基本平面图形专题讲解

合集下载

北师大版七年级数学上册第四章基本平面图形4.3角(教案)

北师大版七年级数学上册第四章基本平面图形4.3角(教案)
此外,实践活动和小组讨论环节,学生们表现得非常积极。他们在讨论中提出了很多有趣的观点,也学会了如何将角的有关知识应用到实际问题中。但我也发现,有些小组在讨论过程中,个别成员参与度不高。为了提高全体学生的参与度,我打算在下次活动中,加强对小组讨论的指导和监督,鼓励每个学生都发表自己的意见。
最后,通过今天的课程,我深感教学过程中要关注每一个学生,尽量让每个学生都能跟上教学进度。在今后的教学中,我会更加注重因材施教,针对不同学生的特点,给予个性化的指导。同时,我也会不断反思自己的教学方法,力求让学生在轻松愉快的氛围中学习数学,真正爱上这门学科。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的基本概念。角是由两条射线的公共端点(顶点)所形成的图形。它是平面几何中的基本元素,对于研究形状和结构至关重要。
2.案例分析:接下来,我们来看一个具体的案例。通过测量三角板上的角度,我们能够了解直角、锐角和钝角的特点,并学会如何使用量角器。
5.培养学生数学应用意识,将角的有关知识应用于生活实际,解决现实问题,体会数学与生活的紧密联系。
三、教学难点与重点
1.教学重点
-角的概念及其表示方法,强调角的定义及表示符号;
-角的分类,特别是锐角、直角、钝角、周角的区分;
-角的度量与比较,掌握度分秒的换算;
-角的加减运算及其几何意义,理解运算规律;
二、核心素养目标
1.培养学生的几何直观与空间观念,能够通过观察、操作、推理等方式认识和理解角的概念及其特性;
2.培养学生运用数学语言进行表达和交流的能力,会用准确的数学语言描述角的分类、度量及运算;
3.培养学生逻辑推理能力,能够运用角的性质进行问题分析和解决;
4.培养学生数学抽象素养,从实际情境中抽象出角的模型,理解角在几何图形中的作用;

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

北师大版初中数学七年级上册知识讲解,巩固练习(教学资料):第17讲《基本平面图形》全章复习与巩固(提高)

《基本平面图形》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==Cba要点诠释:①线段中点的等价表述:如上图,点M 在线段AB 上,且有,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类:12AM AB =PNAB PB NP MN AM 41====MBA(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:12∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(1)n 边形有n 个顶点、n 条边,对角线的条数为. (2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等. 2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.要点诠释:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.如下图:要点诠释: 扇形OAB 的面积公式:;扇形OAB 的弧长公式:.【典型例题】类型一、线段、射线、直线1.下列判断错误的有( )①延长射线OA ;②直线比射线长,射线比线段长;③如果线段PA =PB ,则点P 是线段AB 的中点;④连接两点间的线段,叫做两点间的距离. A .0个 B .2个 C .3个 D .4个 【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA =PB ,只有当点P 在线段AB 上时,才是线段AB 的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.(3)2n n-180n Rl π=举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.【答案】10, 0.类型二、角2.(2019春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.举一反三:【变式】(2018•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.3.(2018•深圳校级模拟)如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°【思路点拨】根据两直线平行,同旁内角互补求得∠C的度数即可.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°﹣45°﹣25°=110°,∴∠ACB=180°﹣110°=70°.【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.举一反三:【变式】考点办公室设在校园中心O 点,带队老师休息室A 位于O 点的北偏东45°,某考室B 位于O 点南偏东60°,请在图(1)中画出射线OA 、OB ,并计算∠AOB 的度数.【答案】解:如图(2),以O 为顶点,正北方向线为始边向东旋转45°,得OA ;以O 为顶点,正南方向线为始边向东旋转60°,得OB ,则∠AOB =180°-(45°+60°)=75°.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x 时,与分针第一次重合,依题意有 12x =90+x 解得答:时针转过时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法9011x =9011⎛⎫⎪⎝⎭°5. 如图所示,B 、C 是线段AD 上的两点,且,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则 或于是列方程,得 解得:x =18,即AB =18(cm) 所以BC =35-x =35-18=17(cm)(cm) 所以AD =AB+BC+CD =18+17+27=62(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =DB ,AC =CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =DB ,AC =CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得(cm). 32CD AB=3cm 2CD x =(35)cm BC x =-3(44)cm 2x -335442x x -=-33182722CD x ==⨯=5995599587AB =(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得(cm).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得(cm).综上可得:AB 的长为14cm ,cm , cm .【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.类型四、多边形和圆7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .11253AB=11253AB=8711253ECB O(a) (b)【答案与解析】解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD•分别交于点M、N,连结OA、OD.∵四边形ABCD是正方形∴OA=OD,∠AOD=90°,∠MAO=∠NDO=45°,又∠MON=90°,∠AOM=∠DON.∴△AMO与△DNO形状完全相同.∴AM=DN∴AM+AN=DN+AN=AD=a(2),所以当扇形纸板的圆心角为120°时,正三角形边被纸板覆盖部分的总长度为定值a;同理可得,当扇形纸板的圆心角为72°时,正五边形的边长被纸板覆盖部分的总长度也为定值a.【总结升华】一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值a.【巩固练习】一、选择题1.下面说法错误的是( ) .A.M是线段AB的中点,则AB=2AMB.直线上的两点和它们之间的部分叫做线段C.一条射线把一个角分成两个角,这条射线叫做这个角的平分线D.同角的补角相等2.从点O出发有五条射线,可以组成的角的个数是( ) .A. 4个B. 5个C. 7个D. 10个3.用一副三角板画角,下面的角不能画出的是().A.15°的角 B.135°的角C.145°的角 D.150°的角4.(2018•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()3601203︒︒=360n︒A .B .C .D .5.(2019•花都区一模)已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm 6. 平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m+n 等于( ).A.12B.16C.20D.以上都不对 7.一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点从开始至结束走过的路径长度为( ). A. B.C.D.8.如图,扇形的圆心角为,且半径为,分别以,为直径在扇形内作半圆,和分别表示两个阴影部分的面积,那么和的大小关系是( ).A.B.C.D.无法确定二、填空题 9.(2018秋•栾城县期中)把34.27°用度、分、秒表示,应为 ° ′ ″.B 3π24π34322+πOAB 90oR OA OB P Q P Q P Q =P Q >P Q <Q OA P C B ABC10.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.11.已知圆的面积为,若其圆周上一段弧长为,则这段弧所对的圆心角的度数为.12.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.13.如图,点B、O、C在同一条直线上,∠AOB=90°,∠AOE=∠BOD,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90°.其中正确的是 .14.如图,∠AOB是钝角,OC、OD、OE是三条射线,若OC⊥OA,OD平分∠AOB,OE平分∠BOC,那么∠DOE的度数是.15. 如图所示,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为.16.一根绳子弯曲成如下图1所示的形状.当用剪刀像下图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像下图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-1)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是.281cmπ3cmπ图1图2图3……a a b三、解答题17.钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分?18.19.(2019春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM 平分∠BOC ,ON 平分∠AOC ,(1)求∠MON 的度数;(2)若∠AOB=α其他条件不变,求∠MON 的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON 的度数; (4)从上面结果中看出有什么规律?20.(2018秋•栾城县期中)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=8,CB=6,求线段MN 的长;(2)若点C 为线段AB 上任意一点,且满足AC+BC=a ,请直接写出线段MN 的长; (3)若点C 为线段AB 延长线上任意一点,且满足AC ﹣CB=b ,求线段MN 的长.【答案与解析】一、选择题 1.【答案】C ; 2.【答案】D ;【解析】(个) . 3.【答案】C ;【解析】用三角板能画出的角应该是15的倍数,因为145°不是15的倍数,所以选B .432110+++=4.【答案】D .5.【答案】B ;【解析】解:如图1,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm , 由线段的和差,得 MN=MB+BN=4+1=5cm ; 如图2,由M 是AB 的中点,N 是BC 的中点,得 MB=AB=4cm ,BN=BC=1cm ,由线段的和差,得 MN=MB ﹣BN=4﹣1=3cm ; 故选:B .6.【答案】B ;【解析】①6条直线相交于一点时交点最少,所以;②6条直线任意两直线相交都产生一个交点时交点最多,又因为任意三条直线不过同一点,∴ 此时交点为:. 7.【答案】B ;【解析】点从开始至结束走过的路径是两个圆心角为120°,半径为1的扇形弧长之和. 8.【答案】A ;【解析】P =S 扇OAB -S 圆+Q ,即P -Q =S 扇OAB -S 圆=,所以P =Q . 二、填空题9.【答案】34°16′12″. 10.【答案】60度或180 .【解析】分∠α在∠β内部和外部两种情况来讨论. 11.【答案】60°;【解析】根据圆的面积求出半径,再根据弧长求扇形的圆心角. 12.【答案】12;【解析】每个点都可以作3条射线,共有4个点,所以3×4=12条射线. 13.【答案】①②④; 14.【答案】45°;【解析】设∠BOC =x ,则∠DOE =∠BOD -∠BOE =.1m =12345615n =+++++=B 2211()042ππR R -=1(902)452x x ︒︒+-=15.【答案】24m ;【解析】如下图,可得每个圆中虚线部分弧所对的圆心角为120°,利用弧长公式即得答案.16.【答案】4n +1. 三、解答题 17.【解析】解:设经过x 分钟秒针第一次将分针和时针所夹的锐角平分. 6x-360(x-1)=360(x-1)-0.5x , 解得:x =(分). 答:经过分钟秒针第一次将分针和时针所夹的锐角平分. 18.【解析】144014271440142719.【解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.20.【解析】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN,=( AC+CB)=(8+6)=7;(2)∵若M、N分别是线段AC、BC的中点,∴AM=MC,CN=BN,AM+CM+CN+NB=a,2(CM+CN)=a,CM+CN=,∴MN=a;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=b.。

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)
三、教学难点与重点
1.教学重点
-线段、射线与直线的定义及性质:这是基础几何概念,需要学生熟练掌握,并能应用于实际问题中。例如,理解线段的两个端点、射线的起点和延伸方向、直线的无限延伸等特性。
-角的分类及性质:重点在于区分不同类型的角,并了解它们的基本性质。如锐角、直角、钝角、周角的定义及特征。
-三角形的分类:强调三角形按角的大小分类,以及各类三角形的性质和特点。
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解图形的旋转、翻折等变换是难点,需要通过实物模型或多媒体辅助教学来帮助理解。
本章节的教学难点与重点紧密联系课本内容,教师在教学过程中应针对这些核心知识进行深入讲解,通过实例分析、图形操作、逻辑推理等教学策略,帮助学生理解难点,掌握重点,提高几何学科素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线与直线的基本概念。线段是有限长度的,有两个端点;射线有一个起点,向一个方向无限延伸;直线则是无限制地延伸。它们是构成复杂图形的基础。这些基本图形在建筑、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个简单的房屋设计图,我们可以看到线段、射线和直线是如何被用来表示墙壁和屋顶的。
-平行线的性质与判定:掌握平行线的定义、性质以及判定方法,如同位角、内错角、同旁内角等。
-四边形的定义及性质:掌握矩形、菱形、平行四边形的定义及性质,如对边平行、对角相等、对角线互相平分等。
-图形的全等:理解全等图形的概念,掌握SSS、SAS、ASA、AAS全等三角形的判定方法。
2.教学难点
-平行线的判定:对于初中生来说,理解并熟练运用平行线的判定方法是一个难点,特别是同位角、内错角等概念的运用。

七年级平面图形知识点归纳

七年级平面图形知识点归纳

七年级平面图形知识点归纳在初中数学中,平面图形是一个非常重要的知识点。

本文将从基础概念、常用公式和解题方法三个方面进行讲解,希望能够帮助同学们更好地掌握平面图形。

一、基础概念平面图形是指在平面内的图形,包括点、线、面和曲线等。

常见的平面图形包括:直线、线段、射线、角、图形的边和表面等。

直线是没有端点的无限延伸,可以用两个点来确定。

线段是有两个端点的部分,射线则是有一个端点的部分。

角是由两条射线和它们的公共端点所组成的一个部分。

根据角的大小,可以分为锐角、直角和钝角。

图形的边是指图形的各条线段,表面则是指图形的边所围成的部分。

二、常用公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长²3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径²5. 矩形的周长公式:周长 = 2 × (长 + 宽)6. 三角形的周长公式:周长 = 边长之和7. 圆的周长公式:周长= 2 × π × 半径三、解题方法1. 认真分析题目中所给出的条件,确定需要求解的内容。

2. 根据所给出的条件选择合适的公式进行运算。

3. 在计算时注意单位的转换,例如长度单位从厘米转换成米等。

4. 最后检查计算结果,看是否符合实际意义,如是否存在负数或者逻辑上的矛盾等。

举例:小明的房间是一个矩形,长为4米,宽为3米。

现在要粘墙纸,假设每卷墙纸长度是10米,宽度是1.5米,问他需要购买几卷墙纸?解:由题意可知,小明的房间是一个长为4米,宽为3米的矩形,所以房间的墙纸需求量为:(周长×房间高度)÷每卷长×宽 = (4+3+4+3)×2.5÷10×1.5 ≈3由此可知,小明需要购买3卷墙纸。

总结:平面图形作为初中数学的重要知识点,同学们需要具备扎实的基本概念和熟练的运用技巧。

《线段、射线、直线》基本平面图形PPT课件

《线段、射线、直线》基本平面图形PPT课件
用一个小写字母表示,如:线段a。
a


A
B
(2) 射线:
用两个大写字母(端点和射线上另 外一点,端
点必须写在前面)表示。 如:射线 OA ,但不能记为射线AO.
端点字母必须 写在前面


O
A
(3)直线:
用两个大写字母(直线上任意两点)表示,如:直 线AB或直线BA。 用一个小写字母表示。如:直线a
4A
B 记作:线段BA ( √ )
5 请用两种方式分别表示图中的两条直线.
m
n
O
A
B
6 如图,直线 AB和直线AC表示的是同一条直线吗?
AB C
7 怎样表示图中以O为端点的射线?
OA B C
8
射线OB和射线BO是同一条射线吗? 为什么?
( 要求:画图说明)
B O
B O
射线OB
B O
射线BO
例2 如图所示,下列说法正确的是 (C) A.直线AB和直线CD是不同的直线 B.射线AB和射线BA是同一条射线 C.线段AB和线段BA是同一条线段 D.以上说法均不正确
3.如图,图中的直线可以表示为___直__线__A_B_(_或__直__线__B_A_)或 ____直__线__m__.
4.新学期开学整理教室时,老师总是先把每一列最前面和 最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列 课桌就整齐地摆在一条直线上了,这是因为 ____两__点__确__定__一__条__直__线.
解:(1)如图 (1),这种情况下只能画一条直线. (2)如图 (2),这种情况下能画四条直线. (3)如图 (3),这种情况下能画六条直线.
课堂小结
线段:A

新北师大版七年级数学第四章基本平面图形课标解读

新北师大版七年级数学第四章基本平面图形课标解读

《线段、射线、直线》目标分解课标表述:“在现实情境中理解线段、直线、射线等简单的平面图形,感受丰富多彩的图形世界。

”第一步:分析陈述方式、句型结构和关键词陈述方式:“结果性目标”课标对“理解”的表述为描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系,即能用自己的语言解释信息。

可以展开为:分类、叙述、解释、1.在现实情境中理解线段、直线、射线等简单的平面图形的概念并能准确区分。

叙述各自的特征。

2.通过自学和老师的指点下,学会线段、直线、射线的表示法。

3.通过具体情境,了解两点确定一条直线。

4. 会作出线段,直线,射线。

5. 使学生感知数学与生活的紧密联系。

《4.2比较线段的长短》目标分解课标表述:“能借助直尺、圆规等工具比较两条线段的长短。

”第一步:分析陈述方式、句型结构和关键词陈述方式:“结果性目标”1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质。

2.理解两点之间的距离的概念。

3.会用两种方法比较两条线段的长短;会用圆规,直尺的工具作一条线段等于已知线段。

4. 理解线段中点的概念,并能够灵活运用。

5. 感知数形结合的数学思想。

《4.3 角》目标分解课标表述:“通过丰富的实例,进一步理解角的概念,认识角的表示。

”第一步:分析陈述方式、句型结构和关键词陈述方式:“结果性目标”1.通过丰富的实例,理解角的有关概念。

2.认识角的表示方法。

3.认识度、分、秒,并能进行简单的换算。

《4.4 角的比较》目标分解课标表述:“会比较角的大小,能估计一个角的大小。

”第一步:分析陈述方式、句型结构和关键词陈述方式:“结果性目标”1.会比较角的大小,能估计一个角的大小。

2.在操作活动中认识角的平分线,能画出一个角的平分线。

3.能运用角的平分线做简单的习题。

4. 通过动手操作,培养实践操作能力。

《4.5 多边形和圆的初步认识》目标分解课标表述:“在现实生活中了解多边形的概念,感受丰富多彩的图形世界。

北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)


角的大小的比较方法: (1)如果已知角是锐角、直角、钝角、平角、周角几类中不同 类的角,就可以直接由它们之间的关系比较出它们的大小; (2)可以通过量角器进行量度来比较角的大小; (3)可以根据各角在同一图中的位置关系比较角的大小.
角的平分线
活动:大家在练习本上画一个角,然后把角的两边 对折,展开以后你会发现折痕把角分成了两个角, 这两个角有什么关系呢,它们又和原来的角有着怎 样的等量关系?
4.4 角的比较
知识回顾 比较两条线段的长短的方法? 1、度量法:用刻度尺测量线段的长度的方法。 2、叠合法:将其中一条线段移到另一条线段 上作比较。
猜想:比较两个角的大小方法?
获取新知
问题:有一天学生张虎和王鹏各带了一把折扇(如图),下面是他们的 一段对话:
张:我的折扇大一些,所以我的折扇的角也大一些.
2
2
2
(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数
解:(1)因为OC平分∠AOD,
1 所以∠DOC= 2 ∠AOD.
因为OE平分∠BOD,
1
所以∠DOE= 2∠BOD.
所以∠COE=∠DOC+∠DOE=
1
(∠AOD+∠BOD)
= 1 ∠AOB= 1 ×130°=65°.
2
2
2
2. 已知,如图,∠AOB = 130°,∠AOD = 30°,∠BOC = 70° ,问:OC 是∠AOB 的平 分线吗?OD 是∠AOC 的平分线吗?
解: OC不是∠AOB 的平分线 OD是∠AOC 的平分线 B
C D
A O
3. 如图,直线 m 外有一定点 O,A 是 m 上的 一个动点,当点 A 从左向右运动时,观察∠α 和 ∠β 是如何变化的,∠α 和 ∠β 之间有关系吗?

平面图形绘制例题讲解1

平面图形绘制例题平面图形由若干线段连接而成。

画图平面图形时,应该从哪里着手一开始并不明确,所以要通过对这些线段的尺寸以及线段性质的分析,才能确定平面图形的作图步骤1. 平面图形的尺寸分析平面图形中的尺寸按作用可分为定形尺寸和定位尺寸两种。

(1)定形尺寸。

确定平面图形中线段的长度、圆的直径、圆弧的半径以及角度大小的尺寸,称为定形尺寸。

如图1中的尺寸R30﹑R5﹑R22﹑5、10﹑16﹑20等均为定形尺寸。

(2)定位尺寸。

确定平面图形中各线段之间相互位置的尺寸,称为定位尺寸,如图1中的尺寸38、40、45、10等均为定位尺寸。

(3)尺寸基准。

尺寸基准即标注主要尺寸的起点。

一个平面图形应具有上下和左右两个方向的尺寸基准。

通常以图形的对称线﹑较大圆的中心线或较长的直线作为尺寸基准。

如图1所示溢流坝平面图形,是以左边的直线作为左右方向的尺寸基准,以最下边的直线作为上下方向的尺寸基准。

它们也是画图的基准线。

应当指出,图形中有些尺寸既是定形尺寸,也是定位尺寸,具有双重作用。

图1 平面图形分析示例2. 平面图形的线段分析平面图形中的线段按给出尺寸的情况可分为已知线段、中间线段、连接线段三种。

(1)已知线段。

定形尺寸和定位尺寸齐全,根据基准线位置和已知尺寸就能直接画出的线段,称为已知线段。

如图1中除1:1.5以外的所有直线和R30、R5圆弧均为已知线段。

(2)中间线段。

缺少一个定位尺寸,需要与已知线段的一个连接条件才能确定其位置的线段,称为中间线段。

如图1中1:1.5直线就是中间线段。

(3)连接线段。

没有定位尺寸,需要与两端相邻线段的连接条件才能确定的线段,称为连接线段。

如图1中R22圆弧就是连接线段。

绘制平面图形线段的顺序应是:先画基准线,再画已知线段,中间线段,最后画连接线段。

以绘制溢流坝平面图形线段顺序为例,见表1。

表1 绘制平面图形线段顺序的示例应当指出,平面图形上有时只有已知线段和连接线段,有时只有已知线段。

七年级基本平面图形知识点

七年级基本平面图形知识点在初中数学的教学中,基本平面图形是一个非常重要的概念。

它不仅是初中阶段的数学基础,而且在高中和大学的学习中也会涉及到。

在七年级阶段,学生需要掌握基本平面图形的相关知识点,下面将分别从正方形、矩形、菱形、平行四边形、三角形和圆形六个方面进行讲解。

1. 正方形正方形是一种四边形,它的特点是四条边长度相等并且四个内角都是直角,可以表示为ABCD,其中AB=BC=CD=DA。

正方形的面积公式为S=a²,其中a为边长。

正方形的周长公式为P=4a。

2. 矩形矩形也是一种四边形,它的特点是两对对边分别相等,也就是说对边平行,并且四个角都是直角,可以表示为ABCD,其中AB=CD,BC=DA。

矩形的面积公式为S=ab,其中a和b分别表示矩形的两条相邻边的长度。

矩形的周长公式为P=2(a+b)。

3. 菱形菱形也是一种四边形,它的特点是四条边长度相等,对角线相等且互相垂直,可以表示为ABCD,其中AC和BD是其两条对角线。

菱形的面积公式为S=½×d1×d2,其中d1和d2分别表示菱形的两条对角线的长度。

菱形的周长公式为P=4a,其中a表示菱形的边长。

4. 平行四边形平行四边形也是一种四边形,它的特点是对边平行且长度相等,可以表示为ABCD,其中AB∥CD,AD=BC。

平行四边形的面积公式为S=bh,其中b为底边的长度,h为高的长度。

平行四边形的周长公式为P=2(a+b),其中a和b分别表示平行四边形的两条相邻边的长度。

5. 三角形三角形是一种三边形,它的特点是有三个顶点和三条边,可以表示为ABC,其中AB、BC、AC是三角形的三条边。

根据三条边的长短不同,三角形可以分为等边三角形、等腰三角形和一般三角形。

三角形的面积公式为S=½bh,其中b为底边的长度,h为高的长度。

三角形的周长公式为P=a+b+c,其中a、b、c为三角形的三条边的长度。

6. 圆形圆形是一种不规则图形,它的特点是由无数个点组成的,在平面上表示为一个不断延伸的线条。

14.1 平面及其基本性质


二、典型习题
(一)概念的辨析 1.判断下列命题的真假,真的打“√”,假的打“×”
(1)可画一个平面,使它的长为4cm,宽为2cm。( )
(2)一条直线把它所在的平面分成两部分, 一个平面把空间分成两部分.
()
(3)一个平面的面积为20 cm2.
()
(4) 一条直线和任意一点确定一个平面
()
2、在下列命题正确的是(
• 2、习题14.1A组1 习题14.1B组1,2
• 3、画一个正方体
2.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形.
(2)l , m A
(3) l
思考题:
几位同学一次野炊活动,带去一张折叠方桌, 不小心弄坏了桌脚,有一生提议可将几根一样长的 木棍,在等高处用绳捆扎一下作桌脚(如图所示),
类比思考:
如果两个不重合的平面有公共点,其公共点有多少个?
如图,把三角板的一个角立 在课桌面上,三角板所在的 平面与桌面所在的平面是否 只相交于一点B?为什么?
BB
两相交平面的公共部分的特点:有无穷多点, 而且是直线。
公理2 如果两个平面有一个公共点,那么 它们有且只有一条经过这个点的公共直线.
P l, Pl
同理,P∈平面CBD. ∴P在平面ABD与平面CBD的交线BD上, 即B、D、P三点在同一条直线上.
题型: 证明多线共面
【例3】求证:两两相交且不共点的四条直线在同一平面内.
分析 由题知,四条直线两两相交且不共点,故有两种情况:一种是三条交 于一点,另一种是任何三条都不共点,故分两种情况证明. 要证明四线共面,先根据公理2的推论证两条直线共面,然后再证第三条直 线在这个平面内,同理第四条直线也在这个平面内,故四线共面.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
C
A
D
B 31
2
第四章基本平面图形讲解
一、角的比较的知识点梳理与应用。

1.若OC是∠AOB的平分线,则(1)∠AOC=______;
(2)∠AOC=1
2
______;(3)∠AOB=2_______.
2. 1
2平角=_____直角, 1
4
周角=______平角=_____直角,135°角=______平角.
3.如图,(1)∠AOC= + = - ;
(2)∠AOB= - = - .
4. 36000″= ′= °.
52.4°= °′.
34°48′= °.
5.已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是( )
A.∠AOC一定大于∠BOC;
B.∠AOC一定小于∠BOC
C.∠AOC一定等于∠BOC;
D.∠AOC可能大于,等于或小于∠BOC
6.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于( )
A.120°
B.120°或60°
C.30°
D.30°或90°
7.如图,如果∠1=65°15′,∠2=78°30′,求∠3是多少度?
8、如图,点O在直线AB上,OD、OE分别是∠AOC 、∠BOC的平分线,求∠EOD。

第五章基本平面图形单元练习O A
B
D
C
E
一、选择题
1.平面上有四点,经过其中的两点画直线最多可画出( ). A .三条 B .四条 C .五条 D .六条 2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设天线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).
A .①②
B .①③
C .②④
D .③④ 3.下列各角中,是钝角的是( ).
A.周角41
B.周角43
C. 平角31
D. 平角3
2 4.如右图,O 为直线AB 上一点,∠COB =26°30′,则∠1=( ).
A .153°30′
B .163°30′
C .173°30′
D .183°30′
5.如右图,C ,D 是线段AB 上两点,若CB =4 cm ,DB =7 cm ,且D 是AC 的中点,则AC 的长等于( ).
A .3 cm
B .6 cm
C .11 cm
D .14 cm
6.如右图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,
若∠EOB=55错误!未找到引用源。

,则∠AOC=( )
A .35错误!未找到引用源。

B .55错误!未找
到引用源。

C .70错误!未找到引用源。

D .110错误!未找到引用源。

二、填空题
7.如图所示,线段AB 比折线AMB__________,理由是:____________________.
8.如图,点C 是线段AB 上的点,点D 是线段
BC 的中点,AB =10,AC =6,则CD =__________.
9.现在是9点20分,此时钟面上的时针与分针的夹角是__________. 10.如图所示,由泰山到青岛的某一
次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.
11.(1)15°30′36″=_______°;
(2)7 200″=_______´=________°;
(3)0.75°=_______′=________″;
(4)30.26°=_______°_______´______〞.
12. 如图,点O是直线AD上一点,射线OC、OE分
别是∠AOB、∠BOD的平分线,若∠AOC=28°,则∠COD=_________,∠BOE=__________.
13.如图,阴影部分扇形的圆心角是()
A.15°
B.23°
C.30°
D.36°
三、解答题
14..按要求作图:
如图,在同一平面内有四个点A、B、C、D.
①画射线CD;②画直线AD;③连结AB;④直线BD 与直线AC相交于点O.
15.已知线段a,b(如图),画出线段AB,使AB=a+2b.
16.如图,C是线段AB的中点,D是线段BC的中点,CD=3,求线段AB的长.
17.已知:如图,∠AOB 是直角,∠AOC=30°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.求∠MON 的大小.
四、温故知新
1、15783--+-
2、
6
1)3161(1⨯-÷
3、51)2()1(2
3⨯
-÷- 4、 75.04.34
353.075.053.1⨯-⨯+⨯-。

相关文档
最新文档