第3章 同步发电机的基本方程
合集下载
park变换

写成相量形式,
Vq Eq jX d I d Vd jX q I q
V Eq j ( X d X q ) I d jX q I
定义: EQ Eq j ( X d X q ) I d
有:
V EQ jX q I
第三章 同步发电机的基本方程
二、同步电机的对称稳态运行
同步电机对称稳态运行时,
1)id , iq 均为直流常数; 2) d q 0 3) iD iQ 0 4) r=0
则上述方程变为:
第三章 同步发电机的基本方程
Vq d X ad i f X d id Eq X d id Vd q X q iq
上述磁链方程中,由于 1)转子绕组相对于定子绕组旋转; 2)转子仅对d、q轴对称。 造成定、转子绕组间互感,定子自、互感周期性变化,仅 有转子绕组自感和转子绕组间互感为常数。所以上述电压、 磁链原始方程很难求解。
第三章 同步发电机的基本方程
第三节
一、坐标变换
d、q、0坐标系的同步电机方程
定子a,b,c三相绕组对转子的影响可考虑为其对转子 d,q轴的影响之效应和,为此我们引入一种数学变换,即: 著名的派克变换。从数学角度考虑,派克变换是一种线性 变换;从物理意义上理解,它将观察者的角度从静止的定 子绕组转移到随转子一同旋转的转子上,从而使得定子绕 组自、互感,定、转子绕组间互感变成常数,大大简化了 同步电机的原始方程。
即:
I a ,b,c P 1 I d ,q ,o
第三章 同步发电机的基本方程
ia,ib,ic三相不平衡时,每相中都含有相同的零轴电流 i0。三相零轴电流大小一样,空间互差120°,其在气隙中 的合成磁势为零,只产生与定子绕组相交链的磁通,不产 生与转子绕组交链的磁通。
Vq Eq jX d I d Vd jX q I q
V Eq j ( X d X q ) I d jX q I
定义: EQ Eq j ( X d X q ) I d
有:
V EQ jX q I
第三章 同步发电机的基本方程
二、同步电机的对称稳态运行
同步电机对称稳态运行时,
1)id , iq 均为直流常数; 2) d q 0 3) iD iQ 0 4) r=0
则上述方程变为:
第三章 同步发电机的基本方程
Vq d X ad i f X d id Eq X d id Vd q X q iq
上述磁链方程中,由于 1)转子绕组相对于定子绕组旋转; 2)转子仅对d、q轴对称。 造成定、转子绕组间互感,定子自、互感周期性变化,仅 有转子绕组自感和转子绕组间互感为常数。所以上述电压、 磁链原始方程很难求解。
第三章 同步发电机的基本方程
第三节
一、坐标变换
d、q、0坐标系的同步电机方程
定子a,b,c三相绕组对转子的影响可考虑为其对转子 d,q轴的影响之效应和,为此我们引入一种数学变换,即: 著名的派克变换。从数学角度考虑,派克变换是一种线性 变换;从物理意义上理解,它将观察者的角度从静止的定 子绕组转移到随转子一同旋转的转子上,从而使得定子绕 组自、互感,定、转子绕组间互感变成常数,大大简化了 同步电机的原始方程。
即:
I a ,b,c P 1 I d ,q ,o
第三章 同步发电机的基本方程
ia,ib,ic三相不平衡时,每相中都含有相同的零轴电流 i0。三相零轴电流大小一样,空间互差120°,其在气隙中 的合成磁势为零,只产生与定子绕组相交链的磁通,不产 生与转子绕组交链的磁通。
第3章三相同步电机

cos ϕ N
f N 单位为Hz n N单位为r/min θN
• 额定励磁电流和电压 IfN 、UfN
3-2 同步发电机的磁场
一、空载运行 n s If I=0
1、空载磁场——主磁场
I f → F f → B0 → φ 0
→ 电枢齿 路径:气隙 →电枢齿 → 电枢轭 → 磁极 主磁通 → 极身 → 转子轭 作用:在三相绕组中感应 对称电动势
k w1 N 1φ a k w1 N 1 Fa Λa (k w1 N 1 ) 2 kIΛa La = = = = = k (k w1 N 1 ) 2 Λa I I I I
ψa
二、考虑磁路饱和时 非线性,迭加原理不适用
Ff & & → F → B →Φ → E Fa
& U
& IRa
3、等效电路
& & & & & & & & E0 =U + I Ra + jIXσ + jIXa =U + I Ra + jIXs
4、同步电抗
X s = X a + Xσ
a) 反映了Φa和Φσ的作用 b) 磁路不饱和时为常数 c)
∝ f X a = ωLa ∝ (k w1 N 1 ) 2 ∝ Λ 主磁路的磁导 a
& 图示瞬间,A相绕组电动势 E0 A 达正的最大值,方向从X入,A 出。
•从导体切割磁力线分析。
(交轴)
• 从磁通的变化来分析。 A相磁通为零,电动势滞后磁 通90度。
& & B相绕组 E0 B、C相绕组电动势 E0 C 滞后A相电动势120度和240度。
电力系统分析(上) 2019随堂练习

A.非周期分量
B.周期分量
C.自由分量
D.倍频分量
参考答案:B
2.(单选题)计算短路冲击电流,在简化电力网络时,影响负荷能否合并或忽略的主要因素是()。
A.负荷间的距离
B.短路的类型
C.负荷的特性
D.负荷对短路点的电气距离
参考答案:D
3.(单选题)计算负荷提供的冲击电流时,对于小容量的电动机和综合负荷,冲击系数取()。
D、±7% ~±10%
参考答案:B
3.(单选题)发电机的额定电压与系统的额定电压为同一等级时,假如系统额定电压取值为1时,发电机额定电压应取值为()。
A、1
B、1.10
C、1.05
D、1.025
参考答案:C
4.(单选题)如果变压器的短路电压小于7%或直接与用户连接时,变压器的二次绕组的额定电压规定比系统的额定电压()。
1.(单选题)我国35kV及以上电压等级的电力用户,供电电压正常允许的偏移范围是额定值的()。
A、±5%
B、±7%
C、±5% ~±7%
D、±7% ~±10%
参考答案:A
2.(单选题)我国10kV及以下电压等级的电力用户,供电电压正常允许的偏移范围是额定值的()
A、±5%
B、±7%
C、±5% ~±7%
A、架空输电线路的电容参数小于同电压等级、同样长度的电缆线路
B、架空输电线路导线之间的几何均距越大,线路的电容参数越大
C、架空输电线路导线之间的几何均距越大,线路的电容参数越小
D、架空输电线路导线的等效半径越大,线路的电容参数越大
参考答案:B
3.(单选题)同电压等级、同长度的架空输电线路和电缆线路,如果导线的截面积相同,则下述说法中正确的是()。
B.周期分量
C.自由分量
D.倍频分量
参考答案:B
2.(单选题)计算短路冲击电流,在简化电力网络时,影响负荷能否合并或忽略的主要因素是()。
A.负荷间的距离
B.短路的类型
C.负荷的特性
D.负荷对短路点的电气距离
参考答案:D
3.(单选题)计算负荷提供的冲击电流时,对于小容量的电动机和综合负荷,冲击系数取()。
D、±7% ~±10%
参考答案:B
3.(单选题)发电机的额定电压与系统的额定电压为同一等级时,假如系统额定电压取值为1时,发电机额定电压应取值为()。
A、1
B、1.10
C、1.05
D、1.025
参考答案:C
4.(单选题)如果变压器的短路电压小于7%或直接与用户连接时,变压器的二次绕组的额定电压规定比系统的额定电压()。
1.(单选题)我国35kV及以上电压等级的电力用户,供电电压正常允许的偏移范围是额定值的()。
A、±5%
B、±7%
C、±5% ~±7%
D、±7% ~±10%
参考答案:A
2.(单选题)我国10kV及以下电压等级的电力用户,供电电压正常允许的偏移范围是额定值的()
A、±5%
B、±7%
C、±5% ~±7%
A、架空输电线路的电容参数小于同电压等级、同样长度的电缆线路
B、架空输电线路导线之间的几何均距越大,线路的电容参数越大
C、架空输电线路导线之间的几何均距越大,线路的电容参数越小
D、架空输电线路导线的等效半径越大,线路的电容参数越大
参考答案:B
3.(单选题)同电压等级、同长度的架空输电线路和电缆线路,如果导线的截面积相同,则下述说法中正确的是()。
简述同步发电机的基本方程

(1-7)~(1-9)
2. 定子绕组间的互感系数
L ab L ba [m 0 m 2 cos 2( 30 o )] L bc L cb [m 0 m 2 cos 2( 90 o )] L ca L ac [m 0 m 2 cos 2( 150 o )]
(1-26)
1 id sin( 120 o ) 1 iq sin( 120 o ) 1 i0
sin
(1 2绕组电压、磁链都可 以进行,且变换矩阵P(P-1)相同
[dq0坐标系变量的零轴分量]
[例1-1] 定子绕组三相对称电流分别为直流、基频、倍频,变换到dq0坐标系后分别 成为基频、直流、基频。
二、 d、q、0坐标系统的电势方程
转子绕组的变量(v、i、ψ)本身就是 dq0坐标系统变量。 定子绕组的原始电势方程为
& vabc ψabc rS i abc (1 28)
全式左乘P,并经过矩阵运算推导,得 d、q、0坐标系统的定子电势方程
二、假定正向的选取
转子绕组电压、电流的正向按“负荷法则” 选取:支路电流由电位“+”流向电位“-” 定子绕组电压、电流的正向按“发电机法则 ”选取:支路电流由电位“-”流向电位
另外,在理想同步电机结构示意图中:
• 转子d轴超前q轴90o • 定子绕组轴线正向与该绕组磁链正向一致 • 转子的位置用d轴与定子a轴的夹角α表示
4. 定子绕组和转子绕组间的互感系数
Laf Lfa m af cos L bf Lfb m af cos( 120 o ) Lcf Lfc m af cos( 120 o ) LaD L Da maD cos
L bD L Db maD cos( 120 o ) LcD L Dc maD cos( 120 o )
2. 定子绕组间的互感系数
L ab L ba [m 0 m 2 cos 2( 30 o )] L bc L cb [m 0 m 2 cos 2( 90 o )] L ca L ac [m 0 m 2 cos 2( 150 o )]
(1-26)
1 id sin( 120 o ) 1 iq sin( 120 o ) 1 i0
sin
(1 2绕组电压、磁链都可 以进行,且变换矩阵P(P-1)相同
[dq0坐标系变量的零轴分量]
[例1-1] 定子绕组三相对称电流分别为直流、基频、倍频,变换到dq0坐标系后分别 成为基频、直流、基频。
二、 d、q、0坐标系统的电势方程
转子绕组的变量(v、i、ψ)本身就是 dq0坐标系统变量。 定子绕组的原始电势方程为
& vabc ψabc rS i abc (1 28)
全式左乘P,并经过矩阵运算推导,得 d、q、0坐标系统的定子电势方程
二、假定正向的选取
转子绕组电压、电流的正向按“负荷法则” 选取:支路电流由电位“+”流向电位“-” 定子绕组电压、电流的正向按“发电机法则 ”选取:支路电流由电位“-”流向电位
另外,在理想同步电机结构示意图中:
• 转子d轴超前q轴90o • 定子绕组轴线正向与该绕组磁链正向一致 • 转子的位置用d轴与定子a轴的夹角α表示
4. 定子绕组和转子绕组间的互感系数
Laf Lfa m af cos L bf Lfb m af cos( 120 o ) Lcf Lfc m af cos( 120 o ) LaD L Da maD cos
L bD L Db maD cos( 120 o ) LcD L Dc maD cos( 120 o )
3同步发电机的基本方程

基础知识
R :磁阻
:磁导
F :磁势
λ 1 R
Fa ωaia
Φ :气隙磁通 Φ λF
R
G
V I GV
:磁链 Ψ Φ Li
uL
dΨ dt
dΦ
dt
L di dt
第三章同步发电机的基本方程
电枢反应:三相同步电机有两个旋转磁通势,一个是励磁旋转 磁通势(转子旋转磁通势),是机械方式形成的;一个是定子 旋转磁通势(电枢旋转磁通势),是电气方式形成的。气隙总 磁通势是这两者合成的。电枢电流不同,电枢旋转磁通势便会 不同,合成磁通势也不同。因此电枢旋转磁通势对合成旋转磁 通势的影响称为电枢反应。
aq
Fa
I ia
ib
ia I
I cos cos( 120
)
ic I cos( 120 )
d
id I cos( )
iq
ic
id
ib
iq
I
sin(
)
b
定子电流通用向量
c
第三章同步发电机的基本方程
三角恒等式:
cos( ) 2 [cos cos cos( 120 )cos( 120 ) cos( 120 )cos( 120 )]
0
3 d 2 dt 0 0
0
d 0
0 0
q 0
0
0 0
0 d q
0
q
d
0 0 0
变压器电势:
•
d
•
q
发电机电势: d
q
•
vdq0 ( dq0 S ) rsidq0
d
•
d
q
rid
•
q q d riq
第3章 同步发电机的基本方程_2014

Park变换的另一种推导方法
同理可对定子电压和磁链作同样的变换。
✓ 不同频率abc三相对称电流的dq0分量
➢ dq0坐标系下的发电机电势方程
✓ “伪静止”等效绕组
➢ dq0系统的磁链方程和电感系数
➢ 同步电机常用标幺制
✓ 同步电机标幺值方程
➢ 基本方程的拉氏运算式
✓ 同步电机的电抗
➢ 同步电机对称稳态运行:根据同步电机Park方程式,得 到用相量表示的稳态电势方程式,等值电路,相量图; 空载电势Eq和等值隐极机电势EQ的定义;
➢ 基本前提
同步电机基本回路图(理想同步电机假设、假定正方向)
➢ 同步电机原始方程
✓ 电势方程
✓ 磁链方程
✓ 电感系数
Review:磁路欧姆定律
➢ dq0坐标系的同步电机方程
坐标变换和dq0系统 ✓ 采用通用相量表示定子三相电流
✓ 通用相量的dq轴分量
✓ 用dq轴分量表示iabc
✓ Park变换—idq0 ---iabc
设想:将静止的abc三相定子绕组等效为随转子旋转的dd 和qq绕组。等效绕组中的电流id和iq产生的磁势对转子相对 静止,磁通磁路磁阻不变,因此电感系数为常数。
➢ 本节主要结论
✓ 磁链方程式中,同步电机许多电感系数随转子位置角 发生周期性变化,是时变系数;
✓ 将磁链方程代入同步电机电势方程,将得到一组时变 系数微分方程,不便于求解;
✓ 磁链方程式出现变系数的原因:(1)转子的旋转使 定转子绕组间产生相对运动,致使定转子绕组间的互 感系数发生相应的周期性变化;(2)转子在磁路上 只是分别对d轴和q轴对称,而不是随意对称,由此导 致定子各绕组的自感和互感发生周期性变化;
定子绕组自感系数—以a相为例
同步发电机的基本方程

3.1 基本前提
转子各绕组电流 的正方向
转子旋转的正方 向:逆时针
各相绕组轴线的 正方向
各绕组轴线正方向就是该相绕组磁链的正方向。
对本绕组产生正向磁链的电流为该绕组的正电流,定子电流正方向为末进首 出各相感应电动势的正方向与电流相同。
3.1 基本前提
三、参考方向的选取
1.定子电量参考方向的选取
ia
绕组a的自感系数
绕组a与绕 组b之间的 互感系数
Ψa
Ψb
Laa Lba
Lab Lbb
Lac Laf Lbc Lbf
LaD LbD
LaQ LbQ
ia ib
Ψc
Lca Lcb Lcc Lcf LcD LcQ
ic
2
Ψ
f
Lfa
Lfb
Lfc Lff
LfD
LfQifFra bibliotekΨD 同步发电机的基本方程
第3章 同步发电机的基本方程
3.1 基本前提 3.2 同步发电机的原始方程 3.3 d、q、0坐标系的同步电机方程 3.6 同步电机的对称稳态运行
3.1 基本前提
符
合
一、理想同步电机
以
上
几点假设:
假
设
1.磁路:忽略饱和、磁滞、涡流等的影响,认为导 条
磁系数为常数。叠加原理。
件
wa wb w
定子a、b相间的互感系数为:
Lab
Lba
ba ia
w2[m
1 4
(ad
aq
)
1 2
(ad
aq ) cos2(
30 )]
[m0 m2cos(2 30)]
m0
w 2[m
同步发电机的基本方程

P 1 S P ψ dq0
d sin dt d 2 cos dt 3 0
2 3 0 3 d 2 dt 0
sin( 120 )
d dt d cos( 120 ) dt 0
ib I cos( 120 ) ic I cos( 120 )
id I cos( ) iq I sin( )
图2-7 通用电流相量在两种坐标系统上的投影关系
由两种不同的投影可得他们之间的关系
2 i d [i a cos ib cos( 120 ) ic cos( 120 ) 3 2 i q [i a sin ib sin( 120 ) ic sin( 120 ) 3
id iq i 0 cos( 120 ) cos( 120 ) cos 2 sin sin( 120 ) sin( 120 ) 3 1 1 1 2 2 2 ia ib ic
2-2 同步发电机的原始方程
正方向的规定: (1) 绕组轴线的正方 向作为磁链的正方向. (2)定子绕组产生的磁 链方向与轴线方向相 反时的电流为正值. (3)转子绕组产生的磁 链方向与轴线方向相 同时的电流为正值. (4)电压的正方向 如图2-2示。 图2-1 同步发电机各绕组轴线正方向示意图
图2-2
R i v abc ψ abc S abc
左乘P
R i v dq0 Pψ abc S dq 0
由于Ψdq0=Pψabc
所以
P ψ Pψ ψ dq 0 abc abc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变换由美国工程师派克在1929年首次提出(其后不久,苏联 学者戈列夫也独立地完成了大致相同的工作),一般称为派克变换。
Park 变换就是将
的量经过下列变换,转换成另外三个量。 i 例如对于电流,将 ia 、 ib 、c 变换成另外三个电流, d、i q 、 0 i i q 分别成为定子电流的 d 轴分量、 轴分量、零轴分量。
4)转子各绕组间的互感系数
同上述原因,它们也都是常数,而且绕组Q与绕组D、 f相互垂直,它们的互感为零,即:
M M fD M Df mr ; M fQ M Qf 0 ; DQ M QD 0
转子各绕组的自感系数和互感系数均为常数
5)定子与转子的互感系数
900
或
=2700
0
凸极机时定子绕组互感系数随转子旋转以 二倍频周期性变化, 隐极机时定子绕组互感系数不变。
3)转子绕组的自感系数
转子上各绕组是随着转子一起转动的,无论是凸极 机还是隠极机,转子绕组的磁路中总是不变的,即 转子各绕组的自感系数为常数,令他们表示为: ; LQQ LQ L ff L f ; LDD LD
转子绕组的 自感
定转子绕组间的互感
转子绕组间的互感
四 绕组的自感、互感系数
a相绕组磁路磁阻(磁导)的变化与转子d轴与a相绕组轴线的夹 角 有关 —— a 相轴线与直轴 d 轴的夹角
1)定子绕组的自感系数 900 或 =2700 时,自感为最小值; =00 或 =1800 时,自感为最大值; Laa l0 l2 cos2 Lbb l0 l2 cos2( 1200 )
说明:
u d u q u 0
u a P u b u c
d a q P b 0 c
(1)零轴电流
三相电流对称或平衡时为零。 (2)电流的转换
第3章
同步发电机的基本方程
3.1 同步发电机的原始方程
一 理想同步电机
同步发电机简化等值图
气隙
转子
定子
定子上3个等效绕组
B相绕组
A相绕组
C相绕组
转子上3个等效绕组 q轴等效的阻 尼绕组
励磁绕组 d轴等效的阻 尼绕组
同步发电机简化为:定子3个绕组、转子3个绕组、 气隙、定子铁心、转子铁心组成的6绕组电磁系统。
rD
磁链方程
同步发电机中各绕组的磁链是由本绕组的自感磁链 和其它绕组与本绕组间的互感磁链组合而成。它的 磁链方程为:
a Laa b M ba c M ca f M fa M D Da Q M Qa M ab Lbb M cb M fb M Db M Qb M ac M bc Lcc M fc M Dc M Qc M af M bf M cf L ff M Df M Qf M aD M aD M cD M fD LDD M QD M aQ ia M bQ ib M cQ ic M fQ i f M DQ iD LQQ iQ
0
时,互感为最小值;
0 时, 互感为正最大
= 0 时, 互感为负最大 180
Laf maf cos
凸极机和隐极机时定子绕组与转子绕组互感系数随转 子旋转以同步频率周期性变化
3.2 d, q, 0 坐标系的同步电机方程
• abc三相数学模型分析
变系数微分方程 分析困难
一 Park变换及d, q, 0 坐标系统
定子绕组的 对磁链方程的分析: 定子绕组间的互感 自感
a Laa b M ba c M ca f M fa M D Da Q M Qa
M ab Lbb M cb M fb M Db M Qb
同步发电机的特点:
• 转子是旋转的。 • 绕组是分散的。 • 存在磁饱和现象
理想同步发电机的假定 电机铁芯部分的导磁系数为常数,即忽略磁性材料磁饱和、 磁滞和涡流的影响,铁芯工作于线性区。 对纵轴和横轴而言,电机转子的结构是完全对称的。 定子三相绕组结构完全相同,彼此互差120度电角度,在气 隙中产生正弦分布的磁动势。 电机空载,转子恒速旋转时,其磁动势在定子绕组中感应 的空载电势是时间的正弦函数。 假设定子与转子具用光滑的表面,其槽与通风沟等不影响 定子及转子的电感。
Lc l0 l2 cos2( 1200 )
凸极机时定子绕组自感系数随转子旋转 以二倍频周期性变化; 隐极机时定子绕组自感系数不变。
2)定子绕组的互感系数
300 或 1500 时,互感为最大值;
=600 或 =2400 时,互感为最小值;
Lab [m0 m2 cos2( 30 )]
a、b 、 c
id cos i 2 sin q 3 i0 1 2
cos( 120 ) cos( 120 ) ia sin( 1200 ) sin( 1200 ) ib 1 1 ic 2 2
同步发电机各绕组电路图
三 同步电机的电压方程、磁链方程
六个回路的电压方程
r ua ub r uc r rf u f 0 0 ia a i b b ic c i f f iD D rQ iQ Q
U dq 0 P 0 r 0 P 1 0 P 0 iabc P 0 abc 0 r i 0 U U 0 U fDQ fDQ 0 U fDQ 0 U fDQ
0 0
所以park矩阵P为
cos 2 P sin 3 1 2 cos( 120 ) sin( 1200 ) 1 2
0
cos( 120 ) sin( 1200 ) 1 2
0
把定子绕组上的变量变换到转子上,有
i d i a i q P i b i0 ic
PLSR idqo i LRR fDQ
dq 0 P 0 abc P 0 LSS 0 U L fQD 0 U fQD RS
P 0 LSS L 0 U RS
LSR P 1 0 P 0 iabc PLSS P 1 i LRR 0 U 0 U fDQ LRS P 1
Paቤተ መጻሕፍቲ ባይዱk变换后的磁链方程
Ld d 0 q 0 0 3 maf f 2 3 maD D 2 Q 0
rD
变压器电势
发电机电势
三 d, q, 0 系统的磁链方程和电感系数
磁链方程的坐标变换
abc LSS fDQ LRS
LSR iabc i LRR fDQ
LSR iabc i LRR fDQ
理想同步电机的原始方程:
• 电压方程 • 磁链方程
• 电压电流方程
二 正方向的选取
磁链的正方向: 各绕组轴线的正方向作为磁 链的正方向; 励磁绕组和纵轴阻尼绕组磁 链的正方向与d轴正方向相同; 横轴阻尼绕组磁链的正方向与q 轴正方向相同。
• 绕组电流电压正方向: 绕组中产生正向磁链的电流为该绕组的正向电流。 定子电流的正方向取为由发电机侧指向负荷侧;转子 回路中,各绕组感应电势的正方向与本绕组电流的正 方向相同。
Ld (s m
派克变换后电压方程:
u d r r uq u0 r rf u f 0• 0 id d q i q d q i0 0 0 i f f 0 iD D 0 rQ iQ Q 0
两端关于时间求导
dq0 P abc P abc
有
P abc dq0 P abc dq0 PP1 dq0
PP 1 dq 0 q d 0
对
U dq 0 r 0 idq 0 dq 0 PP 1 dq 0 于是: 0 r i fDQ U fDQ 0 fDQ fDQ
式中
2
0 Lq 0 0 0 3 maQ 2
0 0 L0 0 0 0
maf 0 0 Lf LDf 0
maD 0 0 L fD LD 0
0 maQ id 0 iq i 0 0 i f 0 iD iQ LQ
M ac M bc Lcc M fc M Dc M Qc
M af M bf M cf L ff M Df M Qf
M aD M aD M cD M fD LDD M QD
M aQ ia M bQ ib M cQ ic M fQ i f M DQ iD LQQ iQ
得
U dq 0 r 0 idq 0 P 0 abc 0 r i U fDQ fDQ fDQ 0 U fDQ