真核基因原核表达的作用

合集下载

原核、真核生物基因及表达调控

原核、真核生物基因及表达调控

原核、真核生物基因及表达调控引言现代生物学中“基因”一词甚为流行,细胞学、遗传学、生物化学等,以及各种生物学课本中,都涉及到“基因”一词。

甚至象典型的宏观生物学科——生态学,也把一片森林称为一个“基因库”[1]。

现代生物学已经完全证明,DNA 分子是由称为核普酸的有机分子线性聚合而成。

基因就是核普酸按一定顺序排列而成的DNA分子片段,它携带着遗传信息。

基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。

其实质就是遗传信息的转录和翻译。

在个体生长发育过程中,生物遗传信息的表达按一定的时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)[2]。

原核生物和真核生物的基因及表达过程有着差异。

随着世界分子生物学研究不断深入,基因表达技术有了很大的提高。

迄今为止,人们已经研究开发出多种原核和真核表达系统用以生产重组蛋白[3]。

一.原核、真核生物基因结构原核生物基因分为编码区与非编码区,所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,非编码区位于编码区的上游及下游。

[4]在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。

RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。

真核生物基因结构见图1:图1 真核生物基因结构二.原核、真核生物基因结构的区别最主要的在于真核基因是不连续的,而原核基因是连续的。

所谓真核基因的不连续,即一个基因的编码序列也叫外显子,被一个或多个非编码序列,又叫内含子所间隔。

[5]这些内含子和外显子同属一个转录单位,转录形成前体。

经过转录的加工,即切去内含子,重新连按外显子,从而得到成熟。

而绝大多数的原核基因是连续的,没有内含子的间隔,转录产生成熟。

不仅如此,而且凡在代谢途径上功能有关的多个基因可能紧密相联,与它们的调控基因一起组成一个操纵子,转录到一条链。

基因表达与调控(下)真核基因表达调控一般规律

基因表达与调控(下)真核基因表达调控一般规律

真核生物基因调控,根据其性质可分为两大类:
第一类是瞬时调控或称可逆性调控,它相当于原核细 胞对环境条件变化所做出的反应,包括某种底物或激素水 平升降及细胞周期不同阶段中酶活性和浓度的调节。
第二类是发育调控或称不可逆调控,是真核基因调控 的精髓部分,它决定了真核细胞生长、分化、发育的全部 进程。
根据基因调控在同一事件中发 生的先后次序又可分为:
7. 真核生物大都为多细胞生物,在个体发育过程中逐步 分化形成各种组织和细胞类型。分化是不同基因表达的结 果。不同类型的细胞,功能不同,基因表达的情况也不一 样。某些基因仅特异地在某种细胞中表达,称为细胞特异 性或组织特异性表达,因而具有调控这种特异性表达的机 制。
8. 真核生物对外界环境条件变化的反应和原核生物十分不 同。同一群原核生物细胞处在相同的环境条件中,对环境 条件的变化会作出基本一致的反应;而真核生物常常只有 少部分细胞基因的表达直接受到环境条件变化的影响和调 控,其他大部分间接或不受影响。
组蛋白的作用
• 组蛋白是带正电荷的碱性蛋白质,可与DNA链上 带负电荷的磷酸基相结合,从而封闭了DNA分子, 妨碍基因转录。活跃转录的染色质区段中H1水平 降低。
• 转录活跃的区域也 常缺乏核小体的结 构,并且对核酸酶 敏感度增加。
8 基因表达与调控(下)
——真核基因表达调控一般规律
• 真核生物(除酵母、藻类和原生动物等单细胞类 之外)主要由多细胞组成,每个细胞基因组中蕴 藏的遗传信息量及基因数量都大大高于原核生物。
• 人类细胞单倍体基因组有3×109bp,为大肠杆菌 总DNA的800倍,噬菌体的10万倍左右!
真核基因表达调控的最显著特征是能在特定 时间和特定的细胞中激活特定的基因,从而实现 “预定”的、有序的、不可逆转的分化、发育过 程,并使生物的组织和器官在一定的环境条件范 围内保持正常功能。

原核与真核基因表达比较

原核与真核基因表达比较
原核与真核基因表达 比较
目录
• 引言 • 原核生物基因表达特点 • 真核生物基因表达特点 • 原核与真核基因表达差异比较 • 原核与真核基因表达互作关系 • 研究展望与意义
01
引言
目的和背景
揭示原核与真核基因表达的差异
通过比较原核生物和真核生物在基因表达调控机制、转录和翻译过程等方面的 异同,深入理解生物进化的本质和复杂性。
宿主环境
真核生物作为宿主,其内部环境可能 对原核生物的基因表达产生影响,如 pH值、温度、营养条件等。
免疫应答
真核生物的免疫系统可以识别并应答 原核生物的感染,从而影响原核生物 的基因表达。生物与真核生物之间可以建 立共生关系,彼此之间的基因表 达会相互影响,以达到共同生存 的目的。
转录延伸
在原核生物中,RNA聚合 酶在DNA模板上持续合成 RNA链,直到遇到终止信 号。
转录终止
原核生物的转录终止通常 涉及rho因子等蛋白质, 帮助RNA聚合酶从DNA模 板上脱离。
翻译过程
01
翻译起始
延伸过程
02
03
翻译终止
原核生物的翻译起始需要特定的 起始因子和核糖体小亚基的结合。
在原核生物中,延伸因子帮助氨 酰-tRNA进入核糖体的A位,并 促进肽键的形成。
表观遗传调控
真核生物具有复杂的表观遗传调控机制,如DNA甲基化、组蛋白修饰和染色质重塑等,这些调控机制可以影响基因 的表达和细胞的命运。而原核生物则缺乏类似的表观遗传调控机制。
信号传导与基因表达调控
真核生物的信号传导途径与基因表达调控密切相关,可以通过信号分子和受体的相互作用来调节基因的 表达。而原核生物的信号传导途径相对简单,通常不涉及复杂的信号分子和受体的相互作用。

真核基因在原核细胞中如何表达

真核基因在原核细胞中如何表达

真核基因在原核细胞中如何表达
基因工程操作的过程中,在导入真核细胞的目的基因时一般用人工合成基因的方法。

即以目的基因转录成的信使RNA为模板,反转录成互补的单链DNA,然后在酶的作用下根据碱基互补原则合成双链DNA,从而获得所需要的目的基因。

或根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对原则,推测出它的结构基因的脱氧核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。

为何不从真核生物的供体细胞的DNA 中直接分离目的基因呢?
1 从基因结构看,由于真核细胞的基因含有不表达的DNA 片段,不能直接用于基因的扩增和表达。

具体的说,真核细胞的基因结构在编码区是由不能够编码蛋白质的内含子和能够编码蛋白质的外显子组成。

真核细胞的基因在真核细胞内表达时,先由整个编码区转录出RNA,再经过加工,即在细胞核中把由内含子转录出的对应序列从RNA中切去,将由外显子转录出的对应序列重新拼接起来,形成成熟的信使RNA,再到细胞质中去指导蛋白质的合成。

而原核细胞对转录出的RNA不需要进行加工,直接翻译成蛋白质。

2 从运载体看,由于经常使用的运载体是质粒、噬菌体和动植物病毒。

而最常用的是大肠杆菌的质粒,而原核细胞的基
因其编码区是连续的,能够直接编码蛋白质。

因此,如果从真核生物的供体细胞的DNA中直接分离得到的目的基因重组到大肠杆菌的质粒上,即使转录出RNA,原核细胞也对转录出的RNA不进行加工(没有相关的酶),这样由于转录出的RNA中具有由内含子转录出的不能够编码蛋白质的对应序列,这样的RNA翻译不出所需要的蛋白质,从而使基因不能表达。

只有重组到酵母菌(真核生物)的质粒上,才有可能使基因表达。

真核基因和原核基因表达调控的异同

真核基因和原核基因表达调控的异同

真核基因和原核基因表达调控的异同?真核基因表达调控的基本原理与原核基因相同,主要表现在:1、与原核基因的调控一样,真核基因表达调控也以转录水平调控为最重要;2、在结构基因均有调控序列,并依靠特异蛋白因子与这些调控序列的结合与否调控基因的表达。

3、都要经历转录、翻译的过程。

4、表达过程都有复杂性,多环节不同1、真核基因表达调控过程更复杂。

2、在染色质结构上。

原核细胞的DNA是裸露的,而真核细胞DNA包装在染色体中。

DNA与组蛋白组成核小体形成为染色体基本单位。

在原核细胞中染色质结构对基因的表达没有明显的调控作用,而在真核细胞中染色质的变化调控基因表达,并且基因分布在不同的染色体上,存在染色体间基因的调控问题;3、真核生物中编码蛋白质的基因通常是断裂基因,含有有非编码序列即内含子,因而转录产生的mRNA前体必须剪切加工才能成为有功能的成熟的mRNA,而不同拼接方式的可产生不同的mRNA。

而原核生物的基因由于不含有外显子和内含子,因此,转录产生的信使RNA不需要剪切、拼接等加工过程。

4、在原核基因转录的调控中,既有正调控,也有负调控,二者同等重要,而真核细胞中虽然也有正调控成分和负调控成分,但目前已知的主要是正调控,且一个真核基因通常都有多个调控序列,必须有多个激活物同时特异地结合上去才能调节基因的转录;5、原核基因的转录和翻译通常是相互偶联的,而真核基因的转录与翻译在时空上是分开的,从而使真核基因的表达有多种调控机制。

6、真核生物细胞中存在mRNA的稳定性调控7、真核生物大都为多细胞生物,基因的表达随细胞内外环境条件的改变和时间程序在不同的表达水平上进行着精确调控,而原核生物主要受环境因素和营养状况影响基因调控。

8、真核生物由三种RNA聚合酶分别负责三种RNA的转录,而原核生物只有一种。

原核生物真核生物基因表达比较

原核生物真核生物基因表达比较

08
40s小亚基首先与Met-tRNA(Met上角标)相结合
09
再与模板mRNA结合
10
最后与60s大亚基结合生成起始复合物
肽链合成起始:
原核生物肽链合成的延长:
进位: 氨基酰-tRNA按照mRNA模板的指令进入并结合到核蛋白体A位 2. 成肽:转肽酶催化,核蛋白体P位上起始氨基酰-tRNA转移到A位,与A位上氨基酰-tRNA的α-氨基结合形成肽键 3. 转位转位酶催化,核蛋白体向3´-端移动一个密码子的距离,使mRNA上下一个密码子进入核蛋白体A位、而占据A位的肽酰-tRNA移入P位 延长因子: EF-Tu EF-Ts EF-G
真核生物:转录起始需要启动子 、RNA聚合酶和转录因子的参与。 少数几个反式作用因子的搭配启动特定基因的转录 真核生物RNA-pol不与DNA分子直接结合,而需依靠众多的转录因子,形成转录起始复合物。
转录延长:
转录终止:
依赖ρ因子的转录终止 非依赖ρ因子的转录终止 Ρ因子

真核生物的转录终止:在超出千百个核苷酸后停顿, 转录后修饰有多聚腺苷酸(poly A)尾巴结构加进去 。在读码框架下游常有一组公共序列AATAAA 及 GTGTGT序列,这些序列称为转录终止修饰点。
真核延长过程与原核基本相似 但有不同的反应体系和延长因子:eEF-1α eEF-1βγ eEF-2 真核细胞核蛋白体没有E位,转位时卸载的tRNA直接从P位脱落
核蛋白体A位出现mRNA的终止密码子后,多肽链合成停止,肽链从肽酰-tRNA中释出,mRNA、核蛋白体大、小亚基等分离。
原核生物终止阶段需要释放因子RF-1、 RF-2和 RF-3参与
核蛋白体包括 rRNA(核糖体RNA) 和蛋白质,直径为 20-25nm,真核细胞的核蛋白体比原核细胞的大。

原核表达系统

原核表达系统

05
原核表达系统的研究进展
研究现状
基因克隆技术
随着基因克隆技术的发展,越来 越多的基因被成功克隆并用于原 核表达系统中,为生物制品的制 备提供了更多选择。
表达载体构建
原核表达系统中的表达载体是关 键因素,目前已经构建了多种高 效表达载体,能够实现外源基因 的高水平表达。
宿主菌选择
宿主菌的选择对原核表达系统的 表达效果至关重要,经过不断筛 选和改良,已成功应用于生产实 践的宿主菌种类不断增加。
通过原核表达系统可以大量制 备蛋白质,用于研究蛋白质之 间的相互作用和复合物组装。
蛋白质工程改造
利用原核表达系统可以对蛋白 质进行体外进化、定向改造等 ,提高蛋白质的特性和功能。
在生物科学研究中的应用
蛋白质组学研究
生物信息学研究
原核表达系统可用于蛋白质组学研究, 大量制备蛋白质并进行分析,揭示蛋 白质的结构和功能。
原核表达系统

CONTENCT

• 引言 • 原核表达系统的基本原理 • 原核表达系统的应用 • 原核表达系统的优缺点 • 原核表达系统的研究进展 • 结论
01
引言
主题简介
原核表达系统是一种利用原核生物(如细菌)作为宿主细胞进行 目的基因表达的技术。
它具有操作简便、成本低廉、表达量高等优点,广泛应用于基因 工程、蛋白质工程等领域。
翻译过程中,宿主菌的 核糖体识别mRNA上 的起始密码子,开始翻 译目的基因,合成蛋白 质。
通过调控启动子和终止 子等元件,可以控制目 的基因的表达水平和方 向。
03
原核表达系统的应用
在生物制药领域的应用
80%
生产重组蛋白药物
原核表达系统可用于生产重组蛋 白药物,如胰岛素、生长激素等 ,用于治疗各种疾病。

原核生物和真核生物基因表达调控特点的比较.ppt

原核生物和真核生物基因表达调控特点的比较.ppt

[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
原核生物和真核生物基因表达调控特点的比较——相同点
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
原核生物和真核生物 基因表达调控 特点的比较
Content
翻译
转录
复制
原核生物和真核生物 基因表达调控特点的比较
结构 决定 功能
原核生物和真核生物基因表达调控特点的比较——目录
结构决定功能
相同:
都具有编码区和非编码区 都具有RNA聚合酶结合位点
不同:
原核
没有外显子 和内含子
基因连续, 没有间隔
真核
3. 肽链的终止:原核含有三种释放因子RF1,RF2,RF3。真核只有 eRF1和eRF3。
4. 蛋白质前体的加工 蛋白质的折叠 蛋白质的合成抑制这三步过 程过于复杂,因具体物种而异
原核生物和真核生物基因表达调控特点的比较——不同点——翻译
相同点
真核生物和原核生物基因表达调控的相 同点:
1. DNA复制:都是半保留复制、半不连续复制、双向复制,在复 制中需要的原料、模板、引物都相同,都有前导链和滞后链, 都分为起始、延伸、终止三个过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真核基因原核表达的作用
真核基因原核表达是指真核细胞中的基因在转录和翻译过程中的表达活动。

真核细胞是一类具有真核核的细胞,而原核细胞则是一类没有真核核的细胞。

在真核基因原核表达中,基因通过转录过程产生mRNA,然后mRNA经过翻译过程产生蛋白质,这些蛋白质在细胞中扮演着重要的角色,参与细胞的生物学活动。

真核基因原核表达的作用非常重要,它影响了细胞的生长、发育、分化和细胞功能的正常运行。

在真核基因原核表达中,转录是基因表达的第一步,它通过RNA 聚合酶酶和DNA模板合成mRNA。

在细胞核中,DNA双链解开,RNA聚合酶酶沿着DNA的模板链合成mRNA。

而在原核细胞中,DNA解开后,RNA 聚合酶酶能在DNA模板上合成mRNA。

在转录过程中,前者需要有修改过程,以使基因的可读取会增加,而后者则没有这样的修改过程。

真核基因原核表达的翻译过程和原核细胞具有相似性,都需要tRNA和核糖体的协同作用,但真核细胞的翻译过程相对更复杂,涉及到蛋白质的后转运、修饰和定位等过程。

真核基因原核表达对于细胞的生长与发育有着重要的影响。

细胞生长是细胞体积增加的过程,而细胞发育是细胞形态和功能发生变化的过程。

在细胞生长中,真核基因原核表达将调控细胞中的蛋白质合成,从而影响细胞体积的增加。

而在细胞发育中,真核基因原核表达则通过调控特定基因的表达,从而影响细胞的形态和功能的变化,例如细胞分化和组织器官形成。

另外,真核基因原核表达还对细胞的分化和细胞功能的正常运行有着重要的影响。

在细胞分化过程中,真核基因原核表达通过调控特定基因的表达,使得细胞能够根据环境的不同而表现出不同的形态和功能。

而在细胞功能的正常运行中,真核基因原核表达则调控细胞内蛋白质的合成和降解,维持细胞功能的正常运行。

总的来看,真核基因原核表达在细胞的生长、发育、分化和功能的正常运行中扮演着重要的角色,它通过转录和翻译过程将基因的信息转化成蛋白质,从而影响细胞的生物学活动。

随着基因表达调控机制的深入研究,我们对真核基因原核表达的认识也会不断丰富,这将有助于揭示细胞生物学活动的机理,为相关疾病的治疗提供新的思路和方法。

相关文档
最新文档