第二十二单元 二次函数 教学设计
九年级上册数学人教版第22单元复习教学设计 教案

第22章二次函数复习教案一、知识网络二、知识梳理+经典例题知识点一:二次函数的概念定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。
知识点三:二次函数y=ax2+k的图像和性质二次函数y=ax2+k(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=ax2的图像形状相同,只是位置不同.函数y=ax2+k(a≠0)的图像是由抛物线y=ax2向上(或下)平移|k|个单位长度得到的.二次函数y=ax2+k(a≠0)与y=ax2(a≠0)的图像之间的关系如下表所示:y=ax2(a≠0)向上平移|k|个单位长度向下平移|k|个单位长度二次函数y=ax2+k的图像和性质如下:a的符号a>0a<0图像开口方向向上向下对称轴y轴y轴最值当x=h时,y有最小值y最小值=0当x=h时,y有最大值y最大值=0知识点五:二次函数y=a(x-h)2+k(a,h,k是常数,a≠0)的图像和性质1、二次函y=a(x-h)2+k(a≠0)的图象是一条抛物线,它的对称轴是x=h,顶点坐标为(h,k),是由抛物线y=ax2(a≠0)向右(左)平移|h|个单位长度,再向上(下)平移|k|个单位长度得到的2、性质a的符号a>0a<0图像开口方向向上向下对称轴x=h x=h顶点坐标(h,k)(h,k)增减性当x<h时,y随x的增大而减小;当x>h时,y随x的增大而增大当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小最值当x=h时,y有最小值,y最小值=k 当x=h时,y有最大值,y最大值=k例5已知二次,函数y=a(x-1)2-c的图像如图所示,则一次函数y=ax+c 的大致图像可()a a>0开口向上a<0开口向下b ab=0对称轴为y轴ab>0(a,b同号)对称轴在y轴左侧ab<0(a,b异号)对称轴在y轴右侧c c=0图像过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b2-4ac b2-4ac=0与x轴有唯一一个交点b2-4ac>0与x轴有两个交点b2-4ac<0与x轴没有交点例7、二次函数y=ax2+bx+c的图象如图所示,则abc,b2-4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个知识点八:二次函数与一元二次方程的联系1、二次函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0).那么一元二次方程的根就是二次函数的图像与x轴交点的横坐标,因此,二次函数的图像与x轴的交点情况决定了一元二次方程根的情况.(1)当二次函数y=ax2+bx+c(a≠0)的图像与x轴有两个交点时,b2-4ac>0,方程ax2+bx+c=0(a知识点九:二次函数与一元二次不等式的关系1、抛物线y=ax2+bx+c(a≠0)在x轴上方的部分点的纵坐标为正,所对应的x的所有值就是不等式ax2+bx+c >0(a≠0)的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式ax2+bx+c<0(a≠0)的解集,不等式中如果带有等号,其解集也相应带有等号2、二次函数y=ax2+bx+c(a≠0)与一元二次不等式ax2+bx+c >0(a≠0)及ax2+bx+c<0(a≠0)之间的关系如下:例9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是()A.x<-1B.x>3C.-1<x<3D.x<-1或x>3知识点十:二次函数与实际问题1、二次函数的应用:二次函数的应用关键在于建立二次函数的数学模型,这就需要认真审题,理解题意,利用二次函数解决实际问题,应用最多的是根据二次函数的最值确定最大利润、最节省方案等问题2、建立平面直角坐标系,用二次函数的图象解决实际问题:建立平面直角坐标系,把代数问题与几何问题进行互相转化,充分结合三角函数、解直角三角形、相似、全等、圆等知识解决问题,求二次函数的表达式是解题关键。
第22章二次函数单元教学计划

第22章二次函数单元教学计划单元备课一、单元名称:二次函数二、单元教学内容及教材分析“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数的基础上,进一步学习二次函数的初步知识。
本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。
尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。
对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。
对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。
在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。
最后,对二次函数的应用部分,教材中大胆采用了前几年的部分中考题,让人感到紧跟中考方向。
另外,从题目的难度看,虽然比旧教材的题目减少了,但是题目的难度却有增无减,这给教师的教和同学们的学都是一个大的考验。
三、单元教学重点难点重点:1.掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
2.学会分析简单的二次函数的有关问题。
难点1、二次函数与一元二次方程的关系。
2、二次函数的应用题。
四、单元教学目标1.知识与技能:让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
2.过程与方法:通过学习和探究会分析简单的二次函数的有关问题。
3.情感态度价值观:要让学生认识到轴对称图形的美感,并理解二次函数的应用之广泛。
五、主要教学方法、手段、选用的教学媒体本章主要采用讨论探索和类比学习的方法,对教材内容让学生先学后教,让学生首先有一个基本的认识,然后指导学生先对基本的题目进行自学、讨论,然后总结规律,最后教师进行点评。
选用班班通媒体辅助教学。
六、单元课时安排22.1 二次函数的图象和性质 7课时22.2 二次函数与一元二次方程 2课时22.3 实际问题与二次函 3课时小结 1课时第二十二章单元测试题选讲 2课时。
初中数学九年级上册第二十二章 二次函数二次函数的概念教案

二次函数的概念柏树中心校:陈锡教学目标1.理解掌握二次函数的概念和一般形式.2.会利用二次函数的概念解决问题.3.会列二次函数表达式解决实际问题.教学重点:掌握二次函数的概念和一般形式教学难点:会列二次函数表达式解决实际问题教学过程:一、情境引入:雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示?1.什么叫函数?2.什么是一次函数?正比例函数?3.一元二次方程的一般形式是什么?二、讲授新课:1探究:二次函数的定义问题1:正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。
问题2:n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?想一想:问题1-3中函数关系式有什么共同点?y=6x2y=20x2+40x+20m=12n2-12n2、归纳总结:形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.注意:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.例题:例1下列函数中哪些是二次函数?为什么?(x是自变量)①y=ax2+bx+c②s=3-2t² ③y=x2④y=1x2⑤y=x²+x³+25 ⑥y=(x+3)²-x²方法总结:判断一个函数是不是二次函数,先看原函数和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊形式如y=ax2,y=ax2+bx, y=ax2+c等想一想:二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?3、二次函数概念的应用例2 :y=(m+3)x m2-7(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?变式训练:1、已知: y=(k+2) x|k| ,k取什么值时,y是x的二次函数?2、若函数y=(m2−9)x2+(m+2)x+4是二次函数,求m的取值范围3、若函数y=(m−1)x m2−2m−1+ (m-3)x+4是二次函数,求m的取值范围例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.三、课堂练习:1.把y=(2-3x)(6+x)变成一般式,二次项为_____,一次项系数为______,常数项为2.函数y=(m-n)x2+ mx+n是二次函数的条件是( )A . m,n是常数,且m≠0B . m,n是常数,且n≠0C. m,n是常数,且m≠n D . m,n为任何实数3.下列函数是二次函数的是( )A.y=2x+1 B.y=1xC.y=3x2+1 D.y= √x+14. 已知函数y=3x2m-1-5①当m=__时,y是关于x的一次函数;②当m=__时,y是关于x的反比例函数;③当m=__时,y是关于x的二次函数 .6.写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.7.某商店经销一种销售成本为每千克40元的商品,根据市场分析,若按每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种商品的销售情况,请解答下列问题:(1)当销售单价为每千克55元时,计算月销售量和销售利润分别为多少?(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出自变量x的取值范围)8.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求(1)y与x之间的函数解析式及自变量x的取值范围;(2)当x=3时矩形的面积.四、课堂小结:形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.注意:(1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项.。
人教版九年级数学上册第二十二章二次函数大单元教学设计

(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。
初中数学教材解读人教九年级上册第二十二章 二次函数二次函数教学设计

二次函数教学设计一、教材分析《二次函数》是人教版《数学》九年级上册中的第22章第一节,是《义务教育课程标准》“数与代数”领域的内容。
二次函数是九年级的第一节函数课,初中涉及到的“一元一次方程”,“二元一次方程组”,“一次函数”,“一元二次方程”,这几章代数的学习都为接下来的函数的进一步学习奠定了基础。
“二次函数”的学习,使得学生在思想上认识到函数的一般性以及函数与生活中实际问题的联系。
二、学情分析九年级的学生有一定的逻辑思考能力,也有主动思考的意识,相对比较活跃,可以多让学生参与到课堂中来,让学生主动思考,多与学生互动,引导学生自主学习。
三、教学目标1、理解并掌握二次函数的概念,能够判别二次函数;2、会求一些简单的实际问题中二次函数的解析式和自变量的取值范围;3、在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义。
四、教学重难点教学重点:对二次函数概念的理解教学难点:由实际问题确定函数解析式,以及自变量的取值范围。
教学过程:一、知识回顾:1、前面我们学过什么函数?2、一次函数的一般形式?在表达式中自变量是什么?3、什么是函数?二、自主探索,讲授新知问题1:正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为①问题2:n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n的关系表示为②问题3:某种产品现在的年产量是20t,计划今后两年增加产量。
如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系怎样表示?析:这种产品的现在产量是20t, 一年后的产量_____________ t,再经过一年后的产量是______________t ,即两年后的产量y=____________________ ③1、思考:函数式①②③有什么共同点?(1)从形式上看:等号两边都是什么式?(2)自变量的最高次数分别是多少?2、定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数,其中x 是自变量,自变量x的取值范围是一切实数。
第22章 人教版数学九年级上册教案1 二次函数

22.1 二次函数的图象和性质22.1.1 二次函数课题22.1.1 二次函数授课人知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,让学生归纳二次函数的概念并能够根据函数特征识别二次函数.数学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.问题解决通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来于生活,又服务于生活的辩证观点.教学目标情感态度通过观察、操作、交流、归纳等数学活动,加深对二次函数概念的理解,发展学生的数学思维,增强学生学好数学的愿望与信心.教学重点对二次函数的理解.教学难点由实际问题确定函数解析式和确定自变量的取值范围.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.我们学习过哪些函数呢?试着举例说明一下.2.下列函数是什么函数?有不认识的吗?能说说你所认识的函数的图象和性质吗?(1)y=2x+1;(2)y=-4x;(3)y=3x2+1.3.学习函数应从哪几个方面进行探究呢?师生活动:教师提出以上问题,引导学生回答,师生共同回顾、交流,适时做好总结.问题解析:1.学习过的函数有一次函数,正比例函数是其特殊形式.2.(2)是正比例函数;(1)(2)是一次函数.3.学习函数一般是从函数的定义、函数的一般形式、函数的图象及其性质、函数的实际应用等方面进行学习.由回顾旧知识入手,通过回顾已经学习过的函数的相关知识对要学习的新知识有明确的方向,通过类比进行延伸,符合学生的认知规律.活动一:创设情境导入新课【课堂引入】图22-1-5问题:如图22-1-5,正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,则y与x以学生熟悉、感兴趣的问题作为课题引入,激发学生学习新知识的兴趣,同时为引入新课奠定基础.之间的函数解析式是什么?它是一次函数吗?有什么特点?学生思考后回答,教师点拨:这是我们今天需要学习和研究的“二次函数”数学模型.活动二:实践探究交流新知1.探究新知(1)n个球队参加比赛,每两个队之间都要进行一场比赛,场数m与球队数n之间有什么关系?每个队要与几个队各比赛一场?(2)某产品今年的年产量是20 t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将由计划所定的x的值而确定,y与x之间的关系应怎样表示?教师提问:(1)以上问题中有哪些变量?其中哪些是自变量?列出问题中的函数解析式;(2)观察上面的函数解析式,分析解析式有什么特点.让学生独立思考完成解答,教师适当地引导与点拨,共同得到问题的结论.教师板书:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.解析新知教师指导学生观察二次函数的定义,交流、讨论二次由现实中的实际问题入手,给学生创设熟悉的问题情境,通过问题的解决为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲,学生通过分析、交流探究二次函数的概念,加深对概念的理解,为解决问题打下基础.函数的特征,并进行总结:①等式左边是函数y,右边是关于自变量的整式;②a,b,c都是常数,a≠0;③等式右边自变量的最高次数为2,一次项和常数项可以为0,但是必须保留二次项;④自变量x的取值范围是任意实数.教师做好归纳:二次函数的一般形式:y=ax2+bx+c(a,b,c是常数,a≠0),ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c是常数项.活动三:开放训练体现应用【应用举例】例1 下列函数中,属于二次函数的是( C )A.y=2x-3B.y=(x+1)2-x2C.y=2x2-7xD.y=-x例2 关于函数y=(500-10x)(40+x),下列说法不正确的是( C )A.y是x的二次函数B.二次项系数是-10C.一次项是100D.常数项是20000例3 若y=(m+1)xm2-6m-5是二次函数,则m的值为 7 .师生活动:学生自主进行解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,应用举例有利于学生对二次函数概念的理解,能起到及时巩固的作用.共同得到正确的结论,并获得解题的经验.【拓展提升】例4 李师傅要在一张长、宽分别为50 cm和30 cm 的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体箱子的底面积为ycm2.求:(1)y与x之间的函数解析式;(2)自变量x的取值范围;(3)当x=5 cm时,长方体箱子的底面积.教师重点关注:学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考、充分讨论,争取让学生自己得到解答方法,并对学习有困难的学生适当引导、点拨.例4中的三个问题层层递进,在复习旧知识的同时获得解决新问题的经验,进一步内化新知、突破难点.活动四:课堂总结反思【达标测评】1.下列函数中是二次函数的是( B )A.y=x+12 B.y=3(x-1)2C.y=(x+1)2-x2D.y=3x-12.若函数y=(a-1)x2+2x+a2-1是关于x的二次函数,则( C )A.a=1B.a=±1C.a≠1D.a≠-13.已知关于x的函数y=(m2-1)xm2-m是二次函数,求m的值.从简单的应用开始,及时巩固新知,让学生获得对二次函数深层次的理解,从多个角度进行检测,达到学有所成的目的.4.已知二次函数y=2x2+x-3.(1)当x=1时,求它所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?请同学们说一说.教师进行总结:二次函数的定义及各部分名称;根据实际问题列二次函数解析式及求函数值.2.布置作业:(1)教材第29页练习第1,2题.(2)教材第41页习题22.1第1,2题.学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在复习回顾环节中,教师引导学生复习一次函数和一反思教学过程和教师表现,进一步优化操作流程和提升自身素质.元二次方程的知识,为学习二次函数做好铺垫;在探究新知过程中,通过类比学习使知识简单化,思路清晰化,学习效果较好;在课堂训练环节中,选用例题典型且有思维深度,学生能够运用所学新知进行解答,能够圆满完成教学任务.②[讲授效果反思]对于二次函数的认识,强调几点:(1)一般形式中各项的名称;(2)二次项系数不能为0;(3)二次函数解析式的多种形式.③[师生互动反思]从课堂氛围和课堂效果分析,学生能够积极投入新知学习中,能够集中精力完成学习任务.④[习题反思]好题题号 错题题号 典案二导学设计学习目标:1、通过观察发现二次函数的特点,得出二次函数的定义,能区分二次函数;2、能够根据实际问题,熟练地列出二次函数关系式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。
人教版九年级数学上册第二十二章《二次函数》教案
第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。
人教初中数学《第二十二章《二次函数(数学活动)》教学设计
二次函数一、内容和内容解析 1.内容利用二次函数解决具体数学问题. 2.内容解析二次函数是描述现实世界变量之间关系的重要数学模型,例如生活中涉及的求最大利润,最大面积等实际问题都与二次函数的最大(小)值有关.本节课是在学生学习二次函数的图象和性质的基础上,运用有关结论解决相关的数学问题. 基于以上分析,确定本节课的教学重点是:利用二次函数相关知识解决具体数学问题. 二、目标和目标解析 1.目标能够从数学问题中抽象出二次函数关系,并运用二次函数及性质解决具体数学问题. 2.目标解析达成目标的标志是:学生通过经历探索具体问题中数量关系和变化规律的过程,进一步体验如何从具体数学问题中抽象出二次函数模型,将已有知识综合运用来解决数学问题. 三、教学问题诊断分析学生在学习了一次函数和二次函数的图象与性质后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别函数的增减性和最值,但还是不能灵活运用数学知识.所以教学中教师要提醒学生理解题意并回忆每道题所涉及的知识点,引导学生利用二次函数的相关知识进行解决.基于以上分析,本节课的教学难点是:将具体数学问题转化为二次函数问题. 四、教学过程设计1.复习二次函数解决实际问题的方法问题1 解决二次函数实际问题你用到了什么知识?所用知识在解决生活中问题时,还应注意哪些问题?师生活动:学生思考后回答,师生共同归纳:(1)由于抛物线y =ax 2+bx +c 的顶点坐标是图象的最低(高)点,可得当x =-2b a 时,二次函数y =ax 2+bx +c 有最小(大)值244ac b a-;(2)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围; (3)在自变量的取值范围内,求出二次函数的最大值或最小值.设计意图:培养学生归纳概括能力,并利用所学知识构建数学模型的能力.为本节课的内容进行准备.2.探究与二次函数有关的数学问题 教科书第54页,活动1(1).问题2 如何利用二次函数的知识来解决?哪个量为自变量,哪个量为函数?师生活动:学生独立思考并进行小组讨论,在整个活动的描述中,个位上的数是变化的,而它的变化会使两个两位数的乘积发生相应的变化,所以个位上的数应该为自变量,而函数为乘积后的结果.师生共同总结后,列出二次函数解析式,并求出最大值.过程如下:(1)设第一个两位数的个位上的数为x ,则第二个两位数的个位上的数为(10-x ).两个两位y=(90+x)[90+(10-x)]=(90+x)(100-x)=-x2+10x+9000.即当x=5时,95与95的乘积是最大值,最大值为9025.设计意图:通过分析题意,正确地表示出函数关系式,渗透函数思想.教科书第54页,活动1(2).问题3 如何利用二次函数的知识来解决?哪个量为自变量,哪个量为函数?师生活动:学生独立思考并进行小组讨论,在整个活动的描述中,十位上的数与个位上的数组成的数是变化的,而它的变化会使两个三位数的乘积发生相应的变化,所以十位上的数与个位上的数组成的数为自变量,而函数为乘积后的结果.师生共同完成解题过程:(2)设第一个三位数的十位上的数与个位上的数组成的数为x,则第二个三位数的十位上的数与个位上的数组成的数为(100-x).两个三位数的乘积y=(900+x)[900+(100-x)]=(900+x)(1 000-x)=-x2+100x+900 000.即当x=50时,950与950的乘积是最大值,最大值为902500.设计意图:通过分析题意,正确地表示出函数关系式,渗透函数思想.教材第54页,活动2.问题4 你能根据题意画出曲线L吗?它是什么形状?师生活动:学生独立画图后小组讨论交流.教师在巡视时注意搜集学生画出的图象,尤其关注不同结果的小组,在展示时给予充分的时间,使学生在相互交流中加深对函数图象的认识.在共同讨论中确定这些点的连线是抛物线(图1).图1教师追问:如何证明这条曲线就是抛物线呢?如何确定解析式呢?在坐标系中,如何能将横、纵坐标联系在一起呢?学生思考并相互补充,想到利用勾股定理来解决.师生共同梳理过程(图2):过点A作AB⊥PM.在Rt△PAB中,有PB2+AB2=PA2.∴PA2=(y-2)2+x2.∴(y -2)2+x 2=y 2.整理,得y =241x +1.从而说明曲线L 是抛物线.图2设计意图:锻炼学生的动手操作能力,让学生体会数形结合思想和函数思想. 3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题: (1)本节课学了哪些主要内容?(2)解决问题的一般步骤是什么?应注意哪些问题? (3)学到了哪些思考问题的方法?设计意图:通过小结,让学生梳理本节课所学内容,加深对二次函数的认识,为熟练地应用知识解决数学问题提供方法. 4.布置作业教科书复习题22第9题. 五、目标检测设计1.如图,已知平行四边形ABCD 的周长为8 cm ,∠B =30°,边长AB =x cm .(1)写出平行四边形ABCD 的面积y (单位:cm 2)与x 的函数关系式,并求自变量x 的取值范围. (2)当x 取什么值时,y 的值最大?并求最大值.设计意图:考查学生对本节课所学的内容的理解和掌握的程度.3.B 船位于A 船正东26 km 处,现在A ,B 两船同时出发,A 船以12 km/h 的速度朝正北方向行驶,B 船以5 km/h 的速度向正西方向行驶,何时两船相距最近?最近距离是多少?设计意图:考查学生对本节课所学的内容的理解和掌握的程度.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab - (3)3 五、1.(1)22y x xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计
初中九年级数学上册《第二十二章二次函数》大单元跨学科教学课时教学设计[2022课标]一、教学目标1.会用数学的眼光观察现实世界:通过本章《第二十二章二次函数》的学习,学生能够运用二次函数的知识观察体育与物理现象中的运动轨迹和变化规律,如铅球投掷的抛物线轨迹、竖直上抛运动中小球的高度变化等,从而发现数学与现实生活及学科的紧密联系。
2.会用数学的思维思考现实世界:学生能够运用二次函数的性质(如开口方向、顶点坐标、对称轴等)和解析式,分析体育和物理问题中的量化关系,如通过调整参数来优化运动效果或模拟实验现象,培养逻辑思维和问题解决能力。
3.会用数学的语言表达现实世界:学生能够将体育和物理中的问题抽象成二次函数模型,建立相应的数学表达式,并通过计算、推导和论证,用准确的数学语言描述和解释这些现象,最终得出科学结论。
二、教学内容分析本章主要探讨二次函数的定义、图象、性质以及应用,是初中数学知识体系中的重要组成部分。
从学科内部来看,二次函数的学习是在一次函数基础上的深化和拓展,通过本章的学习,学生能够理解并掌握二次函数的基本概念、图象特征以及增减性,为后续学习一元二次方程、二次不等式等内容打下坚实基础。
从跨学科角度来看,二次函数在体育、物理等领域有着广泛的应用。
在体育项目中,如投掷、跳跃等,运动员的运动轨迹往往可以抽象为二次函数图象,通过二次函数的解析式可以精确描述运动员的运动状态,为训练提供科学依据。
在物理学中,二次函数模型被广泛应用于描述抛体运动、振动等自然现象,有助于学生理解自然界中复杂运动的本质规律。
在本章的教学过程中,教师应注重引导学生将二次函数知识与实际问题相结合,通过跨学科的教学活动,激发学生的学习兴趣,培养学生的应用意识和实践能力。
结合体育、物理等学科的实例,让学生深刻体会到数学知识在解决实际问题中的重要作用,提升数学学习的价值和意义。
三、教学重点1.理解并掌握二次函数的定义、图像及基本性质。
人教版数学九年级上册教案22.1.1《二次函数》
人教版数学九年级上册教案22.1.1《二次函数》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习。
二次函数是中学数学中的重要内容,也是高考中的热点之一。
本章内容主要包括二次函数的定义、图象与性质,以及二次函数的应用。
在学习本章之前,学生已经掌握了函数、方程等基础知识,为本章的学习打下了基础。
二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于二次函数这一复杂的概念,仍需要通过具体实例和实际操作来理解和掌握。
在学习过程中,学生可能对二次函数的图象与性质产生困惑,需要教师进行引导和解释。
三. 教学目标1.了解二次函数的定义和一般形式;2.掌握二次函数的图象与性质,并能运用其解决实际问题;3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.二次函数的定义和一般形式;2.二次函数的图象与性质;3.二次函数的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的知识;2.使用多媒体辅助教学,展示二次函数的图象与性质;3.学生进行小组讨论和合作交流,提高学生的动手能力和团队协作能力。
六. 教学准备1.多媒体教学设备;2.教学PPT;3.练习题和测试题;4.教学课件。
七. 教学过程导入(5分钟)教师通过一个实际问题引入二次函数的概念,如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。
引导学生思考:这个二次函数是什么样子?它的图象是什么样的?呈现(10分钟)教师通过PPT展示二次函数的一般形式和图象,解释二次函数的定义和性质。
同时,教师可以通过举例来说明二次函数的应用,如:抛物线、顶点坐标的计算等。
操练(10分钟)教师布置一些练习题,让学生动手计算和绘制二次函数的图象。
教师可以学生进行小组讨论,共同解决问题。
巩固(10分钟)教师通过一些实际问题,让学生运用二次函数的知识来解决问题。
教师可以引导学生进行思考和讨论,帮助学生巩固所学知识。
拓展(10分钟)教师可以引导学生思考:二次函数的图象和性质与其他函数有什么不同?如何判断一个函数是否为二次函数?教师可以学生进行小组讨论,引导学生进行拓展思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二单元二次函数
22.1.2 二次函数2
y=的图像和性质(第一课时)
ax
一、教学目标
(一)、知识与技能
1、会用描点法画出2ax
y=的图象.
2.结合2ax
y=的图象初步理解抛物线及其有关的概念.并从图像上认识二次函数2
y=的性质
ax
(二)、过程与方法
先画出函数2
ax
y=的图像,然后观察图像并结合所列函数对应值表探究其性质,最终归纳整理得出结论。
(三)、情感态度与价值观
在画二次函数图像的过程中渗透数形结合思想,在探究二次函数2
y=的性质过程中获得发现的兴趣。
ax
二、重点和难点
1、重点:二次函数2ax
y=的图像。
2、难点:从有关的图像中得出二次函数2ax
y=的性质。
三、教学方法:讲授法
四、学生学法:合作交流、练习法
五、教学过程
一、复习引入
1、一次函数一般表达式:
2、回顾所学过的一次函数的图象的形状?描点法作图的一般步骤?思考:一次函数的图象又如何画呢?
二、自主探究
y=的图像.
1、用描点法画出2x
①列表:②描点:③连线:
2、结合图象讨论性质是数形结合研究函数的重要方法, 根据二次函数2x y =的图象研究其性质: (1)二次函数2x y =的图象是一条_________; (2)抛物线2x y =的对称轴是_________;
(3)抛物线的顶点即是抛物线与对称轴的_________;
2x y =的顶点坐标是_________;
(4)函数的增减性:在对称轴的左边,y 随x 的增 大而__________________;在对称轴的右边,y 随x 的增 大而__________________;
实际上,二次函数的图像都是抛物线,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点。
例1.在上面的坐标系中,画出函数22
1x y = 和22x y =的图象。
第一步:列表:
思考:函数22
x y =、22x y =的图象与2x y =的图象相比较,有什么共同点和不同点?
(小组交流讨论,并将结果填写在下面)
共同点:_______________________________________________________________ 不同点:_______________________________________________________________ 例2.在下面的坐标系中,画函数2-x y =、22
1x y -= 和22x y -=的图象。
第一步:列表:
第二步:描点 第三步:连线 思考:函数2x y -=、22
1x y -=与22x y -=的图
象相比较,有什么共同点和不同点? (小组交流讨论,并将结果填写在下面)
共同点:_____________________________________________ 不同点:_______________________________________________________________ 归纳:
一般地,抛物线2ax y = 的对称轴是_________,顶点是_________;当 a>0时,抛物线的开口向_________,顶点是抛物线的最_________点,a 越大,抛物线的开口越_________,单调性:________________;当 a<0时,抛物线的开口向_________,顶点是抛物线的最_________点,a 越大,抛物线
的开口越_________,单调性________________;
三、巩固练习
1、在同一坐标系中,画出函数24x y =、24x y -= 和24
1x y -=的图象。
并
分别写出它的开口方向、对称轴及顶点坐标。
第一步:列表:
第二步:描点 第三步:连线
四、拓展提高
例3.已知二次函数 122
1---=k k x k y )(的图象开口向上,求k 的值。
五、板书设计
抛物线y=ax2的性质
七、作业布置
必做题:习题22.1第3、4题
选做题:根据第三题说说函数2
y=的图像的联系与区别。
3-x
y=与2
3x。