蛮力法求解鸡兔同笼问题解法

合集下载

小升初数学“鸡兔同笼”问题解法

小升初数学“鸡兔同笼”问题解法

小升初数学“鸡兔同笼”问题解法“鸡兔同笼问题”的4种理解方法▲▲▲▶题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。

求笼中各有几只鸡和兔?01♪解法1站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。

那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。

那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)02♪解法2松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。

那么,兔子就成了2只脚。

则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)03♪解法3假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。

假设笼子里全是鸡,则应有脚70只。

而实际上多出的部分就是兔子替换了鸡所形成。

每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。

兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。

而实际上不足的部分就是鸡替换了兔子所形成。

每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。

将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。

将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。

由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。

鸡兔同笼问题,终于找到最简单易懂的解决方法了!

鸡兔同笼问题,终于找到最简单易懂的解决方法了!

鸡兔同笼问题,终于找到最简单易懂的解决方法了!
其实有个最简单的算法:
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数)
总头数(35)-兔子数(12)=鸡数(23)
意思是让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

上面是古代的解法,在这里我们用方程法很容易破解鸡兔同笼问题:
1、一元一次方程
解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=94
解得
X=12
鸡:35-12=23(只)
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

2、二元一次方程组
解:设鸡有x只,兔有y只。

X+y=35,2x+4y=94
解得
X=23,y=12
答:兔子有12只,鸡有23只。

新型鸡兔同笼题,某些问题中的量可能并不是鸡与兔,但是其本质仍是鸡兔同笼问题,抓住问题中的可用量,用一定的式子联系起来。

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。

这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。

在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。

一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。

1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。

2. 假设有x只鸡,则有13-x只兔子。

3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。

4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。

二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。

1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。

三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。

1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。

2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。

3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。

四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。

1. 从1到12枚举鸡的数量x。

2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。

3. 如果x+y=13,则找到符合条件的答案。

五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。

1. 假设笼子里有x只鸡,则有13-x只兔子。

2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。

鸡兔同笼问题的策略与解决思路

鸡兔同笼问题的策略与解决思路

鸡兔同笼问题的策略与解决思路鸡兔同笼问题是一个经典的数学问题,指的是在一个笼子里有若干只鸡和兔子,已知总数量和总腿数,需要求出鸡和兔子分别的数量。

这个问题虽然看似简单,但却是一个很好的练习逻辑思维和数学推理的题目。

下面将介绍几种常用的策略与解决思路。

1. 假设法:假设鸡兔的总数量为n,每只鸡有2条腿,每只兔子有4条腿,在总腿数为m的情况下,可以列出方程式2x + 4y = m,其中x表示鸡的数量,y表示兔子的数量。

根据方程式可以进行求解,找出满足鸡兔总数量的组合。

2. 枚举法:从数量较少的一方开始枚举,假设鸡的数量为0,那么兔子的数量就是总数量。

如果鸡的数量为1,那么兔子的数量就是总腿数减去鸡的腿数除以2。

以此类推,继续增加鸡的数量,直到找到满足条件的组合。

3. 二元一次方程组法:可以建立一个二元一次方程组,同时考虑鸡和兔子的数量。

假设鸡的数量为x,兔子的数量为y,鸡的腿数为2x,兔子的腿数为4y,根据总数量和总腿数可以得到方程组:x + y = n2x + 4y = m通过解这个方程组可以求得鸡和兔子的数量。

4. 矩阵方程法:将鸡的数量和兔子的数量视为未知数,可以将鸡兔同笼问题转化为矩阵方程。

令A为系数矩阵,X为未知数矩阵,B为常数矩阵,则可以得到AX = B的形式。

通过解这个矩阵方程即可求得鸡和兔子的数量。

以上是几种常用的解决鸡兔同笼问题的策略与思路。

对于练习逻辑思维和数学推理有很好的帮助。

在实际解决问题时,可以根据具体情况选择适合的方法,以快速准确地得到答案。

此外,对于鸡兔同笼问题的解决过程中,我们可以思考一些扩展的问题:1. 如何解决总数量和总腿数不为正整数的情况?在解决这种情况下的鸡兔同笼问题时,可以引入小数的概念。

将鸡和兔子的数量视为小数,并按照之前的策略和思路进行求解。

2. 如何解决鸡兔不限于只有两种动物的情况?在拓展为鸡兔不限于只有鸡和兔子的情况时,可以引入更多种动物,并考虑每种动物的腿数。

鸡兔同笼解题方法13个

鸡兔同笼解题方法13个

鸡兔同笼解题方法13个摘要:1.引言2.鸡兔同笼问题的基本解题思路3.13个解题方法详细解析a.方法1:列举法b.方法2:方程法c.方法3:比例法d.方法4:图形法e.方法5:逻辑推理法f.方法6:排除法g.方法7:转化法h.方法8:逆向思维法i.方法9:代换法j.方法10:假设法k.方法11:分类讨论法l.方法12:极限思维法m.方法13:归纳法4.结论与实用建议正文:【引言】鸡兔同笼问题,是我国古代数学中著名的一个问题,也是日常生活中常见的数学问题。

解决鸡兔同笼问题,可以锻炼我们的逻辑思维和数学运算能力。

下面,我们将详细介绍13种解决鸡兔同笼问题的方法。

【鸡兔同笼问题的基本解题思路】鸡兔同笼问题的一般表述为:有一笼子里关着鸡和兔子,我们只能看到笼子里有一定数量的头和脚。

已知鸡有一个头,两只脚;兔子有一个头,四只脚。

问:鸡和兔子各有多少只?【13个解题方法详细解析】a.方法1:列举法列举法是最基本的解题方法,根据鸡兔同笼问题的基本特征,列举出所有可能的情况,然后一一验证,找出符合题意的答案。

b.方法2:方程法设鸡的数量为x,兔子的数量为y,根据题意,我们可以得到两个方程:x+y=总头数,2x+4y=总脚数。

解这两个方程,就可以得到鸡和兔子的数量。

c.方法3:比例法根据鸡和兔子的脚数比例,设鸡的数量为x,兔子的数量为y,可以得到比例方程:x/y=2/4。

解这个比例方程,再结合头数方程,就可以求得鸡和兔子的数量。

d.方法4:图形法用图形表示鸡和兔子的头和脚,根据题意,画出所有可能的图形,然后分析每个图形的特征,找出符合题意的答案。

e.方法5:逻辑推理法根据题意,利用逻辑推理的方法,分析鸡和兔子可能出现的数量组合,逐步缩小范围,找出符合题意的答案。

f.方法6:排除法根据题意,先假设鸡和兔子的数量,然后计算出对应的头和脚的数量,与题目给出的头和脚的数量进行比较,排除不符合题意的组合,最后找出符合题意的答案。

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式
摘要:
1.鸡兔同笼问题的基本描述
2.鸡兔同笼的十种解法公式
3.结论
正文:
一、鸡兔同笼问题的基本描述
鸡兔同笼问题是一个古老的数学问题,指的是在一个笼子里关着鸡和兔子,已知笼子里共有n 个头,m 只脚。

要求解出鸡和兔子各有多少只。

二、鸡兔同笼的十种解法公式
1.直接法:通过列方程求解,设鸡为x,兔子为y,则有x+y=n,
2x+4y=m,解得x=(m-2n)/2,y=(m-2n)/2。

2.代入法:通过列方程将一个变量表示成另一个变量,再代入另一个方程求解。

3.消元法:通过两个方程相加或相减消去一个变量,再解另一个变量。

4.置换法:通过将一个方程的项置换到另一个方程,再解出变量。

5.矩阵法:将方程列成矩阵形式,通过矩阵运算求解。

6.行列式法:通过求解行列式得到方程的解。

7.解方程组法:通过解方程组求解。

8.韦达定理法:通过韦达定理求解。

9.容斥原理法:通过容斥原理求解。

10.棋盘法:通过画棋盘,将鸡和兔子的脚分别填入棋盘,求解。

三、结论
鸡兔同笼问题有着丰富的解法,这些解法在数学中有着广泛的应用。

小学数学鸡兔同笼问题的解题方法

小学数学鸡兔同笼问题的解题方法

小学数学鸡兔同笼问题的解题方法鸡兔同笼问题,是小学阶段一个非常重要的数学模型。

解决这类问题可以极大的拓宽孩子的解题思路,帮其拓宽解题思路,加深对所学知识的理解。

今天除了常规解法之外,我也提供另外几种非常规的解法,下面来一起看看吧。

小学数学鸡兔同笼6种解题方法01极端假设法假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。

这是把兔看作鸡的缘故。

而把一只兔看成一只鸡,足数就会少4-2=2(只)。

因此兔有20÷2=10(只),鸡有40-10=30(只)。

02任意假设假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。

这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。

那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。

通过比较第一类和第二类解法,我们不难看出:任意假设是极端假设的一般形式,而极端假设是任意假设的特殊形式,也是简便解法。

03除减法用脚的总数除以2,也就是100÷2=50(只)。

这里我们可以设想为,每只鸡都是一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。

这样在50这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从50减去总头数40,剩下的就是兔子头数10只。

有10只兔子当然鸡就有30只。

这种解法其实就是《孙子算经》中记载的:做一次除法和一次减法,马上能求出兔子数,多简单!这也是文章前面这个数学段子中趣解的由来,我也课堂当中也经常喜欢给学生讲解这种解法。

04第四类解法:盈亏法把总足数100看作标准数。

假设鸡有25只,兔则有40-25=15(只),那么它们有足2×25+4×15=110(只),比标准数盈余110-100=10(只);再假设鸡有32只,兔则有40-32=8(只),那么它们有足2×32+4×8=96(只),比标准数不足100-96=4(只)。

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法

鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。

每多1个头就是1只兔。

因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。

3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数--总头数×2的差再÷2就是兔的只数。

4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛮力法求解鸡兔同笼问题解法
有哪些解法呢?主要有假设法,方程法,抬脚法,列表法,公式法等方法。

鸡兔同笼问题是数学的概念,而数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

解法有假设法,方程法,抬腿法,列表法,公式法,让我们来一一列举吧。

1、假设法
假设全是鸡:2 × 35 = 70 (条)
鸡脚比总脚数少:94 - 70 = 24 (只)
兔子比鸡多的脚数:4 - 2 = 2(只)
兔子的只数:24 ÷ 2 = 12 (只)
鸡的只数:35 - 12 = 23(只)
假设全是兔子:4 × 35 = 140(只)
兔子脚比总数多:140 - 94 = 46(只)
兔子比鸡多的脚数:4 - 2 = 2(只)
鸡的只数:46 ÷ 2 = 23(只)
兔子的只数:35 - 23 = 12(只)
2、方程法
一元一次方程
(一)解:设兔有x只,则鸡有(35-x)只。

解得
则鸡有:35 - 12 = 23 只
(二)解:设鸡有x只,则兔有(35-x)只。

解得
则兔有:35 - 23 = 12(只)
答:兔子有12只,鸡有23只。

(注:在设方程的未知数时,通常选择腿多的动物,这将会使计算较简便)
二元一次方程组
解:设鸡有x只,兔有y只。

解得
答:兔子有12只,鸡有23只。

3、抬腿法
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。

笼子里的兔就比鸡的脚数多1.这时,脚与头的总数之差47-35=12.就是兔子的只数。

方法二
假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

方法三
我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

4、列表法
腿数:鸡(只数),兔(只数)
88 26 9
90 25 10
92 24 11
94 23 12。

相关文档
最新文档