第八章 理想气体的热力学要点
理想气体与热力学理想气体的状态方程与热力学定律

理想气体与热力学理想气体的状态方程与热力学定律理想气体是热力学研究中的一个重要概念,它假设气体分子之间没有相互作用,体积可以忽略不计。
理想气体的状态方程和热力学定律则是描述理想气体特性的公式和规律。
本文将从理想气体的状态方程和热力学定律两个方面介绍理想气体的基本性质。
一、理想气体的状态方程理想气体的状态方程,即描述气体状态的基本方程,也被称为理想气体定律。
根据气体分子动理论以及实验结果,理想气体状态方程可以写为:PV = nRT其中P表示气体的压强,V表示气体所占的体积,n为气体的物质量(以摩尔为单位),R为气体常量,T表示气体的温度(以开尔文为单位)。
此方程被称为理想气体状态方程或理想气体定律,它描述了理想气体在各种温度、压强和体积条件下的状态。
二、热力学定律除了理想气体的状态方程,热力学还有一些定律用于描述理想气体的特性。
1. Boyle定律Boyle定律也被称为气体的压强-体积定律。
它的表述为:在恒温下,理想气体的压强与其所占的体积成反比。
数学表达式为:P1V1 = P2V2其中P1和V1表示气体的初始压强和体积,P2和V2表示气体的最终压强和体积。
2. Charles定律Charles定律也被称为气体的温度-体积定律。
它的表述为:在恒压下,理想气体的体积与其温度成正比。
数学表达式为:V1/T1 = V2/T2其中V1和T1表示气体的初始体积和温度,V2和T2表示气体的最终体积和温度。
3. Gay-Lussac定律Gay-Lussac定律也被称为气体的压强-温度定律。
它的表述为:在恒容下,理想气体的压强与其温度成正比。
数学表达式为:P1/T1 = P2/T2其中P1和T1表示气体的初始压强和温度,P2和T2表示气体的最终压强和温度。
三、理想气体状态方程的推导理想气体状态方程可以通过分析而来。
考虑到气体分子的运动和碰撞,可以将气体分子的平均动能和压强联系起来。
根据动理论,气体分子的平均动能可以写为:(1/2)mv² = (3/2)kT其中m表示气体分子的质量,v表示气体分子的速度,k为玻尔兹曼常数,T为气体的温度。
08理想气体的基本热力过程(完整版)

实际过程的多变指数可能是变化的,如果变化不 大,可取一平均值;变化较大时,可分段表示,每一段 近似为n值不变。
¾初、终态参数的关系
p2 p1
=
⎜⎜⎝⎛
v1 v2
⎟⎟⎠⎞n
T2 T1
=
⎜⎜⎝⎛
v1 v2
⎟⎟⎠⎞n−1
n−1
T2 T1
= ⎜⎜⎝⎛
p2 p1
⎟⎟⎠⎞
n
Δu = cV (T2 − T1) Δh = cp (T2 − T1)
n=∞
n=∞
过相同点1的四种基本热力过程线
Ⅰ Ⅰ
Ⅲ
Ⅲ
原则上,n可为-∞→ 0 →+ ∞之间的任一数值
但工程中所遇到的n一般都是正值(n>0)
dp = −n p dv v
若n<0,则 dp > 0 意味着: dv
工质膨胀时,压力增大,压缩时,压力降低,工程上一般看 不到这样的过程,所以n为负的过程不必考虑。
v1
v v1
=
RgT
ln
v2 v1
=
p1v1
ln
v2 v1
= − p1v1 ln
p2 p1
wt = w
9绝热可逆过程
δqrev = 0 ⎪⎫
ds
=
δqrev
T
⎬ ⎪⎭
ds = 0
s = const.
á 绝热可逆过程是定熵过程
¾ 过程方程
ds
= cp
dv v
+ cV
dp p
=0
γ dv + dp = 0
cV
¾ 多变指数
cn
=
n−γ
理想气体的热力学

理想气体的热力学热力学是研究物质内部能量转化和传递规律的科学,而理想气体是热力学研究中最为简单和重要的模型之一。
理想气体的热力学性质由状态方程、内能、焓、熵等基本参数来描述,下面将对理想气体的热力学行为进行详细讨论。
一、状态方程理想气体的状态方程可以表示为PV = nRT,其中P为气体压强,V为气体体积,n为气体的摩尔数,R为气体常数,T为气体的绝对温度。
根据理想气体的状态方程,我们可以推导出很多其他重要的热力学参数。
二、内能理想气体的内能只与温度有关,与体积和压强无关。
根据理想气体的内能公式,我们可以得出内能U和温度T之间的关系,即U = (3/2)nRT。
内能是描述理想气体热力学性质的重要参数之一。
三、焓理想气体的焓是在恒压条件下的热力学函数,表示了单位质量或单位摩尔气体在恒压过程中的能量变化。
理想气体的焓变化可以表示为ΔH = ΔU + PΔV,其中ΔH为焓的变化,ΔU为内能的变化,P为气体的压强,ΔV为气体的体积变化量。
四、熵理想气体的熵是描述系统无序程度的量,也可以理解为能量的分散程度。
根据热力学第二定律,一个孤立系统内部的熵不会减少,而理想气体在绝热膨胀或绝热压缩时熵是恒定的。
理想气体的熵变化可以表示为ΔS = nCvln(T2/T1)或ΔS = nCpln(T2/T1),其中Cv为定容热容,Cp为定压热容。
综上所述,理想气体的热力学性质是热力学研究中的重要内容,通过对理想气体的状态方程、内能、焓、熵等参数的分析,可以更深入地理解气体在不同条件下的热力学行为。
理想气体模型的简单性和适用性使其成为理论研究和工程应用中不可或缺的重要工具。
希望本文的介绍能够帮助读者更好地理解理想气体的热力学特性。
第八章热力学定律

第八章热力学定律本章学习提要1.理解热力学第一定律,知道热力学第一定律反映了系统内能的变化和系统通过做功及传热过程与外界交换的能量之间的关系。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
2.知道热力学第二定律的表述。
知道熵是描写系统无序程度的物理量。
热力学的两个基本定律是能量守恒定律和热力学第一定律。
热力学第二定律表述了热力学过程的不可逆性,即孤立系统自发地朝着热力学平衡方向——最大熵状态——演化。
这两个定律都是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的,这也是我们学习这两条基本定律应采取的方法。
人类的进步是与对蕴藏在物质内部能量的认识和利用密切相关的。
热力学定律为更好地设计和制造热机、更好地开发和利用能源指明了方向。
随着生产和科学实践的发展,人们逐步领悟到有效利用能源的意义,懂得遵循科学规律的重要性,从而更自觉地抵制违背科学规律的行为。
A 热力学第一定律一、学习要求理解热力学第一定律。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
我们应聚焦于热力学第一定律的构建过程,理解它既包括内能的转换,也遵循能量守恒定律。
这一定律是通过对自然界以及生活和生产实际的深入观察、思考、分析和实验而得出的自然界中最基本、最普遍的定律之一。
通过学习热力学第一定律,我们能体会到它在科学史上的重要地位,并感受到它对技术进步和社会发展的巨大影响。
二、要点辨析1.热力学第一定律的含义和表式热力学第一定律涉及到能量的转化和能量守恒两个方面。
内能是物质内部大量微观粒子无序热运动所具有的能量形式。
一个物质系统的内能变化是由它与外部环境进行能量交换的结果,而这种能量交换可以通过两种方式实现:做功和热传递。
热力学第一定律揭示了系统内能变化(ΔU)与系统与外部环境交换的功(W)和热量(Q)之间的定量关系。
ΔU=Q+W。
2.应用热力学第一定律解题时,要注意各物理量正、负号的含义当热力学第一定律表示为ΔU=Q+W时,ΔU为正值,表示系统内能增加;负值表示系统内能减小。
理想气体

理 想 气 体 一、知识要点1、理想气体的三个状态参量 、 和 强调:热力学温标与摄氏温标的关系2、理想气体三定律及其图像气体的等温变化(玻意耳定律):(1)、 的某种气体,在温度不变的情况下,其压强p 与体积v 成 比,这个变化规律叫玻意尔定律(2)、公式: (3)、等温变化的p-v 图和p-V1图(t 1<t 2)例1、一定质量的理想气体的状态变化过程如图中直线段AB 所示, C 是AB 的中点,则 ( )A 、从状态A 变化到状态B 的过程中,气体的温度保持不变B 、从状态A 变化到状态B 的过程巾,气体的温度先升高后降低C 、从状态A 变化到状态B 的过程中,温度一直在增大D 、从状态A 变化到状态B 的过程中,气体的温度先降低后升高气体的等容变化(查理定律)(1)、 的某种气体,在体积不变的情况下,其压强p 与 温度成正比,这个变化规律叫查理定律(2)、公式:(3)、等容变化的p-T 图和p-t(v 1<v 2)例2、一定质量的理想气体由状态 A 经过如图所示过程变到状态 B, 在此过程中气体的体积 ( )A 、一直变小B 、一直变大C 、先变小后变大D 、先变大后变小例3、一定质量的气体在状态变化过程中,其压强与摄氏温度的关系如图中实现所示,由状态A 变到状态B ,则A 、B 两状态气体的体积关系是( )PtPTA 、V A >VB ; B 、V A <V B ;C 、V A =V B ;D 、无法判断 气体的等压变化(盖-吕萨克定律)(1)、 的某种气体,在压强不变的情况下,其体积V 与 温度成正比,这个变化规律叫盖-吕萨克定律(2)、公式:(3)、等容变化的V-T 图和V-t(P 1<P 2)例4、如图所示,一定质量的理想气体经历ab 、bc 、cd 、da 四个过程,下列说法中错误的是 ( )A 、ab 过程中气体压强不变B 、bc 过程中气体压强减小C 、cd 过程中气体压强不变D 、da 过程中气体压强增大例5、一定质量的气体,当它的压强不变时,气体温度从1000C 升高到2000C ,它的体积( ) A .增大到原来的2倍 B .增大到原来的100/273倍 C .增大到原来的473/373倍D .缩小到原来的1/2 3、理想气体状态方程(1)、在 温度、 压强下都遵从气体实验定律的气体叫做理想气体,当温度 ,压强 ,实际气体可当成理想气体来处理。
大学物理 第八章 热力学基础

CV
2019/5/21
P.12/42
§8.2 热力学第一定律
热力学基础
§8.2.1 热力学第一定律 本质:包括热现象在内的能量守恒和转换定律。
E2 E1 W Q (E2 E1) W E W
Q
dQ dE dW
Q
E E2 E1
W
+ 系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
2019/5/21
P.13/42
热力学基础
热力学第一定律适用于任何系统(气液固)的任何过 程(非准静态过程也适用),
Q E PdV
热力学第一定律的另一叙述:第一类永动机 是不可 能制成的。
第一类永动机:Q = 0, E = 0 ,A > 0的机器;
过一系列变化后又回一开始的状态,用W1表示外界对 气体做的功,W2表示气体对外界做的功,Q1表示气体 吸收的热量,Q2表示气体放出的热量,则在整个过程中 一定有( A )
A.Q1—Q2=W2—W1 ; B.Q1=Q2
C.W1=W2 ;
D.Q1>Q2
2019/5/21
P.16/42
【例8-4】如图,一个四周绝热的气缸热,力中学基间础 有 一固定的用导热材料制成的导热板C把气缸分 成 A.B 两部分,D是一绝热活塞, A中盛有 1mol He, B中盛有1mol N2, 今外界缓慢地
等压膨胀过程 V2>V1 , A>0 又T2>T1, 即E2-E1>0 ∴Q>0 。气体吸收的热量,一部分用于内能的增加,
一部分用于对外作功;
等压压缩过程 A<0 , T2<T1, 即E2-E1<0 ∴Q<0 。
第八章第二节 热力学定律及能量守恒 气体
发器中制冷剂汽化吸收箱体内的热量,
经过冷凝器时制冷剂_______. A.热量可以自发地从冰箱内传到冰 箱外
B.电冰箱的制冷系统能够不断地把 冰箱内的热量传到外界,是因为其消 耗了电能 C.电冰箱的工作原理不违反热力学 第一定律 D.电冰箱的工作原理违反热力学第 一定律
二、能量守恒定律 能量既不会凭空产生,也不会凭空消 失,它只能从一种形式转化为别的形 式,或者从一个物体转移到别的物体, 在转化或转移的过程中,其总量不变.
三、气体的状态参量 1.温度 (1)宏观上:表示物体的______程度. 冷热 (2)微观上:表示气体分子无规则热运
激烈 动的______程度.
C.若气体的温度随时间不断升高, 其压强也一定不断增大 D.气体温度每升高1 K所吸收的热量 与气体经历的过程有关 E.当气体温度升高时,气体的内能 一定增大
解析:选ADE.一定质量的理想气体, pV =C,p、V不变,则T不变,分 T 子平均动能不变,又理想气体分子势 能为零,故气体内能不变,A项正确; 理想气体内能不变,则温度T不变,由 pV =C知,p及V可以变化,故状态 T 可以变化, B项错误;
于所有分子动能的和,内能增加,气 体分子的平均动能增加,温度升高, 选项A正确. 二、对热力学第二定律的理解 1.在热力学第二定律的表述中,“自 发地”、“不产生其他影响”的涵义
(1)“自发地”指明了热传递等热力学 宏观现象的方向性,不需要借助外界 提供能量的帮助. (2)“不产生其他影响”的涵义是发生 的热力学宏观过程只在本系统内完成, 对周围环境不产生热力学方面的影响. 如吸热、放热、做功等.
两类永动机第一类永动机第二类永动机不消耗能量却可以源源不断地对外做功的机器从单一热源吸热全部用来对外做功而不引起其他变化的机器违背能量守恒定律不可能实现违背热力学第二定律不可能实二能量守恒定律能量既不会凭空产生也不会凭空消失它只能从一种形式转化为别的形式或者从一个物体转移到别的物体在转化或转移的过程中其总量不变
8-3理想气体的等体过程和等压过程 摩尔热容
Cp,m 5 R 2 7 R 2
γ
5 = 1.67 3 7 = 1.40 5 4 = 1.33 3
5
多原子分子
6
3R
4R
P217表 P217表8-2列出了部分理想气体的有关理论值. 列出了部分理想气体的有关理论值.
8-3 理想气体的等体过程和等压过程 摩尔热容
第八章 热力学基础
i +2 i i 摩尔热容: 二 摩尔热容: CV ,m = R Cp,m = R + R γ = i 2 2
1 dE p dV 1.理想气体定压摩尔热容: Cp,m = 理想气体定压摩尔热容 理想气体定压摩尔热容: + ν dT ν dT p
由
i E = νRT 2
PV =νRT
得
i 理想气体定压摩尔热容。 定压摩尔热容 Cp,m = R + R -理想气体定压摩尔热容。 2
2.理想气体定体摩尔热容: 理想气体定体摩尔热容: 理想气体定体摩尔热容 ∵
第八章 热力学基础
理想气体等体过程: 四 理想气体等体过程:
dQV =νCV ,mdT = dE
m QV = CV ,m (T2 −T1) = E2 − E1 = ∆E M
等 体 升 压
p1
p
p2
2 ( p ,V , T ) 2 2 1 V
( p1 ,V , T1 )
等 体 降 压
p2
p1
p
1 ( p1 ,V , T1 )
第八章 热力学基础
理想气体等体过程: 二 理想气体等体过程:
dW = 0
dQV =νCV ,mdT = dE
m 或 Q = CV ,m (T2 −T1) = ∆E V M
第八章 热力学第一定律1
i2 2 , i i 1
R 1 T1 T2 p1V1 p2V2 A 1 1
V 1 p1V1 1 1 1 V2
1
气体的摩尔定压热容为:
C p ,m 1 dQ 1 dE p dV dT p dT p dT p
i E RT , pV RT 2
C p,m
i RR 2
Qp C p,m T2 T1 C p,mT
QV CV ,m T2 T1 CV ,mT
热力学第一定律为: dQV dE 理想气体内能:
i E RT 2
i E RT CV , m T 2
i E RT CV , m T 2
p
2 ( p ,V , T ) 2 2 1
V
( p1 ,V , T1 )
p p1
p2
V T 1 ( p1, 1, )
p p1
2
V2
1 ( p1, 1, ) V T
( p2 , 2 ,T ) V
A
V1
p2
( p2 , 2 ,T ) V
A
V1
2
V2
o
V
o
V
QT
E
A
QT
E
A
等温膨胀,从外界吸热,等温压缩,气体对外界放热
例题8.1
气体等温过程:vmol的理想气体在保持温度T不变 的情况下,体积从V1经过准静态过程变化到V2。求 这一等温过程中气体对外做的功和它从外界吸收的 热。 解: pV=vRT 代入(9)式:
间为1s。内燃机的压缩时间0.01s。均可视这一过程为准静 态过程 • 3 准静态过程的表示方法:p-V图(p-T图、V-T图) a 曲线上的每一个点都是一个 准静态过程 b 非平衡态不能用一定的状态 参量描述,即不能表示为状态 图中的一条线!
8-3 8-4理想气体的四个等值过程
Q=0
( p2 ,V2 ,T2 ) 2
p2
o
绝 热 方 程
V1
γ −1
V2 V
dV 1 dT ∫ V = −∫ γ − 1 T
第八章 热力学基础
V T= 量 γ pV = 量 γ −1 −γ p T = 量
8–3 8 4理想气体的四个等值过程 3 8–4
物理学教程 第二版) (第二版)
绝热膨胀
绝热压缩
物理学教程 第二版) (第二版)
理想气体摩尔热容理论计算 理想气体内能变化 定体摩尔热容 定压摩尔热容 摩尔热容比
第八章 热力学基础
i dE = ν Rd T 2
i CV ,m = R 2 i+2 C p,m = R 2 Cp,m i + 2 γ= = CV ,m i
8–3 8 4理想气体的四个等值过程 3 8–4
8–3 8 4理想气体的四个等值过程 3 8–4
物理学教程 第二版) (第二版)
p
p2
' p2
2T 2
T2' = T1
T2 = 753K
Q=0
T1
W12 = −ν CV ,m (T2 − T1 )
CV ,m = 20.44J ⋅ mol−1 ⋅ K −1
p1
2'
o V =V ' =V 10 V V 2 2 1 1
P A * B *
B ,则
TB > TA
答:( B )
o V 功和热量都是过程量, 始末状态确定后, 功和热量都是过程量 始末状态确定后,不同过 功和热量是不同的; 程,功和热量是不同的 而内能是状态量只决定于始 末状态, 末状态 与过程无关 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[T]
T,P2
RT Vm T, P P P T 0 Um T, P Um T
Hm T, P H0 m T
CP,m T, P C0 P,m T CV,m T, P C0 V,m T
同 理 : C P ,m T, P 0
RT dP P
由此基本方程导出本章所有结果
[ T ]:
T , P
d
P
RT dP P
从标准态到任意态积分:
T, P T, P 0 RT ln
RT T,P0 d P0 P dP 令 T, P0 0 T
T, P 0 T RT ln P P0
RT Vm T, P P P T
P P0
(2) (3)
Hm T, P G m T, P T Sm T, P T, P T Sm T, P
将(1)(2)式带入上式得:
H m T, P 0 T RT ln P P 0 T Sm R ln 0 0 P P 0 Hm T, P 0 T TS0 H m m T
T, P 0 T RT ln
0 T RT ln Fm T, P Fm
P Sm T, P S0 T R ln m P0 P T
P P0
P P0
框(8.1)
如Fm与T的函数关系无法得到(因为绝对值不知); 另外,CP,m= a+bT+cT2+……该经验公式热力学也得不到。
三、理气等温过程摩尔热力学量的改变
, P2 Um T, P1 Uo m T Um T 0 o Hm T, P Hm T, P2 Hm T, P1 Ho T H m m T 0
P2 o P1 Sm T, P Sm T, P2 Sm T, P1 So T R ln S T R ln m m Po Po P 即 Sm T, P R ln 1 P2
T, P 0 T RT ln
(6) (7) (8)
(1)~(8)式组成框(8.1)
RT 显然理想气体的Um,Hm,CP,m,CV,m, Vm T, P P P T 仅仅是温度的函数,而与压力(体积) U T, P U0 T m m 的变化无关。—此即焦耳定律; H T, P H0 T
(4)
U m T, P H m T, P PVm T, P H 0 m T P
RT 0 H0 m T PVm T P
即:
Um T, P U0 m T
(5)
P 0 Fm T, P U m T, P T Sm T, P U 0 T T S T R ln m m P0
即:
P Fm T, P F T RT ln 0 P
0 m
0 H m H m 0 CP ,m T, P C P , m T T T P P 0 U m U m 0 CV,m T, P C V , m T T P T P
笫八章
理想气体的热力学
吉守祥
青海民族大学 2014.10
本章内容:
§8-1 纯理想气体的化学势及热力学性质 §8-2 理想混合气体的物态方程 §8-3 理想混合气体中各物质的化学势及性质 §8-4 理想气体等温等压混合的规律性
理想气体是实际气体在低压条件下的极限,是
热力学理论应用和检验最有成效的体系之一。本章
p p0
(1)
该式为理想气体的化学势等温式。它表明:恒温下,理想 气体的μ与lnP呈线性关系。
二、理想气体的摩尔热力学量与压力的关系
T, P 0 T RT ln - T, P 0 T RT ln P P0
(1)
0 P R ln T P0 T P P P Sm T, P S0 T R ln m P0 P T
m m
而摩尔熵Sm及与Sm有关的Gm(μ) Fm与压力呈对数关系。
以上我们用一个热力学基本方程 和理想气体的物态方程统一导出了这 些有用的关系。但要清楚,热力学得 不出任何物质(包括理想气体)的各 热力学函数与温度的具体公式。
CP,m T, P C0 P,m T CV,m T, P C0 V,m T
0 T RT ln Fm T, P Fm
C V ,m T, P 0
P Sm T, P S0 m T R ln 0 P P T
P P0
P P0
U m T, P 0 H m T, P 0
我们将把热力学理论应用于理想气体,得出理想气 体所服从的规律,为处理实际气体、理想气体反应 及相平衡问题的研究打下必要基础。
§8-1 纯理想气体的化学势及热力学性质 一、纯理想气体的化学势等温式
对纯物质: Li Lm 例如 Gi G m
d SdT VdP SdT