圆锥曲线知识点梳理(文科)

合集下载

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若为椭圆上任意一点,则有。

椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。

注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。

例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。

(2)椭圆的性质①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

同理令得,即,是椭圆与轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。

当且仅当时,两焦点重合,图形变为圆,方程为。

2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。

注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。

圆锥曲线基础知识梳理

圆锥曲线基础知识梳理

圆锥曲线知识要点梳理知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。

平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。

定点叫做焦点,定直线叫做准线、常数叫做离心率。

①e∈(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e∈(1,+∞)时轨迹是双曲线。

知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中;当焦点在轴上时,椭圆的标准方程:,其中;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长=,短轴长=,焦距=,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中;当焦点在轴上时,双曲线的标准方程:,其中.(3)双曲线的简单几何性质范围:,;焦点,顶点,实轴长=,虚轴长=,焦距=;离心率是,准线方程是;渐近线:.3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)标准方程四种形式:,,,。

(3)抛物线标准方程的几何性质范围:,,对称性:关于x轴对称顶点:坐标原点离心率:.知识点三:直线和圆锥曲线的位置关系1.直线Ax+By+C=0和椭圆的位置关系:将直线方程代入椭圆后化简为一元二次方程,其判别式为Δ。

(1)若Δ>0,则直线和椭圆相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和椭圆相切,有一个切点(或一个公共点);(3)若Δ<0,则直线和椭圆相离,无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线方程代入双曲线方程后化简方程①若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线方程代入抛物线方程后化简后方程:①若为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点); (2)若Δ=0,则直线和抛物线相切,有一个切点; (3)若Δ<0,则直线和抛物线相离,无公共点。

圆锥曲线高二文科知识点

圆锥曲线高二文科知识点

圆锥曲线高二文科知识点圆锥曲线是高中数学中的一个重要内容,也是文科生需要掌握的知识点之一。

圆锥曲线包括圆、椭圆、双曲线和抛物线四种形态,每种形态都有其独特的性质和应用。

下面将逐一介绍这些知识点。

一、圆圆是由平面上到一个固定点距离相等的所有点构成的集合。

圆的特点是:1. 圆心:圆上所有点到圆心的距离相等;2. 半径:圆心到圆上任一点的距离。

圆的方程可以表示为:(x - a)² + (y - b)² = r²,其中(a, b)是圆心的坐标,r是半径的长度。

圆的性质可以应用于日常生活中的测量、建筑等方面。

在几何中,圆的相关定理也是很重要的内容。

二、椭圆椭圆是圆锥曲线中的一种形态,其特点是:1. 两个焦点F₁和F₂:椭圆上任意一点到两个焦点的距离之和等于两个固定值2a;2. 短轴:过圆心的直径,一般记为2b;3. 长轴:连接两个焦点并通过圆心的直径,一般记为2a。

椭圆的标准方程可以表示为:(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是椭圆的中心坐标。

椭圆在几何学、天文学等领域有广泛的应用。

如行星运动的轨道、航天器发射中的轨迹分析等。

三、双曲线双曲线是圆锥曲线中的一种形态,其特点是:1. 两个焦点F₁和F₂:双曲线上任意一点到焦点距离之差等于两个固定值2a;2. 短轴:通过两个焦点且垂直于连接两焦点的直线的直径,一般记为2b。

双曲线的标准方程可以表示为:(x - h)²/a² - (y - k)²/b² = 1,其中(h, k)是双曲线的中心坐标。

双曲线在物理学、天文学等领域有广泛应用,例如天体运动轨迹、电磁场分布等。

四、抛物线抛物线是圆锥曲线中的一种形态,其特点是:1. 焦点F:抛物线上任意一点到焦点的距离等于该点到准线的垂直距离;2. 准线:与抛物线对称轴平行且与焦点的距离相等的直线。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

下面我们来详细整理一下圆锥曲线的相关知识点。

一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

(2)对称性:椭圆关于 x 轴、y 轴和原点对称。

(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。

二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。

(完整)圆锥曲线知识点梳理(文科),推荐文档

(完整)圆锥曲线知识点梳理(文科),推荐文档

S 积为 F1PF2
b2 tan . 2
且 PF1
PF2
2b2 1 cos
x2
2.设 P 点是双曲线
a2
y2 b2
x0
(3)设抛物线的标准方程为 y 2 =2px(p>0),则抛物线的焦点到其顶点的距离为 p ,顶点到准线的距离 p ,焦点到准线的距离
2
2
为 p.
(4)已知过抛物线 y 2 =2px(p>0)焦点的直线交抛物线于 A、B 两点,则线段 AB 称为焦点弦,设 A(x1,y1),B(x2,y2),则弦长
在圆 C 上,|MC|>r 点 M 在圆 C 内,其中|MC|= (x 0 - a)2 (y0 - b) 2 。
(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交 有两个公共点;直线与圆相切 有一个公共点;直线与圆相离 没有公共点。
Aa Bb C
②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心 C(a,b)到直线 Ax+By+C=0 的距离 d
e 的点的轨迹.(e>1)
与定点和直线的距离相等的点的 轨迹.
轨迹条件
点集: ({M||MF1+|MF2|=2a,|F
1F2|<2a=
点集:{M||MF1|-|MF2|. =±2a,|F2F2|>2a}.
点集{M| |MF|=点 M 到直线 l 的距离}.
图形
方 标准 方程

x 2 y 2 1( a b >0) a2 b2
与半径 r 的大
A2 B2
小关系来判定。
二、圆锥曲线的统一定义:
平面内的动点 P(x,y)到一个定点 F(c,0)的距离与到不通过这个定点的一条定直线 l 的距离之 比是一个常数 e(e>0),则动点的轨 迹叫做圆锥曲线。其中定点 F(c,0)称为焦点,定直线 l 称为准线,正常数 e 称为离心率。当 0<e<1 时,轨迹为椭圆;当 e=1 时, 轨迹为抛物线;当 e>1 时,轨迹为双曲线。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线是数学中的一类重要曲线,广泛应用于几何、物理、工程等领域。

由于其独特的性质和广泛的应用,掌握圆锥曲线的知识对于提高数学水平和解决实际问题具有重要意义。

本文将对圆锥曲线的基本概念、性质和常见类型进行总结和归纳。

一、圆锥曲线的基本概念圆锥曲线是由平面和一个固定点(焦点F)以及一个固定直线(准线L)共同确定的曲线。

根据焦点和准线的位置关系,圆锥曲线分为椭圆、抛物线和双曲线三类。

1. 椭圆:椭圆是焦点到准线的距离之和恒定于两倍焦半径的轨迹。

椭圆具有对称性,焦点位于椭圆的两个焦点之间。

2. 抛物线:抛物线是焦点到准线的距离等于焦半径的轨迹。

抛物线具有对称轴,焦点位于抛物线的焦点上方或下方。

3. 双曲线:双曲线是焦点到准线的距离之差恒定于两倍焦半径的轨迹。

双曲线也具有对称性,焦点位于双曲线的两个焦点之间。

二、圆锥曲线的性质圆锥曲线具有一系列重要的性质,为研究和应用圆锥曲线提供了基础。

1. 对称性:椭圆和双曲线具有两个关于准线和两个焦点的对称轴,抛物线具有一个关于准线的对称轴。

2. 焦距和半焦距:焦距是焦点到对称轴的距离,半焦距是焦距的一半。

焦距对于不同类型的圆锥曲线有不同的计算方法,但都是相对于准线和对称轴计算的。

3. 焦半径:焦半径是焦点到曲线上点的距离,焦半径对于同一曲线上不同点的值是相等的。

4. 离心率:离心率是焦半径与半焦距的比值,用e表示。

对于椭圆,离心率范围在0和1之间;对于抛物线,离心率等于1;对于双曲线,离心率大于1。

5. 焦点和准线的关系:焦点和准线的位置关系决定了曲线的类型。

当焦点在准线上时,曲线是抛物线;当焦点在准线之上时,曲线是椭圆;当焦点在准线之下时,曲线是双曲线。

三、常见类型的圆锥曲线。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学圆锥曲线部分知识点梳理
一、圆:
1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.
2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2
+(y-b)2
=r 2
圆心在坐标原点,半径为r 的圆方程是x 2
+y 2
=r 2
(2)一般方程:①当D 2
+E 2
-4F >0时,一元二次方程x 2
+y 2
+Dx+Ey+F=0叫做圆的一般方程,圆心为)2
,2(E
D --
半径是2
422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+
2D )2
+(y+2
E )2
=4
4F -E D 2
2+
②当D 2+E 2
-4F=0时,方程表示一个点(-2D ,-2
E );
③当D 2
+E 2
-4F <0时,方程不表示任何图形.
(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2
020b)-(y a)-(x +。

(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交⇔有两个公共点;直线与圆相切⇔有
一个公共点;直线与圆相离⇔没有公共点。

②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离2
2
B
A C Bb Aa d +++=
与半径r 的大
小关系来判定。

二、圆锥曲线的统一定义:
平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。

当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

三、椭圆、双曲线、抛物线:
椭圆双曲线抛物线
定义1.到两定点F1,F2的距离之和为
定值2a(2a>|F1F2|)的点的轨迹
2.与定点和直线的距离之比为
定值e的点的轨迹.(0<e<1)
1.到两定点F1,F2的距离之差的绝对
值为定值2a(0<2a<|F1F2|)的点的轨

2.与定点和直线的距离之比为定值e
的点的轨迹.(e>1)
与定点和直线的距离相等的点的
轨迹.
轨迹条件点集:({M||MF1+|MF2|
=2a,|F 1F2|<2a=
点集:{M||MF1|-|MF2|.
=±2a,|F2F2|>2a}.
点集{M||MF|=点M到直线l
的距离}.
图形
方程
标准
方程
1
2
2
2
2
=
+
b
y
a
x
(b
a>>0) 1
2
2
2
2
=
-
b
y
a
x
(a>0,b>0) px
y2
2=
范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0
中心原点O(0,0)原点O(0,0)
顶点
(a,0), (─a,0), (0,b) ,
(0,─b)
(a,0), (─a,0) (0,0)
对称轴
x轴,y轴;
长轴长2a,短轴长2b
x轴,y轴;
实轴长2a, 虚轴长2b.
x轴
焦点F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) )0,
2
(
p
F
准线
x=±
c
a2
准线垂直于长轴,且在椭圆外.
x=±
c
a2
准线垂直于实轴,且在两顶点的内
侧.
x=-
2
p
准线与焦点位于顶点两侧,且到
顶点的距离相等.
焦距2c (c=2
2b
a-)2c (c=2
2b
a+)
离心率
)10(<<=
e a
c
e )1(>=
e a
c
e e=1
【备注1】双曲线:
⑶等轴双曲线:双曲线2
22a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=
e .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-22
22b y a x 与λ
-=-2222b
y a x 互为共轭双曲线,它们具有共同的渐近线:
02
22
2=-
b
y a
x .
⑸共渐近线的双曲线系方程:
)0(2
22
2≠=-
λλb y a x 的渐近线方程为02
22
2=-b y a x 如果双曲线的渐近线为
0=±b
y
a x 时,它的双曲线方程可设为
)0(2
22
2≠=-
λλb
y a
x .
【备注2】抛物线: (1)抛物线
2y =2px(p>0)的焦点坐标是(
2
p ,0),准线方程x=-
2
p ,开口向右;抛物线
2y =-2px(p>0)的焦点坐标是(-
2
p ,0),
准线方程x=
2
p ,开口向左;抛物线2
x =2py(p>0)的焦点坐标是(0,
2
p ),准线方程y=-
2
p ,开口向上;
抛物线2
x =-2py (p>0)的焦点坐标是(0,-
2
p ),准线方程y=
2
p
,开口向下.
(2)抛物线
2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离2
0p x MF +
=;抛物线2
y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离
02
x p
MF -=
(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为
2
p ,顶点到准线的距离
2
p ,焦点到准线的距离为
p.
(4)已知过抛物线
2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长
AB =21x x ++p 或
α
2sin 2p
AB =
(α为直线AB 的倾斜角),2
21p y y -=,2
,41221p
x AF p x x +==(AF 叫做焦半径).
四、常用结论:
1.
椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1
,F
2
,点P 为椭圆上任意一点12
F PF γ
∠=,则椭圆的焦点三角形的面
积为1
2
2
tan
2
F PF
S b γ
∆=. 且
γ
cos 122
21+=
b PF PF
2.设P 点是双曲线22
221x y a b
-=(a >0,b >0)上异于实轴端点的任一点,F 1
、F 2
为其焦点,记12F PF θ
∠=,则
(1)2
122||||1cos b PF PF θ
=
-.(2).2
cot
22

b S F
PF =∆
3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22
≠=p py x 则焦点半径为2
P y PF +=.
4. 通径为2p ,这是过焦点的所有弦中最短的.
px y 22= px y 22-=
py x 22= py x 22-=
图形

y x
O

y
x
O

y
x
O

y
x
O
焦点 )0,2(p
F )0,2
(p F -
)2,
0(p F )2,0(p F -
准线 2
p x -
= 2p x = 2
p y -
= 2p y =
范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x 对称轴 x 轴
y 轴
顶点 (0,0)
离心率 1=e
焦半径 12
x p
PF +=
12
x p
PF +=
12
y p
PF +=
12
y p
PF +=。

相关文档
最新文档