真空技术基础知识1

合集下载

真空技术基础(电阻规 电离规)

真空技术基础(电阻规 电离规)
压强(帕) 10 4 10 3 10 2 1 0 1 01 0.1 0.01
5
接 阀门 机 械 泵
0
5
2 1 1 0 5 0 图3-3 抽气曲线
2 5
热 偶 规
时间(分)
图 3-4
定容法抽速测量装置
2. 定容法测量抽速实验 在真空系统中,对一定容积的被抽容器,随着气体逐渐被抽出,容器内压强包括抽气机进 口处的压强不断降低,因而每次抽出的气体在不断减少,抽速就不断变化。这样,抽气机 的抽速应是在某一瞬时压强下被抽气体体积对时间的导数。即:
7
根据(3-2)或(3-3)式,只要测出一系列压强、时 图 3-5 三级高真空油扩散泵 间值。可在半对数坐标纸上作出抽气曲线。求出抽 1. 进气口 6. 回油管 d ( gP) / dt 代入(3-3)式, 2. 冷凝阱 7. 扩散泵油 即可 气曲线某点的斜率 3. 冷却水套 8. 喷射喷口 求出该压强下的抽气速率。 4. 第一级喷口 9. 出气口 如只需粗略估计抽速,可求其平均抽速。 5. 第二级喷口
70
油蒸汽一起向下运动。油蒸汽被冷却水套冷却,结成油滴回到泵底循环使用,空气分子此 时向喷口下方集结。如此三级喷口逐级起作用,将进气口空气分子集结到出气口,再由机 械泵将积聚起来的气体抽走,可见扩散泵和机械泵必须串接使用才形成抽气过程获得高真 空。 一般三级油扩散泵的极限真空度为 10 帕。影响极限真空度的主要因素是油蒸汽压和 气体分子的反扩散。若加低温冷凝阱(放入干冰或液氮等),阻截油蒸汽分子进入系统, 或采用低蒸汽压扩散泵油,可使极限真空度提高 1-2 个数量级。 玻璃扩散泵的抽速一般为几十升/秒,金属扩散泵可达几百升/秒以上。 扩散泵使用注意事项: (1) 扩散泵不能单独工作,一定要用机械泵作前级泵,并使系统抽到 10 帕量级时才能 启动扩散泵; (2) 泵体要竖直,按规定量加油和选用加热电炉功率; (3) 牢记先通冷却水,后加热。结束时则应先停止加热,冷却一段时间后才能关闭。 4. 其它几种真空泵 (1) 分子泵 分子泵是靠高速转动的转子携带气体分子而获得高真空、超高真空的一种机械真空泵。 -8 工作压强范围为 1 ~ 10 帕。泵的转速为10000 转/分到 50000 转/分,这种泵的抽速范围很宽, 但不能直接对大气排气,需要配置前级泵。分子泵抽速与被抽气体的种类有关,如对氢的 抽速比对空气的抽速大 20% 。 分子泵适用于真空作业,如真空冶炼,半导体提纯,大型电子管排气、原子能工业、 空间模拟等。 (2) 吸附泵 许多化学性活泼的金属元素,如钛、钨、钼、锆、钡等都具有很强的吸气能力。其中 钛有强烈的吸气能力,在室温下性质稳定,易于加工,所以广泛用于真空技术,发展成为 一种超高真空泵¾¾钛泵。 钛泵的抽气机理是气体分子碰撞在新鲜的钛膜上,形成稳定的化合物,随后又被不断 蒸发而形成的新钛膜所复盖。新钛膜又继续吸附气体分子,如此形成稳定的抽气。钛泵对 被抽气体有明显的选择性,对活性气体抽速很大,对惰性气体抽速很小。因而往往需要扩 -6 -10 散泵等作为辅助泵。钛泵的极限真空度为 10 ~ 10 帕。 钛泵可应用于热核反应装置,加速器,空间模拟,半导体元件的镀膜技术和要求无油 污染的真空设备。 (3) 低温吸附泵 用低温介质将抽气面冷却到 20K 以下,抽气面就能大量冷凝沸点温度比该抽气面温度 高的气体,产生很大的抽气作用。这种用低温表面将气体冷凝而达到抽气目的的泵叫做低 温泵,或称冷凝泵。

真空技术基础

真空技术基础

第二节 主要吸附剂
其他吸附剂:沸石、硅藻土、 活性氧化铝等。
● 沸石:是一网架状铝硅酸盐火山岩 矿物。由于含有移动性较大的氧离子和 水分子,可进行阳离子交换和吸附性 质。 (1)可对有机物吸附去除(水中极性分 子更易被去除); (2)通过离子交换去除水中氨氮,并可 再生处理; (3)可作为水质软化、去除水中重金属 离子,可用食盐水再生。
第二节 主要吸附剂
主要的吸附剂
● 硅藻土:硅藻土是一种硅质岩石,主要分布在中国、美国、丹麦、法 国等国 。 硅藻土由无定形的SiO2组成。硅藻土通常呈浅黄色或浅灰色,质软, 多孔而轻,工业上常用来作为保温材料、过滤材料、填料、研磨材料、 水玻璃原料、脱色剂及催化剂载体等。 性能:多孔性、较低的浓度、较大的比表面积、相对的不可压缩性及化 学稳定性,被广泛用于冶金、化工建材、石油、食品、环境保护等工 业。 用水冲洗既可再生。
15
固体对气体的吸附及气体的脱附
气体的脱附是气体吸附的逆过程。通常把吸附在固体表面 的气体分子从固体表面被释放出来的过程叫做气体的脱附。 一般地,影响气体在固体表面吸附和脱附的主要因素是
气体的压强、固体的温度、固体表面吸附的气体密度以
及固体本身的性质,如表面光洁程度、清洁度等。当固 体表面温度较高时,气体分子容易发生脱附,对真空室 的适当烘烤有利于真空的获得就是利用这个道理。
12
压力范围和真空泵
真空度可分为:
气流种类 真空状态 真空压力 特性分析 应用范围
黏滯流(Viscous flow)
初真空: 10 Pa~105 Pa
10 Pa~105 Pa
气体分子间因黏 滯力作用,气体 工业应用(包装) 运动有方向性, 此方向与抽气方 向相同 真空度在106Torr以内时, 水汽占70%90%

真空技术的基本知识

真空技术的基本知识
某些真空泵系列对其抽气速率则以几何级数来分档。其单位是 “L/S”。共分18个等级,分别为0.2,0.5,1,2,4,8,15,30, 70,150,300,600,1200,2500,5000,10000,20000,40000。 真空泵系列有时也可用泵的入口尺寸来表示,其单位是“mm”。
例:2X一70 表示双级旋片式真空泵,抽气速率为70L/S。
利用真空与大气之间的压力差所产生的力可实现真空在下述 方面的力学应用。
具体应用: 1. 真空吸引和输运固体、液体、胶体和微粒; 2. 真空吸盘起重、真空医疗器械; 3. 真空成型,复制浮雕; 4. 真空过滤; 5. 真空浸渍。
中真空 1.33×102 ~1.33×10-1(Pa)
气体分子间,分子与器壁间的相互碰撞不相上下,气体分子 密度较小 。
1. 真空的含义及表征
1.1大气与真空 1.2真空度的表征及单位 1.3真空区域的划分
2. 真空的获得
2.1 真空获得设备 旋片泵 定片式真空泵 往复泵 罗茨泵 水环真空泵 分子泵 滑阀式真空泵 油扩散泵
2.2 真空泵的选型
第一章 真空技术的基本知识
3. 真空测量及其设备
3.1 什么是真空测量
高的压强;
1.3 真空区域的划分
划分依据:真空在技术上的应用特点、真空的物理特性、 真空获得设备和真空检测仪表的有效适用范围 (GB3163)
低真空 1.33×105 ~1.33×102(Pa)
低真空这种气体状态与常压状态相比较,只有分子数目由多 变少的变化,而无气体分子空间特性的变化,分子相互间碰撞频 繁。
2. 真空的获得
分子密度减小 分子数减少
抽走 化学反应
吸附 结晶 容积扩大
2.1 真 空 获 得 设 备

(整理)真空技术基础知识

(整理)真空技术基础知识

(整理)真空技术基础知识真空技术基础知识前⾔1. 真空“真空”来源于拉丁语“Vacuum ”,原意为“虚⽆”,但绝对真空不可达到,也不存在。

只能⽆限的逼近。

即使达到10-14—10-16托的极⾼真空,单位体积内还有330—33个分⼦。

在真空技术中,“真空”泛指低于该地区⼤⽓压的状态,也就是同正常的⼤⽓⽐,是较为稀薄的⽓体状态。

真空是相对概念,在“真空”下,由于⽓体稀薄,即单位体积内的分⼦数⽬较少,故分⼦之间或分⼦与其它质点(如电⼦、离⼦)之间的碰撞就不那么频繁,分⼦在⼀定时间内碰撞表⾯(例如器壁)的次数亦相对减少。

这就是“真空”最主要的特点。

利⽤这种特点可以研究常压不能研究的物质性质。

如热电⼦发射、基本粒⼦作⽤等。

2. 真空的测量单位⼀、⽤压强做测量单位真空度是对⽓体稀薄程度的⼀种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分⼦数。

但是由于分⼦数很难直接测量,因⽽历来真空度的⾼低通常都⽤⽓体的压强来表⽰。

⽓体的压强越低,就表⽰真空度越⾼,反之亦然。

根据⽓体对表⾯的碰撞⽽定义的⽓体的压强是表⾯单位⾯积上碰撞⽓体分⼦动量的垂直分量的时间变化率。

因此,⽓体作⽤在真空容器表⾯上的压强定义为单位⾯积上的作⽤⼒。

压强的单位有相关单位制和⾮相关单位制。

相关单位制的各种压强单位均根据压强的定义确定。

⾮相关单位制的压强单位是⽤液注的⾼度来量度。

下⾯介绍⼏种常⽤的压强单位。

【标准⼤⽓压】(atm )1标准⼤⽓压=101325帕【托】(Torr )1托=1/760标准⼤⽓压【微巴】(µba )1µba=1达因/厘⽶2【帕斯卡】(Pa )国际单位制1帕斯卡=1⽜顿/m2【⼯程⼤⽓压】(at )1⼯程⼤⽓压=1公⽄⼒/厘⽶2⼆、⽤真空度百分数来测量%100760760%?-=P δ式中P 的单位为托,δ为真空度百分数。

此式适⽤于压强⾼于⼀托时。

3. 真空区域划分有了度量真空的单位,就可以对真空度的⾼低程度作出定量表述。

真空基础知识

真空基础知识

INFICON HAPSITE Protable GC/MS真空系统
Copyright @2005 FPI inc, all right reserved
中国计量科学学院设计的矩形离子阱质谱仪真空系统
恒压电源 测量范围:1 Torr to 10-4 Torr
Copyright @2005 FPI inc, all right reserved
电离真空计
工作原理:电子在电场中飞行时从电场获得能量, 若与气体分子碰撞,将使气体分子以一定几率发生 电离,产生正离子和次级电子。其电离几率与电子 能量有关。电子在飞行路途中产生的正离子数,正 比于气体密度,在一定温度下正比于气体的压力。 因此,可根据离子电流的大小指示真空度。 根据气体分子电离方式的不同,电离真空计可可分 三种:热阴极电离真空计、冷阴极电离真空计和放 射电离真空计。
真空阀门
电磁线圈
铁芯
电磁阀
Copyright @2005 FPI inc, all right reserved
真空法兰 CF法兰
Copyright @2005 FPI inc, all right reserved
真空法兰 KF法兰
Copyright @2005 FPI inc, all right reserved
(1)曲线A:说明该系统既不漏气,也不放气 (放气是由于系统内有蒸汽源所致);如果系统抽 不到预定压强,是由于泵工作不正常所致。 (2)曲线B:在开始时上升较快,而后呈饱和状, 表明系统本身不漏气,但内部有放气源。 (3)曲线C:呈直线上升,说明系统漏气。 (4)曲线D:表明系统压强开始上升很快,而后 变得较慢但不出现饱和,说明放气和漏气两种情况 都存在。
判断真空系统确实漏气之后,就开始着手寻找漏孔的位置、测定漏率大小,以 便进行修补。检查的方法主要有:压力检漏法、真空检漏法、氦质谱检漏法和 其他检漏法等。

第一章 真空技术基础

第一章 真空技术基础

几个基本概念:
• 真空:气体分子数量低于大气压状态的空间。但不是完全空 的。 • 真空术语: 本底真空度:全密封真空腔体内抽空时的气压。 工作真空度:实验或工艺过程中所必需的气体压力。 极限真空度:没有漏气和内壁脱气条件下,真空泵所能达 到的最低气压。 真空规:测量真空中气压的仪表或传感器。 真空度单位:气压的单位。 真空度就是真空中的气压。真空度的测量就是气压的测量。
1mba 100 1atm
1.013×105 760
二、真空区域的划分
1105 ~ 1102 Pa
粗真空
低真空 高真空 超高真空
1102 ~ 1101 Pa
粘滞流
1101 ~ 1106 Pa
110 Pa
11010 Pa
6
粘滞流
分子流
极高真空
分子流
三、固体对气体的吸附及气体的脱附
• 缺点:泵内油蒸汽的回流会直接造成真空 系统的污染。 • 应用领域:真空镀膜、真空炉、电子、化 工、航空、航天、冶金、材料、生物医药 、原子能、宇宙探测等领域。
思考:
1. 扩散泵能否单独使用,即从大气开始抽真空?为什么? 2. 如果使用扩散泵时,忘记开冷却水,结果会怎样?
附:钛升华泵
加热钛靶蒸发生成钛膜,并与气体发生反应 工作范围 10-8-10-11 Torr 价格便宜,可靠
油扩散泵的结构如示意图
• 泵的底部—是装有真空泵油的蒸发器,真空泵油经电 炉加热沸腾后,产生一定的油蒸汽,蒸汽沿着蒸汽导 流管传输到上部,经由三级伞形喷口向下喷出。喷口 外面的压强较油蒸汽压低,于是便形成一股向出口方 向运动的高速蒸汽流,使之具有很好的运载气体分子 的能力。油分子与气体分子碰撞,由于油分子的分子 量大,碰撞的结果是油分子把动量交给气体分子自己 慢下来,而气体分子获得向下运动的动量后便迅速往 下飞去.并且,在射流的界面内,气体分子不可能长 期滞留,因而界面内气体分子浓度较小.由于这个浓 度差,使被抽气体分得以源源不断地扩散进入蒸汽流 而被逐级带至出口,并被前级泵抽走.慢下来的蒸汽 流在向下运动的过程中碰到水冷的泵壁,油分子就被 冷凝下来,沿着泵壁流回蒸发器继续循环使用.冷阱 的作用是减少油蒸汽分子进入被抽容器。

薄膜物理与技术-1真空技术基础PPT课件

薄膜物理与技术-1真空技术基础PPT课件
薄膜物理与技术-1真空技术基础 ppt课件
目录
• 真空技术基础 • 真空获得技术 • 真空测量技术 • 真空镀膜技术 • 薄膜性能检测技术
01 真空技术基础
真空定义与特性
真空定义
真空是指在给定的空间内,气体压力 低于一个大气压的状态。在真空技术 中,通常使用托斯卡或帕斯卡作为压 力单位。
真空特性
而实现气体的压缩和排除。
分子泵特性
抽气速率高、工作压力范围广、无 油污染、维护简单等。
分子泵分类
直联型分子泵、侧流型分子泵、复 合型分子泵等。
扩散泵抽气原理与特性
扩散泵抽气原理
利用加热的吸气剂将气体分子吸 进吸气剂表面,再通过扩散作用 将气体分子从吸气剂表面传递到 泵的出口,从而实现气体的排除。
扩散泵特性
真空技术的分类与应用
真空技术的分类
根据应用需求,真空技术可分为真空镀膜、真空热处理、真空电子器件制造等。
真空技术的应用
真空技术在科学研究、工业生产、航空航天、电子工业等领域有广泛应用,如 电子显微镜、太阳能电池、平板显示器的制造等。
02 真空获得技术
机械泵抽气原理与特性
机械泵抽气原理
机械泵分类
真空具有低气体压力的特性,这使得 物质在真空中表现出不同的物理和化 学性质。例如,气体分子间的碰撞减 少,气体分子的平均自由程增加。
真空的度量与单位
真空度
真空度是指真空空间内的气体压 力,通常用压力范围来表示,如 低真空、中真空、高真空和超高 真空。
真空单位
常用的真空单位有帕斯卡(Pa)、 托斯卡(Torr)和巴(bar)。1 Torr = 133.322368 Pascal。
利用高速旋转的叶轮将气体吸入,通 过压缩和排出来实现气体压缩和排除。

真空技术基础

真空技术基础

表面清洗的基本方法
溶 剂 清 洗
1)软化水或纯水 离子杂质:如Na+、K+、Ca2+、Mg2+、Fe2+、Al3+、Zn2+、 Cu2+、Ni2+、Mn2+、H+、NH4+、SO4+、Cl-、NO3-、 HCO3-、CO3-、PO43-、OH一、SiO32-等。阳离子和 阴离子结合为可溶性盐类存在于水中
MR3
ECR CA T/C C/C CP1 IBE
GV302
Ar
IG3 DG3 PS3
S/CTΒιβλιοθήκη P3 DP1 RP3真空获得
水环泵、旋片泵、水喷射泵、螺杆泵、爪式泵、罗茨泵、分子 泵、扩散泵、低温泵、吸附泵 1)低真空阶段以机械泵为主(旋转、气体压缩) 2)中真空、高真空、超高真空阶段以扩散泵、分子泵、低温 泵为主 基本概念: 主泵、粗抽泵、前级泵、粗真空泵、高真空泵、超高真空泵和 增压泵 工作压力和极限压力
气体放电
V K A R +
I
气体放电管
1200 1000
Townsend放电 异常放电
v(V)
800 600 400 200 0 1E-21
正常放电
弧光放电
1E-17
1E-13
1E-09
2
1E-05
1E-01
I(A/cm )
伏安特性
阴极溅射原理图
靶材的刻蚀图
一种新型刻蚀均匀磁控溅射源
离子镀原理图
(4)汽油 汽油有较强的溶解性,能溶除油污、油漆等有机杂质。特 别是航空汽油,无毒性,去污能力强,是清洗常用有机溶剂。
(5)松节油
松节油与乙醚、乙醇、氯仿等有机溶剂互溶,是一种无毒 溶剂。对有机杂质有较好的溶解能力,能溶解油类、脂肪、蜡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空技术基础知识真空技术发展到今天已广泛的渗透到各项科学技术和生产领域,它日益成为许多尖端科学、经济建设和人民生活等方面不可缺少的技术基础.作为现代科学技术主要标志的电子技术、核技术、航天技术的发展都离不开真空,反过来它们飞跃前进正在推动真空技术的迅速发展,成为真空科学技术发展史上的三个飞跃阶段,从而使真空技术由原来主要应用领域电真空工业,扩展到低温超导技术、薄膜技术、表面科学、微电子学、航海工程和空间科学等近代尖端科学技术中来.至于在一般工业中应用实在种类繁多,不胜枚举.它涉及冶金、化工、.医药、制盐、制糖、食品等工业都广泛使用真空技术.例如有机物的真空蒸馏,某些溶液的浓缩、析晶、真空脱水、真空干燥等.人们还利用真空中的各种特点,研制生产出真空吊车、电子管、显像管、中子管.就连人们日常生活中使用的灯管、暖水瓶、真空除尘器等都离不开真空技术.1.真空与真空区域的划分“真空”是指在给定的空间内,气体分子密度低于该地区大气压下的气体分子密度的稀薄气体状态。

不同的真空状态有不同的气体分子密度。

在标准状态下,每立方厘米的分子数为2.6870×1019个,而在真空度为10-4帕时,每立方厘米的分子数为3.24×1010个,即使用最现代的抽气方法获得的最高真空度10-13帕时,每立方厘米中仍有3.24×10个分子。

所以真空是一相对概念,绝对真空是不存在的。

气体分子密度小、分子之间相互碰撞不那么频繁,单位时间内碰撞容器壁的分子数减少,从而使真空状态下热传导与对流小,绝热性能强,可降低物质的沸点和汽化点等。

真空的这些特点被广泛应用到生活、生产和科研的各个领域中。

真空度是对气体稀薄程度的一种客观量度。

它本应用单位体积中的分子数来量度,但由于历史的原因,真空度的高低仍通常用各向同性的物理量“气体压强”来表示。

气体压强越低,表示真空度越高;反之,压强越高,真空度就越低。

在真空技术领域中,过去常用的压强单位为托(torr),它与目前国际单位制中压强单位帕斯卡的换算关系为:1帕=1牛顿/米2=1千克/米.秒2=7.50062×10-3(托)1托=1/760(标准大气压)=101325.0/760(帕)=133.3224(帕)为使用方便,人们根据真空技术的应用特点、真空物理特性和真空机械泵、真空计的有效使用范围,将真空划分为不同区域及对应的物理特点和主要应用领域,如表1所示。

2. 真空获得用来获得真空的器械简称为真空机械泵。

由于真空技术发展到今天所涉及的压强范围从105~10-12帕,宽达17个数量级,所以现在还不能用任何一种真空机械泵来实现。

表2列出常用各种真空机械泵的运用范围与抽速。

一方,如机械泵、扩散泵、分子泵等。

二是吸附型真空机械泵,它是利用各种吸气作用将气体吸掉,如钛泵、离子泵、低温泵等。

按起始工作状态可分为前级泵(可直接从大气压下开始抽气,如机械泵、吸附泵等)和次级泵(只能从比大气压低的某一定压强下开始抽气,使系统达到更高极限真空度,如扩散泵、钛泵等)。

次级泵工作时,必须辅以一定的前级泵,提供其正常工作所需要的真空度。

用以比较各种真空机械泵性能的主要基本参数是:1)最大工作压强;泵能够正常工作的最高压强,如果工作压强超过这一数值,泵将失去工作能力。

机械泵最大工作压强为1个大气压,扩散泵为1帕。

2)极限压强:在被抽容器中漏气和放气可以忽略情况下,经长时间的抽气之后,泵所能达到的最低平衡压强为该泵的极限压强。

3)抽气速率:在泵的入气口处,在任一给定压强P1下,单位时间内流入泵的气体体积数为泵的抽气速率,简称为抽速,常用S表示,则:S=[升/秒]式中△v为泵进气口处△t时间内流入泵的气体体积[升],P1为在测定该气体体积时的进气口压强[帕]。

抽速在泵抽气过程中因P1是变的,所以S一般都不是常数。

4)运用范围:指泵具有相当抽气能力时的压强范围。

对超高真空范围内的泵,需附加二个主要参数是:抽气的选择性和残余气体的组成。

一般实验室常用机械泵和扩散泵在1.5小时内可获得10-4~10-5帕真空度。

2.1旋片式机械真空机械泵旋片式机械泵主要有定子、转子、旋片、弹簧等组成,如图1所示。

图1旋片式机械真空机械泵在定子缸内偏心的装有圆柱形转子,与定子在A点相切,转子槽中装有中间带弹簧的两块旋片,旋转时靠离心力和弹簧的张力使旋片的顶端与定子内壁始终紧密接触。

定子上的进、排气口被转子和旋片分为两部分。

当转子沿箭头方向转动时,进气口方面容积逐渐扩大而吸入气体,同时逐渐缩小排气口方面容积将以吸入气体压缩从排气孔排出。

机械泵的抽气速率主要取决于泵的工作体积△v,在抽气过程中随着进气口压强的降低,抽气速率逐渐减小。

当抽到系统极限压强时,系统的漏气与抽出气体达到的动态平衡,此时抽速不变,见图2。

目前生产的机械泵多是两个泵腔串联起来的,如图3称为双级泵,它比单级泵具有极限真空度高(10-1~10-2帕)和在低气压下具有较大抽速等优点。

为保证机械泵的良好密封和润滑,排气阀浸在密封油里以防大气流入泵中。

油通过泵体上的缝隙、油孔及排气阀进入泵腔,使泵腔内所有的运动表面被油膜覆盖,形成了吸气腔与排气腔之间的密封。

同时,油还充满了泵腔内的一切有害空间,以消除它们对极限真空度的影响。

使用时应注意:因被抽气体在泵腔内被压缩,所以不宜用来抽蒸汽;停机后要立刻打开充气阀,防止机械泵油返至真空系统内。

图2 对容器V的抽气曲线图3二级旋片式机械泵结构机械真空泵通常选用国产1号真空泵油,不同种类和牌号的真空泵油不得混合使用。

2.2油扩散泵油扩散泵是用来获得高真空的常用设备,其工作压强范围为10-1~10-6帕。

玻璃油扩散泵的结构如图4。

图4 玻璃油扩散泵结构图图5 扩散泵工作原理扩散泵油在真空中加热到沸腾温度(约200℃)产生大量的油蒸汽,油蒸汽经导流管由各级喷嘴定向高速喷出,在喷嘴出口处蒸汽流中造成低压。

如图5所示被抽气体分子就不断地扩散到油蒸汽流中,使被抽气体分子沿蒸汽流速的方向高速运动。

经几级喷嘴连续作用将被抽气体压缩到出气口由机械泵抽出。

而油蒸汽在冷却的泵壁上被冷凝后又返回到泵底重新被加热,如此循环工作,就达到连续抽气的目的。

在使用扩散泵时要注意的是:开扩散泵前必须先用机械泵将系统包括扩散泵本身抽至5帕的预备真空,然后先通水后通电加热泵油。

工作过程中必须保证冷却水畅通。

停机时,先断开扩散泵加热电源,大约30分钟泵油降至室温时,再断冷却水,最后断开机械泵电源。

这样操作可防止或减小泵油氧化变质,提高真空的清洁程度,延长使用寿命,保证系统的极限真空度。

目前国内扩散泵大都使用矿物油中的2号油、3号油;硅油中的274油、275油。

获得高真空可用3号油,超高真空必须采用硅油!3. 真空测量测量真空度的仪器称为“真空计”。

真空计分为绝对真空计和相对真空计两大类。

能从本身所测得的物理量直接求出系统中真空度的为绝对真空计,如U型管压力计,麦克劳真空计等;而相对真空计是输出信号与其压强之间的关系要用真空测量标准系统或绝对真空计校准标定后,才能测定真空度。

一般实验室常用的热偶和电离真空计都是标定好的相对真空计。

3.1热电偶真空计热电偶真空计由热电偶规管和电测线路构成,如图6。

规管内有一根钨或铂制成的加热丝(2),另由AB、AB/两根导热系数不同金属丝组成一对热电偶(3),热电偶一端(热端)与热丝在A 点焊住,另两端B、B、/分别焊于芯柱引线上,再接到毫伏表上。

热偶真空计的工作原理是利用气体分子的导热性质,通过热电偶产生的热电势来测量真空的。

使用时,调可变电阻(4)使加热电流保持定值情况下,加热丝的平衡温度取决于气体压强,若压强越高,气体分子碰撞热丝机会越多带走的热量越多,因而热丝温度越低,热电偶所产生的电动势也越低。

反之,压强越低,热丝温度越高,热电动势越大。

热电偶真空计的测量范围是102~10-1帕。

图6热电偶规管结构图7 热阴极电离规管结构3.2热阴极电离真空计热阴极电离真空计由电离规管和测量电路两部分组成。

规管结构类似一只电子三极管,如图7,测量电路原理如图8。

电离真空规管是利用气体分子被快速电子碰撞而电离的现象工作的。

当阴极F通电加热后发射热电子,这些电子被处于正电位(相对阴极为正100~150V)的螺旋栅极G加速后,电子具有一定能量与气体分子做电离碰撞,使气体电离为正离子和电子。

所产生的正离子被外围圆筒形处于负电位(相对阴极为负10~60V)的板极A吸引,在板极电路中形成正离子流I+。

工作中当阴极发射的电子流I0一定时,正离子流I+,正比于气体压强,则有I+=I0KP (1)式中K是比例系数称为电离计的灵敏度,通常将发射电流I0保持一定值,然后用绝对真空计或标准校准系统来校准,给出I+~P的关系曲线,就可确定出K来。

从(1)式可见,只要K已知,就可通过I+和I0而知压强P。

电离真空计测量范围是10-2~10-5帕,可连续测量。

他的缺点是阴极开始工作时有放气现象,影响测量精确度。

由于阴极处于高温下发射电子,容易蒸发,低真空下阴极又易氧化,因而规管使用寿命不长。

故使用时被抽容器中真空度高于1×10-1帕时才能开电离真空计测量。

图8 电离真空计外控接法电路原理图热电偶真空计和电离真空计的使用方法,请看仪器使用说明书。

4. 真空系统与检漏技术真空系统是由真空机械泵、真空计、被抽容器及其它元件如阀门、冷阱等,借助真空管道,按一定要求组合而成,并具有所需抽气功能的抽气装置。

它的职能是在指定时间、空间内获得真空,保持真空;确保系统内某项工艺过程或物理过程的实施。

真空系统根据实验要求可设计成金属真空系统、玻璃真空系统、金属和玻璃混合真空系统。

检漏技术是真空技术的重要组成部分。

对金属真空系统的所有部件在装配前必须做密封性能检验,部件接合处最易产生漏气,须经周密的检漏才能达到预定的真空度。

检漏一般采用分段密封法作p~t曲线,从而可判断该段是否漏气,如有漏气常用加压法、试验气体指示法等确定漏孔位置。

在检查漏气率为10-6~10-10帕.升/秒这样微小的漏孔时,就要用氦质谱检漏仪、四极场滤质器等检漏仪器。

对玻璃系统的检漏可用高频火花检漏器。

火花检漏器实际是一小功率高频高压设备,它的高电压输出端伸出一金属释放电弹簧尖头,能击穿附近空气。

当它的高压放电尖端移到玻璃系统上的漏孔处时,因玻璃是绝缘体不能跳火,而漏孔处因空气不断流入,在高频高压作用下而行成导电区,在火花检漏器尖端与漏孔之间形成一强烈火花线,并在漏孔处有一白亮点,从而可以找到漏孔位置。

使用火花检漏器时,不要在玻璃一点上停留过久,以免玻璃局部过热而打出小孔来。

对检出的漏孔可选用饱和蒸汽压低,具有足够的热稳定性和一定的机械和物理性质的真空密封物质密封。

相关文档
最新文档