小剪和小布做 “石头、剪刀、布”游戏。游戏规 则如下:由小石和小剪做“石头” “剪刀”“布”的游戏,如果 两人的手势相同,那么小布获胜,如果两人手势不同那么按照“ 石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石头”. 的规则决定小石和小剪中的获胜者.
假设小石和小剪每次出这三种手势的可能性相同,你认为这
个游戏对三人公平吗?
求真•博学•自强•和谐
展示评价
2.(2016•陕西)某超市为了答谢顾客,凡在本超市购物的 顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们 分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质 均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上 分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与 一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘, 转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次 “有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指 向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随 机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域 的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无
关3.(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的 传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是 :红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C) ,这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈 妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉 粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个 豆沙粽子. (1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的 概率是多少? (2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花 盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的 方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙 粽子的概率.
归纳所学
谈谈你通过本节课的探索解决了 哪些问题?还有哪些困惑?有哪些 新的发现、想法?一起分享吧!
作业布置
必做题:P64 第1、2、3题; 选做题: P64 第4题.