转录组学分析流程及常用软件介绍.pdf

有参考基因组的转录组生物信息分析

一、生物信息分析流程 获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析: 二、项目结果说明 1 原始序列数据 高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。 FASTQ格式文件中每个read由四行描述,如下: @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT + @@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。 illumina 测序标识符详细信息如下:

第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Q phred 表示,则有下列关系: 公式一:Q phred = -10log 10 (e) illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下: 2 测序数据质量评估 2.1 测序错误率分布检查 每个碱基测序错误率是通过测序Phred数值(Phred score, Q phred )通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示: illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系 测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。对于RNA-seq技术,测序错误率分布具有两个特点: (1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。 (2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq 建库过程中反转录所需要的随机引物的长度。所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显着高于其他位置。一般情况下,每个碱基位置的测序错误率都应该低于0.5%。 图2.1 测序错误率分布图

转录组学主要技术与应用研究

转录组学主要技术及其应用研究 姓名:梁迪 专业:微生物学 年级:2013 学号:3130179 二零一四年六月十五日

转录学主要技术及其应用研究 摘要:转录组(transcriptome)是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的集合。转录组学研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。目前,转录组学研究技术主要包括两种:基于杂交技术的微阵列技术(microarray)和基于测序技术的转录组测序技术,包括表达序列标签技术(Expression Sequence Tags Technology,EST)、基因表达系列分析技术(Serial analysis of gene expression,SAGE)、大规模平行测序技术(Massively parallel signature sequencing,MPSS)、以及RNA 测序技术(RNA sequencing,RNA-seq)。文章主要介绍了以上转录组学主要研究技术的原理、技术特点及其应用,并就这些技术面临的挑战和未来发展前景进行了讨论,为其今后的研究与应用提供参考。 关键词:转录组学;微阵列技术;转录组测序技术;应用 Study on the main technologies of transcriptomics and their application Abstract: The transcriptome is the complete set of transcripts for certain type of cells or tissues in a specific developmental stage or physiological condition. Transcriptome analysis can provide a comprehensive understanding of molecularmechanisms involved in specific biological processes and diseases from the information on gene structure and function. Currently, transcriptomics technology mainly includes microarry -based on hybridization technology and transcriptome sequencing-based on sequencing technology, involving Expression sequence tags technology, Serial analysis of gene expression, Massively parallel signature sequencing and RNA sequencing. The detailed principles, technical characteristics and applications of the main transcriptomics technologies are reviewed here, and the challenges and application potentials of these technologies in the future are also discussed. This will present the useful information for other researchers. Keywords: transcriptomics ; microarray ; transcriptome sequencing; application 随着后基因组时代的到来,转录组学、蛋白质组学、代谢组学等各种组学技术相继出现,其中转 录组学是率先发展起来以及应用最广泛的技术[1]。

转录组RNAseq术语解释

RNA-Seq名词解释 1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。 2.碱基质量值 (Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。碱基质量值越高 表明碱基识别越可靠,碱基测错的可能性越小。 3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。 4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。计算公式为 公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数, 以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。 5.FC(Fold Change) 即差异表达倍数。 6.FDR(False Discovery Rate) 即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝 的原假设个数的比例的期望值。通过控制FDR来决定P值的阈值。 7.P值(P-value) 即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P<0.05 为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。 8.可变剪接(Alternative splicing)

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

转录组学领域研究进展一览(!!!)

转录组学领域研究进展一览 关键词:Transcriptomics;RNA;RT-PCR;Profiling;Synthesis;Sequencing;Purification;Micro arrays;Extraction 转录组学(tranomics),是一门在整体水平上研究细胞中基因转录的情况及转录调控规律的学科,也就是说,转录组学是从RNA水平来研究基因的表达情况。转录组即一个活细胞所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。 本文中,小编对近年来转录组学领域的相关研究进行了盘点,分享给各位!【1】北大教授开发单细胞全转录组测序新技术 2014年4月29日,北京大学生物动态光学成像中心黄岩谊、汤富酬课题组在《美国科学院院刊》(PNAS)上发表题为“Microfluidic single-cell whole-tranome sequencing”的论文。该研究利用微流控芯片技术实现了高质量单细胞的全转录组测序样品准备,全面提高了单细胞全转录组分析的准确性和可靠性。 细胞是生命活动的基本功能单位,而在生物体内没有任何两个细胞是完全相同的。传统的生命科学与医学研究,绝大多数情况下都是针对混合的大量细胞进行的,无法观察到单个细胞之间细微的差别。近年来不断发展的实验技术,提供了更加定量与客观的证据,表明在许多关键生命过程例如胚胎发育、细胞分化、疾病发生与发展等过程中,特定的单个细胞行为,以及其间的个体化差异与异质性,导致了极其重要甚至是决定性的结果。而之前基于大量细胞平均测量所获得的结果并无法正确反映复杂生物体系的全面真实信息,严重掩盖了独立个体样本的行为以及生命现象中大量存在的随机行为。针对单个细胞的研究,是细胞生命分析技术所追求的极限状态,是对传统技术极大的挑战。 【2】doi:10.1126/science.aaf2403 在一项新的研究中,来自瑞典卡罗琳斯卡研究所和皇家理工学院等机构的研究人员开发出一种新的被称作空间转录组学(spatial tranomics)的高分辨率方法研究一种组织中哪些基因是有活性的。这种方法能够被用于所有类型的组织中,而且在临床前研究和癌症诊断中是有价值的。相关研究结果发表在2016年7月1日那期Science期刊上,论文标题为“Visualization and analysisof gene expression

转录组学的一些概念

Gene Ontology可分为分子功能(Molecular Function),生物过程(biological process)和细胞组成(cellular component)三个部分。蛋白质或者基因可以通过ID对应或者序列 注释的方法找到与之对应的GO号,而GO号可对于到Term,即功能类别或者细胞定位。 功能富集分析: 功能富集需要有一个参考数据集,通过该项分析可以找出在统计上显 著富集的GO Term。该功能或者定位有可能与研究的目前有关。 GO功能分类是在某一功能层次上统计蛋白或者基因的数目或组成,往往是在GO 的第二层次。此外也有研究都挑选一些Term,而后统计直接对应到该Term的基因或蛋白数。结果一般以柱状图或者饼图表示。 1.GO分析 根据挑选出的差异基因,计算这些差异基因同GO 分类中某(几)个特定的分支的超 几何分布关系,GO 分析会对每个有差异基因存在的GO 返回一个p-value,小的p 值表示差异基因在该GO 中出现了富集。 GO 分析对实验结果有提示的作用,通过差异基因的GO 分析,可以找到富集差异 基因的GO分类条目,寻找不同样品的差异基因可能和哪些基因功能的改变有关。 2.Pathway分析 根据挑选出的差异基因,计算这些差异基因同Pathway 的超几何分布关系, Pathway 分析会对每个有差异基因存在的pathway 返回一个p-value,小的p 值表示差异 基因在该pathway 中出现了富集。 Pathway 分析对实验结果有提示的作用,通过差异基因的Pathway 分析,可以找到 富集差异基因的Pathway 条目,寻找不同样品的差异基因可能和哪些细胞通路的改变有关。与GO 分析不同,pathway 分析的结果更显得间接,这是因为,pathway 是蛋白质之间的 相互作用,pathway 的变化可以由参与这条pathway 途径的蛋白的表达量或者蛋白的活性 改变而引起。而通过芯片结果得到的是编码这些蛋白质的mRNA 表达量的变化。从 mRNA 到蛋白表达还要经过microRNA 调控,翻译调控,翻译后修饰(如糖基化,磷酸化),蛋白运输等一系列的调控过程,mRNA 表达量和蛋白表达量之间往往不具有线性关系,因此mRNA 的改变不一定意味着蛋白表达量的改变。同时也应注意到,在某些pathway 中,如EGF/EGFR 通路,细胞可以在维持蛋白量不变的情况下,通过蛋白磷酸 化程度的改变(调节蛋白的活性)来调节这条通路。所以芯片数据pathway 分析的结果需 要有后期蛋白质功能实验的支持,如Western blot/ELISA,IHC(免疫组化),over expression(过表达),RNAi(RNA 干扰),knockout(基因敲除),trans gene(转基因)等。 3.基因网络分析 目的:根据文献,数据库和已知的pathway 寻找基因编码的蛋白之间的相互关系(不超过1000 个基因)。

转录组学研究进展精修订

转录组学研究进展集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转录组研究前沿 随着转录组学,蛋白组学,代谢组学等组学的不断涌现,生物学研究已经跨入后基因组时代,转录组学作为一个率先发展起来的技术开始在生物学前沿研究中得到了广泛的应用。广义转录组(Transcriptome)系指从一种细胞或者组织的基因组所转录出来的RNA的总和,包括编码蛋白质的mRNA和各种非编码RNA(rRNA, tRNA, snoRNA, snRNA,microRNA 和其他非编码RNA等)。狭义转录组系指所有参与翻译蛋白质的mRNA 总和。 转录组研究历史: 自从上世纪90 年代中期以来,随着微阵列技术被用于大规模的基因表达水平研究,转录组学作为一门新技术开始在生物学前沿研究中展露头脚并逐渐成为生命科学研究的热点。原因如下:1)蛋白质组研究需要更多的转录组研究的信息:因为单一的蛋白质组数据不足以清楚地鉴定基因的功能,因此蛋白质组的数据需要转录组的研究结果加以印证。2)非编码RNA研究的不断发展,使得转录组研究的范围不断扩大和深化。 3) 随着新一代高通量测序技术运用到转录组研究之中,转录组研究中提供的数据量呈现爆炸式的扩增,极大拓宽了转录组研究解决科学问题的范围。

目前进行转录组研究的技术主要包括如下三种:1)基于杂交技术的微阵列技术;2)基于Sanger测序法的SAGE (serial analysis of gene expression)和MPSS(massively parallel signature sequencing);3)基于新一代高通量测序技术的转录组测序。各种转录组研究技术的特点如下: 基于杂交技术的DNA芯片技术只适用于检测已知序列,却无法捕获新的mRNA。细胞中mRNA的表达丰度不尽相同,通常细胞中约有不到100种的高丰度mRNA,其总量占总mRNA一半左右,另一半mRNA由种类繁多的低丰度mRNA组成。因此由于杂交技术灵敏度有限,对于低丰度的mRNA,微阵列技术难以检测,也无法捕获到目的基因mRNA表达水平的微小变化。 SAGE是以Sanger测序为基础用来分析基因群体表达状态的一项技术。SAGE 技术首先是提取实验样品中RNA并反转录成cDNA,随后用锚定酶(Anchoring enzyme)切割双链cDNA,接着将切割的cDNA 片段与不同的接头连接,通过标签酶酶切处理并获得得到SAGE 标签,然后PCR 扩增连接SAGE 标签形成的标签二聚体,最后通过锚定酶切除接头序列,以形成标签二聚体的多聚体并对其测序(关于SAGE方法细致的介绍请参考网站)。SAGE可以在组织和细胞中定量分析相关基因表达水平。在差异表达谱的研究中,SAGE可以获得完整的转录组学图谱以及发现新的基因并鉴定其功能、作用机制和通路等。

转录组测序

转录组分析 研究背景: RNA-Seq是通过结合实验和计算方法来鉴定生物样品中RNA序列的种类和丰度的一种技术。通过RNA-seq,我们就能够确定单链RNA分子中ATCG的顺序。整个过程主要包括:从细胞或组织中提取RNA分子、文库的构建以及后继的生物信息学数据分析。RNA-Seq技术具有许多早期研究方法(如:微阵列)所不具备的优点,如:RNA-Seq平台的高通量、新技术所带来的高灵敏度、发现新转录本、新基因模型以及非编码RNA的能力等。 RNA-Seq技术的到来,使人们认识到,无论是单细胞模式生物还是人类,我们对其转录组的认知异常匮乏。而RNA-Seq产生的新的数据,则可以帮助我们发现基因结构上的巨大差异、鉴定出新的转录本以及能够对small non-coding RNA和lncRNAs有着更好的了解。而且随着测序花费的降低,RNA-Seq的优势体现的更加明显。 服务流程: 样品选取

mRNA片段化 cDNA合成 末端修复、加polyA、加接头,PCR扩增 数据分析 测序方案: 内容:TotalRNA检测,普通转录组文库构建及测序及信息分析。测序方式:HiseqPE125。 项目周期:有参45天,无参50天。 分析内容: 无参考基因组: 1.1质量控制 1.11评估碱基质量 1.12过滤低质量reads 1.13 去掉低质量碱基和接头序列 1.14 统计N比例和reads长度 1.15 统计GC含量和reads重复度 1.2 Reads的从头比对组装

1.4基因表达差异分析 1.41 统计基因在不同条件下的差异表达情况 1.5差异基因富集分析 1.51 通过GO、KEGG对差异基因进行功能富集分析 1.6差异表达基因的蛋白质互作网络分析 1.7SNV/Indel分析 1.8样本间相关性分析 有参考基因组: 2.1质量控制(同无参) 2.2 Reads比对组装 2.22 统计reads与参考基因组比对情况 2.22 分析对插入、删除和连接体情况 2.23 统计转录本在参考基因组上位置、长度和覆盖度情况 2.3基因表达差异分析 2.4差异基因富集分析 2.5差异表达基因的蛋白质互作网络分析 2.6新转录本预测 2.7 SNV/Indel分析 2.8 UTR分析 2.9可变剪接分析 3.0 Non-coding RNA分析 3.1样本相关性分析 案例解读: 案例:通过poly(A)+ RNA-Seq分析Drosophila melanogaster转录组的动态性 本项研究通过poly(A)+ RNA-Seq技术对果蝇的细胞系进行测序,鉴定出一批通过替换启动子和RNA剪接来转录出大量转录本的神经特异性基因。通过后继分析还发现,对于RNA剪接变化,组织间的差异要远远大于发育阶段间的差异。另外,发现性腺表达了成百上千的未知的蛋白编码和lncRNAs,其中一些甚至是反义转录的。显示了果蝇转录组的动态性和多样性。 小部分的基因(0.2%)编码出大部分的转录本。

一步一步教你做转录组分析(HISAT--StringTie-and-Ballgown)

一步一步教你做转录组分析(HISAT, StringTie and Ballgown) 该分析流程主要根据2016年发表在Nature Protocols 上的一篇名为Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown 的文章撰写的,主要用到以下三个软件:HISAT ()利用大量FM索引,以覆盖整个基因组,能够将RNA-Seq的读取与基因组进行快速比对,相较于STAR、Tophat,该软件比对速度快,占用内存少。StringTie()能够应用流神经网络算法和可选的de novo组装进行转录本组装并预计表达水平。与Cufflinks等程序相比,StringTie实现了更完整、更准确的基因重建,并更好地预测了表达水平。Ballgown ()是R语言中基因差异表达分析的工具,能利用RNA-Seq实验的数据(StringTie, RSEM, Cufflinks)的结果预测基因、转录本的差异表达。然而Ballgown并没有不能很好地检测差异外显子,而DEXseq、rMATS和MISO可以很好解决该问题。 一、数据下载Linux系统下常用的下载工具是wget,但该工具是单线程下载,当使用它下载较大数据时比较慢,所以选择axel,终端中输入安装命令:$sudo yum install axel然后提示输入密码获得root权限后即可自动安装,安装完成后,输入命令axel,终端会显示如下内容,表示安装成功。

Axel工具常用参数有:axel [选项][下载目录][下载地址]-s :指定每秒下载最大比特数-n:指定同时打开的线程数-o:指定本地输出文件-S:搜索镜像并从X servers服务器下载-N:不使用代理服务器-v:打印更多状态信息-a:打印进度信息-h:该版本命令帮助-V:查看版本信息号#Axel 安装成功后在终端中输入命令:$axel 此时在终端中会显示如下图信息,如果不想该信息刷屏,添加参数q,采用静默模式即可。 #数据下载后,进行解压:$tar–zxvfchrX_data.tar.gz解压后利用tree命令查看数据结构,它会以树状图的形式列出目录的内容。整个数据的结构如下图所示: chrX_gtf是X号染色体的注释文件chrX.fa是X号染色体的序列文件indexes文件夹中是HISAT对于X号染色体的index文件,该文件是根据序列文件chrX.fa利用hisat2-build 构建的,samples文件夹中的12个fastq文件是英格兰岛和约鲁巴住民的X号染色体的数据。 二、软件安装首先安装bioconda,它是一个自动化管理生物信息软件的工具,安装简单,且各个软件依赖的环境一同打包且相互隔离,非常适合在服务器中搭建生信分析环境。#下载和安装miniconda$ wget 下载完成后在终端中安装$bash Miniconda-latest-Linux-x86_64.sh按照提示安装,完成后$source ~/.bashrc #使以上的安装立即生效#输入以下

转录组学研究进展

转录组研究前沿 随着转录组学,蛋白组学,代谢组学等组学的不断涌现,生物学研究已经跨入后基因组时代,转录组学作为一个率先发展起来的技术开始在生物学前沿研究中得到了广泛的应用。广义转录组(Transcriptome)系指从一种细胞或者组织的基因组所转录出来的RNA的总和,包括编码蛋白质的mRNA和各种非编码RNA(rRNA, tRNA, snoRNA, snRNA,microRNA 和其他非编码RNA等)。狭义转录组系指所有参与翻译蛋白质的mRNA 总和。 转录组研究历史: 自从上世纪90 年代中期以来,随着微阵列技术被用于大规模的基因表达水平研究,转录组学作为一门新技术开始在生物学前沿研究中展露头脚并逐渐成为生命科学研究的热点。原因如下:1)蛋白质组研究需要更多的转录组研究的信息:因为单一的蛋白质组数据不足以清楚地鉴定基因的功能,因此蛋白质组的数据需要转录组的研究结果加以印证。2)非编码RNA 研究的不断发展,使得转录组研究的范围不断扩大和深化。3) 随着新一代高通量测序技术运用到转录组研究之中,转录组研究中提供的数据量呈现爆炸式的扩增,极大拓宽了转录组研究解决科学问题的范围。 目前进行转录组研究的技术主要包括如下三种:1)基于杂交技术的微阵列技术;2)基于Sanger测序法的SAGE (serial analysis of gene expression)和MPSS(massively parallel signature sequencing);3)基于新一代高通量测序技术的转录组测序。各种转录组研究技术的特点如下: 基于杂交技术的DNA芯片技术只适用于检测已知序列,却无法捕获新的mRNA。细胞中mRNA的表达丰度不尽相同,通常细胞中约有不到100种的高丰度mRNA,其总量占总mRNA 一半左右,另一半mRNA由种类繁多的低丰度mRNA组成。因此由于杂交技术灵敏度有限,对于低丰度的mRNA,微阵列技术难以检测,也无法捕获到目的基因mRNA表达水平的微小变化。 SAGE是以Sanger测序为基础用来分析基因群体表达状态的一项技术。SAGE 技术首先是提取实验样品中RNA并反转录成cDNA,随后用锚定酶(Anchoring enzyme)切割双链cDNA,接着将切割的cDNA 片段与不同的接头连接,通过标签酶酶切处理并获得得到SAGE 标签,然后PCR 扩增连接SAGE 标签形成的标签二聚体,最后通过锚定酶切除接头序列,以形成标签二聚体的多聚体并对其测序(关于SAGE方法细致的介绍请参考网站https://www.360docs.net/doc/441932541.html,)。SAGE可以在组织和细胞中定量分析相关基因表达水平。在差异表达谱的研究中,SAGE可以获得完整的转录组学图谱以及发现新的基因并鉴定其功能、作用机制和通路等。 MPSS是SAGE的改进版,MPSS 技术首先是提取实验样品RNA并反转录为cDNA,接着将获得的cDNA克隆至具有各种adaptor 的载体库中,并PCR 扩增克隆至载体库中的不同cDNA 片段,然后在T4 DNA 聚合酶和dGTP 的作用下将PCR产物转换为单链文库,最后通过杂交将其结合在带有Anti-adaptor 的微载体上进行测序。MPSS 技术对于功能基因组研究非常有效,能在短时间内捕获细胞或组织内全部基因的表达特征。MPSS技术对于鉴定致病基因并揭示该基因在疾病中的作用机制等发挥了重要作用。

转录组学

基于高通量测序的储粮害虫抗药性相关基因的转录组学分析及其技术研究 专业:食品科学姓名:陶冶心学号:1120140520 摘要:随着测序技术的发展,昆虫转录组数据不断积累,在昆虫学研究中的应用也越来越广泛。在害虫抗药性的研究中,转录组数据分析也是重要的最新研究手段。转录组研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。RNA-Seq作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。本文简要介绍了转录组学及其定义,并以RNA测序为例着重介绍了高通量测序在转录组中的应用,并对其中有待进一步研究的问题进行展望。 关键词:转录组高通量测序抗性 Deep Sequencing-based Transcriptome Analysis in insect resistance research Abstract:With the development of sequencing technology,the number of known insect transcriptome sequences has increased and transcriptome data has become more useful in entomology,including research on insect resistance.Transcriptome can research from the overall level of gene function and gene structure, revealing the specific molecular mechanism in the process of biological processes and disease. RNA-Seq,as a new kind of efficient, fast transcriptome research techniques ,is changing people's understanding of the transcriptome. Transcriptomics and its definitions are briefly introduced and pick RNA sequencing as an example, fully introduced the application of high-throughput sequencing of the transcriptome, the further research problems are discussed at the same time. Key words: transcriptome ,High-throughput sequencing, resistance 由于杀虫剂的长期使用,昆虫产生的抗药性已成为农林虫害治理面临的重大问题研究昆虫抗药性机制有助于为农林害虫防控、资源昆虫抗性品系选育及新型杀虫剂研发提供科学指导。长期以来,人们通过对模式昆虫、卫生昆虫和农林害虫的研究,对昆虫代谢抗性、靶标抗性有了一定认识,继而利用分子生物学手段克隆、分析了一些抗性相关基因,上述研究方

蛋白质组与转录组比较关联分析方案

蛋白质组与转录组比较关联分析方案一.概述 1.研究背景 生命体是一个多层次,多功能的复杂结构体系,高通量技术的发展积累了大量的组学数据,这使得由精细的分解研究转向系统的整体研究成为可能,整合多组学数据能够实现对生物系统的全面了解。当部分层面上的研究都逐渐走向完善的时候,从部分到整体就是一种必然发展趋势。 相关研究表明,基因表达不仅仅是从转录组到蛋白质组的单向流动,而是两者的相互连接。对这种功能调控的了解通常只限于特殊的信号途径,要了解转录组和蛋白质组之间的相互调控作用,就需要对RNA和蛋白质的表达进行同步监测。 正如RNA可作为部分生物学功能的酶反应的效益物一样,蛋白质也是大多数生物学功能的效益物。因此,蛋白质水平广泛的基因组分析是基因表达更直接的反映。质谱技术的发展,使得定量的蛋白组学研究成为可能。然而,当细胞适应了转录水平、转录后(如mRNA的剪接)、翻译后(蛋白降解和输出)的精细调控机制后,转录物和蛋白质丰度测量结果可能会不一致。因此,定量的转录物和蛋白质丰度测量可作为相互的标准,为高通量分析得出的基因表达数据做出合理的解释。正如蛋白质和RNA之间类似点可以增加我们对新的生物标记的信任度一样,差异也能暗示我们“其他的转录后调控结合点可作为重要的调控研究靶点”。 在蛋白组学分析过程中,一些研究选择了双向凝胶电泳(2一DE)分析蛋白质混合物。要么是对不同的凝胶染色,要么是让不同的细胞与不同的染料相结合,通过斑点染色亮度可以看到蛋白质的亮度。随后用质谱仪对分离出的定量凝较斑点进行鉴定,与转录组学分析不同的是,双向凝胶电泳分析的鉴定结果与定量分析是散耦合(de一coupled)。 液相色谱法(LC)是作为一种替代2一DE的蛋白质分析方法而出现的。LC一MS分析是典型的“自下而上(Bottom一up)”分析方法,通常要用特异的蛋白酶(如胰蛋白酶)将蛋白质消化为肽段。与2一DE不同,LC一MS对肽的定量和鉴定是同时进行的,可以选择定量的MS峰(m/z)用于鉴定,通过肽段的信息推测对应蛋白质的定量信息。 虽然采用的技术不同,迄今为止公开发表的整合分析文章中,都指出了转录组学和蛋白组学的重要性。转录组学或蛋白组学通常只考虑调节系统和分解作用平衡态的净效应,实际上,出现的不一致性只是合成与降解两种替换过程中的一种反映。科学家可能对变化过程中的机制更感兴趣。 正如中心法则预测的那样,在转录物和蛋白质水平,如果只能通过严格的转录调控去控制蛋白质的合成,细胞是不太可能选择精细调节机制的。当点对点进行比较时,蛋白质和转录物之间的一致性通常很弱,这些观察说明了“从个体基

相关文档
最新文档