201x-201x学年九年级数学上册第二十二章二次函数22.3实际问题与二次函数第2课时教案 新人教

合集下载

2019九年级数学上册 第二十二章 22.3 22.3.2 实际问题与二次函数(二)备课资料教案

2019九年级数学上册 第二十二章 22.3  22.3.2 实际问题与二次函数(二)备课资料教案

第二十二章 22.3.2实际问题与二次函数(二)
用二次函数解决抛物线建筑的有关问题
建立如图所示的直角坐标求大孔的水面宽度
解:设大孔对应的抛物线所对应的函数解析式为a=-0.06,
y=-0.06x2+6.当y=4.5时,-0.06x2+6=4.5,解得x=±
故可设其对应的函数解析式为+6.
关于的函数的图象大致是图中的(
A B C
D
答案:C
点拨:本题是三角形的有关面积以及函数图象的综合题,解答时根据已知首先求得△EFG的面积y关于x的函数解析式,然后根据函数解析式判断函数图象.
因为正三角形ABC的边长为1,所以其面积为.因为AE=BF=CG=x,所以BE=FC=AG=1-x,又因为∠A=∠B=∠
C=60°,所以△AEG≌△BFE≌△CGF,所以△AEG、△BFE、△CGF的面积都相等.过点E作EH⊥A G于H,易求得EH=x,
所以△AEG的面积为x(1-x),所以y=-3×x(1-x)=x2-x+.因为>0,所以抛物线y=x2-x+开口向上.又因为b2-4ac<0,所以抛物线与x轴无交点.故应选C.。

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

1 令 x=0 得 y=− 45 ×(0 − 15)2 + 45=40,
∴ 点 B 的坐标为 (0,40).
∴ 这名运动员起跳时的竖直高度为 40 米.
能力提升 悬索桥两端主塔塔顶之间的主悬钢索,其形状 可近似地看作抛物线,水平桥面与主悬钢索之间用垂直 钢索连接. 已知两端主塔之间的水平距离为 900 m,两主 塔塔顶距桥面的高度为 81.5 m,主悬钢索最低点离桥面 的高度为 0.5 m.
当 y = 0 时,可求得点 C 的坐标为 (2.5,0);
同理,可求得点 D 的坐标为 (-2.5,0). y 根据对称性,如果不计其它因素,
●B (1,2.25)
A●(0,1.25)
那么水池的半径至少要 2.5 m,才
能使喷出的水流不致落到池外.

D
O

C
x
例3 如图,一名运动员在距离篮球框中心 4 m (水平距 离) 远处跳起投篮,篮球准确落入篮框,已知篮球运行 的路线为抛物线,当篮球运行的水平距离为 2.5 m 时, 篮球达到最大高度,且最大高度为 3.5 m.如果篮框中 心距离地面 3.05 m,那么篮球在该运动员出手时的高度 是多少?
OABC 的长是 12 m,宽是 4 m,按照图中所示的平面
直角坐标系,抛物线可以用 y= − 1 x2 + 2x + c 表示. (1)请写出该抛物线的函数解析式;6
解:根据题意,得 C (0,4). 将其代入
抛物线 y=− 1 x2 + 2x + c 中,得 c=4,

6
抛物线解析式为
y=−
1
x2
例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数

人教课标版初中数学九年级上册第二十二章22.3 实际问题与二次函数二次函数与一元二次方程教案本节课的主要内容是二次函数与一元二次方程之间的关系,要求用函数的观点看方程,渗透数形结合的思想。

【教学目标】一、知识与技能1、经历复习二次函数与一元二次方程关系的过程,进一步体会方程与函数之间的互相转化,能够用函数的观点看方程。

2、掌握二次函数与 x 轴交点的个数与一元二次方程的根的关系,掌握何时方程有两个不等的实根、两个相等的实根和没有实根,并熟练的用于解题中。

3、掌握一元二次方程的根就是二次函数与y =m 交点的横坐标.二、过程与方法1、经历复习二次函数与一元二次方程的关系的过程,培养学生的综合解题能力。

2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3、通过学生共同学习和讨论,培养合作交流意识.三、情感态度与价值观1、经历复习二次函数与一元二次方程的关系的过程,认识到事物的联系与转化,体验探究的乐趣。

2、学会用辨证的观点看问题,具有初步的创新精神和实践能力.【教学重点】1.掌握方程与函数之间的联系.2. 掌握一元二次方程的实数根个数与二次函数与x轴公共点个数的对应关系,根据具体的函数图像解决有关问题;3.掌握二次函数y=ax²+bx+c(a≠0)图象与直线y=m公共点的横坐标,就是一元二次方程ax²+bx+c=m(a≠0)的根。

【教学难点】1、掌握二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 探索方程与函数之间的联系的过程.2、掌握由方程根来求待定系数,或由待定系数的取值决定方程根的解题套路. 【教学方法】讲练法,教师引导启发,学生合作探索【教学过程】课前复习二次函数与一元二次方程的关系课前练习考点分析:本题考查了二次函数的顶点式,图象与x轴交点坐标的求法,函数值与对应自变量取值范围的关系,利用函数图像解题是关键,让学生进一步体会"数因形而直观,形因数而入微".例2.“若二次函数y=ax²+bx+c的图象与直线y=h有两个公共点,则一元二次方程ax²+bx+c=h有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b解题分析:依题意画出函数y=(x-a)(x-b)图象草图,根据二次函数的增减性求解.考点分析:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论.例3. 已知:函数y=ax2+(3a-1)x+2a+1(a为常数).若该函数图象与坐标轴只有两个交点,求a的值;解题分析:根据a取值的不同,有三种情形,需要分类讨论,避免漏解.此题要求学生自己画图分析,老师补充强调。

22.3 实际问题与二次函数(商品利润问题)课件人教版数学九年级上册

22.3  实际问题与二次函数(商品利润问题)课件人教版数学九年级上册

巩固练习
该怎么解这个题 目呢?
本题是以文字信息形式出现的求最大总收入的 实际应用问题,解题时要抓住题目中关键词语, 对信息进行梳理,分析,建立二次函数模型。
新知探究 知识点一:利润问题中的数量关系
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此只要考虑 单件利润就可以,故 20-x≥0,且x≥0, 因此自变量的取值范围是 0≤x≤20.
新知探究 知识点一:利润问题中的数量关系
③降价多少元时,利润y最大,是多少? 即:y=-20x2+100x+6000,
复习回顾
利润问题 一.几个量之间的关系. 1.总价、单价、数量的关系:总价=单价×数量 2.利润、售价、进价的关系:利润=售价-进价 3.总利润、单件利润、数量的关系:总利润=单件利润×数量 二.在商品销售中,通常采用哪些方法增加利润?
新课导入
某商店经营衬衫,已知获利以y(元)与销售单价x(元)之间满足关系式y=x2+24x+2956,则此店销售单价定为多少时,获利多少?最多获利多少?
巩固练习
解析 总利润=单件产品利润×销售教量
解:(1)获利(30-20)[105-5(30-25)]=800(元)。 (2)设售价为每件x元时一个月的获利为y元。 由题意得y=(x-20)[105-5(x-25)] =-5x2+330x-4600 =-5(x-33)2+845 当x=33时,y的最大值是845. 故当售价定为每件33元时,一个月获利最大,最大利润是845元。
新课导入
在商品经营活动中,经常会遇到求最大利润、最大铸量等问题,解此类题的关健 是通过题意,找出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围。

人教版九年级数学上册第22章《 二次函数:22.3.2 利用二次函数求实际中最值问题》

人教版九年级数学上册第22章《 二次函数:22.3.2  利用二次函数求实际中最值问题》
第二十二章 二次函数
22.3 实际问题与二次函数
22.3.2 利用二次函数求实际中最值问题
第二十二章 二次函数
运用二次函数的代数模型表示实际问题时,实际 上是根据实际问题中常量与变量的关系,构造出 y=ax2+bx+c,y=a(x-h)2+k或y=a(x-x1)(x-x2)等二次函 数模型,为运用二次函数的性质解决实际问题奠定基 础.
第二十二章 二次函数
(2)在降价的情况下,最大利润是多少?请你参考(1)的讨 论,自己写出答案.
解:设降价x元时利润最大, 则每星期可多卖20x件,实际卖出(300+20x)件, 销售额为(60-x)(300+20x)元,买进商品需付 40(300+20x)元, 因此,得利润 y=(60-x)(300+20x)-40(300+20x), 即y=-20x2+100x+6000(0≤x≤20), 当x=2.5时,y最大, 也就是说,在降价的情况下,降价2.5元, 即定价57.5元时,利润最大,最大利润是6125元.
分析:调整价格包括涨价和降价两种情况.我们先 来看涨价的情况.
第二十二章 二次函数
(1)设每件涨价x元,则每星期售出商品的利润y随之变
化.我们先来确定y随x变化的函数解析式.涨价x元时,
每星期少卖_1_0_x__件,实际卖出(_3_0_0_-__1_0_x_)_件,销售额 为_(_6_0_+__x_)_(_3_0_0_-__1_0_x_)元,买进商品需付_4_0_(_3_0_0_-__1_0_x_)
第二十二章 二次函数
【例1】某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日 租金为400元时,可全部租出;当每辆车的日租金每增 加50元时,未租出的车将增加1辆;公司平均每日的各 项支出共4 800元.设公司每日租出x辆车,日收益为y 元,(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x辆车时,每辆车的日租金为 (_1__4_0_0_-__5_0_x_)_(_0_≤__x_≤__2_0_)_元(用含x的代数式表示); (2)求租赁公司日收益y(元)与每日租出汽车的辆数x之 间的函数关系式.

22、3 实际问题与二次函数(第2课时) -人教版数学 九年级上册

22、3 实际问题与二次函数(第2课时) -人教版数学 九年级上册
A.最大值为5万元 B.最大值为7万元 C.最小值为5万元 D.最大值为6万元
2 . 某 种 商 品 每 件 进 价 为 20 元 , 调 查 表 明 : 在 某 段 时 间 内 若 以 每 件 x 元 (20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商 品的售价应为_2_5__元.
∵a = -2<0,图象开口向下,
∴当x = 55时,Q最大= 1250. ∴当售价在50~70元时,售价x是55元时,获利最大, 最大利润是1250元.
(3)若4月份该商品销售后的总利润为1218元,则该商
品售价与当月的销售量各是多少?
解:∵当40≤x≤50时, Q最大= 1200<1218. 当50≤x≤70时, Q最大= 1250>1218. ∴售价x应在50~70元之间.
8000元不是每月最大利润,最大月利润为9000元,
此时篮球的售价为70元.
课堂练习
1. 某种商品每件的进价为20元,调查表明:在某 段时间内若以每件x元(20 ≤x ≤30)出售,可卖出 (300-20x)件,使利润最大,则每件售价应定 为 25 元.
2. 进价为80元的某件定价100元时,每月可卖出2000件, 价格每上涨1元,销售量便减少5件,那么每月售出衬 衣的总件数y(件)与衬衣售价x(元)之间的函数关系式 为 y=2000-5(x-100) .每月利润w(元)与衬衣售价 x(元)之间的函数关系式为 w=[2000-5(x-100)](x-80) .(以上 关系式只列式不化简).
Q
解得:51≤x≤53.
1242
∵Q=-2(x-55)2 +1250的顶点
不在51≤x≤53范围内,
又∵a =-2<0,
∴当51≤x≤53时 ,Q随x的增大而增大. ∴当x最大 = 53时,Q最大= 1242.

第二十二章 二次函数 22.3 实际问题与二次函数:拱桥问题 初中九年级数学教案教学设计课后反思

第二十二章 二次函数 22.3 实际问题与二次函数:拱桥问题 初中九年级数学教案教学设计课后反思

知识讲解(难点突破)二、合作探究达成目标探究点用二次函数解决拱桥类问题活动:出示教材第51页探究三:如图是抛物线形拱桥,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?.思考:(1)如何根据图22.3-2建立平面直角坐标系?不同的建立方式,求得抛物线解析式是否一样?(2)水面下降1m的含义是什么?(3)如何求宽度增加多少?(4)各小组分别建立不同的平面直角坐标系求解后展示.【展示点评】本题中建立平面直角坐标系的方法有多种,但以抛物线的顶点为原点建立平面直角坐标系的方法较为简单,水面下降1米,即纵坐标减1,代入解析式即可计算出横坐标.【小组讨论】自主学习中的第1题和此题有何联系?用二次函数知识解决抛物线形建筑问题的一般步骤是怎样的?【反思小结】首先是审题,弄清已知和未知,在建立适当的平面直角坐标系后,合理的设出二次函数的解析式并求解出解析式,最后利用解析式求解得出实际问题的答案.三、达标检测 反思目标1.某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8 m ,两侧距地面4 m 高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)( B )A .9.2 mB .9.1 mC .9 mD .5.1 m2. 某涵洞是抛物线形,它的截面如图所示.现测得水面宽AB =4m ,涵洞顶点O 到水面的距离为8m.在图中直角坐标系内,涵洞所在抛物线的函数关系式是__y =-2x2__.这节课学习了用什么知识解决实际问题?解决问题的一般步骤是什么?实际问题转化抽象数学问题数学知识运用问题的解决 一般步骤:(1)根据已知条件建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)求出函数解析式;(4)根据二次函数的解析式解决具体的实际问题。

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时实际问题与二次函数(2)
※教学目标※
【知识与技能】
将生活实际问题转化为数学问题,进一步体验二次函数在生活中的应用.
【过程与方法】
通过对生活中实际问题的探究,体会数学在生活实际中的广泛应用,发展数学思维.
【情感态度】
感受数学在生活中的应用,激发学生学习热情,体验解决问题的方法,培养学生的合作交流意识和探索精神.
【教学重点】
利用二次函数解决有关拱桥问题.
【教学难点】
建立二次函数的数学模型.
※教学过程※
一、问题导入
问题为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
答案解:(1)由题意,得()
7002045201600
y x x
=--=-+.
(2)P=()()()2
2
402016002024006400020608000
x x x x x
--+=-+-=--+,∵x≥45,a=-20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.
(3)由题意,得()2
206080006000
x
--+=.解得
150
x=,270
x=.
∵抛物线()2
20608000
P x
=--+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元.又x≤58,∴50≤x≤58.∵在201600
y x
=-+中,20
k=-<0,∴y随x的增大而减小.∴当x=58时,y最小值=-20×58+1600=440,即超市每天至少销售粽子440盒.
二、探索新知
探究图中是抛物线形拱桥,当拱桥离水面2m时,水面宽4m,水面下降1m,水面宽度增加多少?
提问
(1)石拱桥桥拱的形状可以近似地看成是抛物线吗?
(2)将本体转化为二次函数问题,需要求出二次函数解析
式,根据题中条件,求二次函数解析式的前提是什么?
(3)题中“水面下降1m的含义是什么?”水面下降的同
时水面宽度有什么变化?如何求宽度增加多少?
()264- 解决问题:以抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立坐标系.设这条抛
物线表示的二次函数为2y ax =.由抛物线经过点(2,-2),可得222a -=⨯,12
a =-.这条抛物线表示的二次函数为212
y x =. 当水面下降1m 时,水面的纵坐标为-3.
请你根据上面的函数解析式求出这时的水面宽度.
水面下降1m 时,水面宽度增加 m.
三、巩固练习
1.如图,一单杠高
2.2米,两立柱之间的距离为1.6米,将一根绳子的
两端拴于立柱与铁结合处,绳子自然下垂呈抛物线状态,一身高0.7米的小女
孩站在离立柱0.4米处,其头刚好触上绳子,则绳子最低点到地面的距离为多
少米?
2.如图,一位篮球运动员甲在距篮球筐下4米处跳起投篮,球的运
行线路为抛物线,当球运行到水平距离为2.5米时达到最高高度为3.5
米,然后准确地落入篮筐,已知篮圈中心到地面的高度为3.05米,该
运动员的身高为1.8米.
(1)在这次投篮中,球在该运动员的头顶上方0.25米处出手,则
当球出手时,该运动员离地面的高度为多少米?
(2)运动员乙跳离地面时,最高能摸到3.3米运动员乙在运动员
甲与篮板之间的什么范围内能在空中截住球?
答案:1.如图所示,以O 为坐标原点,水平方向为x 轴,垂直方向为y 轴,建立直角坐标系,设抛物线的解析式为()20y ax a =≠.设A ,B ,D
三点坐标依次为(A x ,A y ),(B x ,B y ),(D x ,D y ).
由题意,得AB =1.6,∴0.8A x =-,0.8B x =,又可得1 1.60.42D x ⎛⎫=-⨯- ⎪⎝⎭
=-0.4.∴当0.8x =-时,A y =()2•0.80.64a a -=,当0.4x =-时,()2
•0.40.16yD a a =-=.∵ 2.20.7 1.5A D y y -=-=,∴0.640.16 1.5a a -=.∴258a =
.∴抛物线的解析式为2258y x =.当0.4x =-时,()2250.40.58
D y =⨯-=,∴0.70.50.2-=(m ). 2.(1)设抛物线的解析式为2 3.5y ax =+.∵(1.5,3.05)在抛物线上,
∴3.05 1.52 3.5a =⨯+.解得0.2a =-.∴20.2 3.5y x =-+.当 2.5x =-时, 2.25y =,
∴运动员离地面的高度为2.250.25 1.80.2--=(m ).
(2)由题意,得 3.3y =,则23.30.2 3.5x =-+.解得11x =,21x =-.∴413-=(m ).∴乙在运动员甲与篮板之间的距离甲3米范围内能在空中截住球.
四、归纳小结
1.运用二次函数解决实际问题的一般步骤:审题;建立数学模型;求抛物线解析式;解决实际问题.
2.数形结合思想的运用.
※布置作业※
从教材习题22.3中选取.
※教学反思※
本课时的教学应注意建立正确的直角坐标系,使类似于抛物线的实际问题转化为平面直角坐标系中的抛物线.教学时,教师仍可采用分步设问的形式让学生回答并让学生互相交流.教师应鼓励学生用多种方法建立平面直角坐标系,并求出相应抛物线的解析式,在这一过程中让学生体验探究发现的乐趣,体会数学的最优化思想.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档