电磁场与电磁波课程知识点汇总和公式
电磁场与电磁波1-6章公式总结

三种坐标下的位矢表示:333222111d d d d g h g h g h e e e r ++=直角坐标系: z y x z y x d d d d e e e r ++= 圆柱坐标系: z z d d d d e e e r ++=φρρφρ 球坐标系:φθθφθd sin d d d r r r r e e e r ++=标量的梯度:u g h g h g h u ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=333222111111 grad e e e 矢量的散度:()()()⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=⋅∇3213231213213211F h h g F h h g F h h g h h h F 矢量的旋度:3322113213322113211F h F h F h g g g h h h h h h ∂∂∂∂∂∂=⨯∇e e e F 散度定理:⎰⎰⋅=⋅∇SVV S F F d d斯托克斯定理:⎰⎰⋅=⋅⨯∇CSl F S F d d拉普拉斯运算符:⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇33213223121132132121g h h h g g h h h g g h h h g h h h 标量拉普拉斯运算: u 2∇矢量拉普拉斯运算: 3232221212F F F ∇+∇+∇=∇e e e F 电流的连续性方程:⎰⎰-=⋅V SV t d d d d ρS J , 0=∂∂+⋅∇tρJ恒定电流场:(要电流不随时间变化,即要电荷在空间分布不随时间变化) 0=⋅∇J电场强度:()()⎰--=--==VV''''''q Rq d 414433030r r r r r r r r r R r E ρπεπεπε高斯定理:()0ερ=⋅∇r E电场性质:()0=⨯∇r E磁感应强度:()()()()⎰⎰--⨯=--⨯=VCV''''''I d 4d 43030r r r r r J r r r r l r B πμπμ安培环路定理: ()()r J r B 0μ=⨯∇磁场性质:()0=⋅∇r B媒质的传导特性:v E J ρσ==(v 表示电荷的运动速度)法拉第电磁感应定律:()⎰⎰⎰⋅⨯+⋅∂∂-=⋅=C s C t l B v S Bl E d d d in ξ麦克斯韦方程组与磁场的边界条件:ρ=⋅=⋅⋅∂∂-=⋅⋅∂∂+⋅=⋅⎰⎰⎰⎰⎰⎰⎰SS S CS SCttS D S B S B l E S D S J l H d 0d d d d d dρ=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇D B BE D J H 0tt()()()()Sn n n S n D D e B B e E E e J H H e ρ=-⋅=-⋅=-⨯=-⨯2121212100静电场和恒定磁场的基本方程和边界条件如上可查(电场与磁场不相互影响,故有略去项) 电位函数: ()()r r E ϕ-∇=()()C V'''r V'+-=⎰d 41r r r ρπεϕ ϕd d )(-=⋅l r E微分方程: ερϕ)()(2r r =∇ 边界方程:21ϕϕ= S nn ρϕεϕε-=∂∂-∂∂2211系统电容:1取适合坐标;2设带等量相反电荷;3求出电场;4求出电位差;5计算荷差比。
电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。
电磁场与电磁波公式整理

∫ ∫
s
D ⋅d S = q E ⋅dl = 0
∫
∫
s
E涡 ⋅ d S = 0
∫ ∫
s
B ⋅d S = 0 H ⋅dl = I
∫
s
B涡 ⋅ d S = 0
s
E ⋅ d l = − ∫ s ∂B ⋅ d S L 涡 ∂t
L
∫
L
H涡 ⋅ d l =
∫∫
∂D ⋅ d S = Id ∂t
第二章 表一:电荷和电流的三种密度
Idl
( en 为电流密度的方向)
( en 为电流密度的方向)
∇i J +
∂ρ =0 ∂t
i = ∫ J i dS
S
i = ∫ Jsi(n1 × dl )
l
(电流连续性方程)
整理人:南昌大学通信 092 张奔
表二:电场和磁场
项目 定律
F=
E (r ) =
电场
qq 0 r − r ' (库仑定律) 4πε 0 | r − r ' |3 F 12 = B(r ) = B(r ) = B(r ) =
变化电场和磁场的联 系
∫
L
H ⋅ dl = I + I d = ∫∫ δ ⋅ d S + ∫∫
reθ r sin θ eφ ∂ ∂ ∂θ ∂φ rAθ r sin θ Aφ
∇ u=
2
1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u ( ) + (sin θ ) + r 2 2 ∂θ r 2 sin 2 θ ∂φ 2 r ∂r ∂r r sin θ ∂θ
C:几个定理 散度定理: ∫v ∇i FdV = ∫ s F idS
电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波是物质与能量在空间中相互作用的重要现象,而它们的本质则由一系列理论和数学公式所描述和解释。
本文将综述电磁场与电磁波的一些重要公式,总结它们的基本特征和应用。
首先,我们来介绍电磁场的公式。
电磁场是由电荷或电流产生的一种力场,它可以用麦克斯韦方程组来描述。
麦克斯韦方程组包括以下四个方程:1. 麦克斯韦第一方程:高斯定律∇·E = ρ/ε₀这个方程描述了电场强度E与电荷密度ρ之间的关系,其中ε₀是真空电介质常数。
2. 麦克斯韦第二方程:法拉第电磁感应定律∇×E = -∂B/∂t这个方程表明变化的磁场会产生电场强度的旋转,从而引发感应电流。
3. 麦克斯韦第三方程:高斯磁定律∇·B = 0这个方程说明磁场强度B是无源场,即它没有直接与任何电荷或电流相关。
4. 麦克斯韦第四方程:安培定律∇×B = μ₀J + μ₀ε₀∂E/∂t这个方程描述磁场强度B与电流密度J和电场强度E之间的关系,其中μ₀是真空磁导率。
这些方程共同描述了电场和磁场的产生、相互作用和传播的规律。
通过求解这些方程,我们可以获得电场和磁场的分布情况,从而进一步研究它们对物质和能量的影响。
接下来,我们将讨论电磁波的公式。
电磁波是由电场和磁场相互耦合并传播而成的波动现象,其具体表达式可以由麦克斯韦方程组推导出来。
麦克斯韦方程组的解是电场和磁场的波动方程,可以写成如下形式:E = E₀sin(kx - ωt)B = B₀sin(kx - ωt)其中E₀和B₀分别是电场和磁场的振幅,k是波数,ω是角频率,x是位置,t是时间。
根据这些波动方程我们可以得到电场和磁场的一些重要特征:1. 波长λ 和频率 f 的关系:λ = c/f其中c是光速,它等于电磁波的传播速度。
2. 光速与真空介电常数ε₀和真空磁导率μ₀的关系:c = 1/√(ε₀μ₀)这个公式说明光速与真空电磁特性有密切的关系。
电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体。
电荷产生电场,电流产生磁场。
电场是存在于电荷周围,能传递电荷之间相互作用的物理场。
它的基本特性是对置于其中的电荷有力的作用。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
单位是伏特每米(V/m)。
磁场是一种看不见、摸不着的特殊物质,能对放入其中的磁体、电流产生力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
单位是特斯拉(T)。
二、库仑定律与安培定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。
其表达式为:$F =k\frac{q_1q_2}{r^2}$,其中 k 是库仑常量,约为$9×10^9N·m^2/C^2$ 。
安培定律则阐述了两个电流元之间的相互作用力。
电流元在磁场中所受到的安培力为$dF = I dl × B$ 。
三、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,由四个方程组成。
高斯定律:$\oint_{S} E·dS =\frac{q}{ε_0}$,表明电场的散度与电荷量成正比。
高斯磁定律:$\oint_{S} B·dS = 0$ ,说明磁场是无源场。
法拉第电磁感应定律:$\oint_{C} E·dl =\frac{d}{dt}\int_{S} B·dS$ ,揭示了时变磁场产生电场。
安培麦克斯韦定律:$\oint_{C} H·dl = I +\frac{d}{dt}\int_{S} D·dS$ ,指出时变电场产生磁场。
四、电磁波的产生与传播电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波。
变化的电场和变化的磁场相互激发,形成在空间中传播的电磁波。
电磁波的产生通常需要一个振荡电路,比如 LC 振荡电路。
当电容器充电和放电时,电路中的电流和电荷不断变化,从而产生变化的电磁场,并向周围空间传播。
电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。
电场是电荷及变化磁场周围空间里存在的一种特殊物质,电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。
电场的基本性质是对放入其中的电荷有作用力,这种力称为电场力。
电场强度是描述电场强弱和方向的物理量,用 E 表示,单位为伏特/米(V/m)。
磁场是一种看不见、摸不着的特殊物质。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。
磁场的基本特性是对处于其中的磁体、电流和运动电荷有力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示,单位为特斯拉(T)。
二、库仑定律与电场强度库仑定律是描述真空中两个静止的点电荷之间相互作用力的定律。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中 F 是两个点电荷之间的库仑力,k 是库仑常量,q1 和 q2 分别是两个点电荷的电荷量,r是两个点电荷之间的距离。
电场强度是用来描述电场力的性质的物理量。
点电荷 Q 产生的电场中,距离点电荷 r 处的电场强度为:$E = k\frac{Q}{r^2}$。
对于多个点电荷组成的系统,某点的电场强度等于各个点电荷单独在该点产生的电场强度的矢量和。
三、高斯定理高斯定理是电场的一个重要定理。
通过一个闭合曲面的电通量等于该闭合曲面所包围的电荷的代数和除以真空中的介电常数。
在计算具有对称性的电场分布时,高斯定理非常有用。
例如,对于均匀带电的无限长直导线,利用高斯定理可以方便地求出其周围的电场强度分布。
四、安培环路定理安培环路定理反映了磁场的一个重要性质。
在稳恒磁场中,磁感应强度 B 沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。
利用安培环路定理,可以方便地计算具有对称性的电流分布所产生的磁场。
五、法拉第电磁感应定律法拉第电磁感应定律指出,闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波课程知识点汇总和公式————————————————————————————————作者:————————————————————————————————日期:电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。
例:ab ρrερsrSabεq l球对称 轴对称 面对称(1)基本方程0002=•==∇=•=•∇=•=⨯∇⎰⎰⎰A A ps l ld E s d J J l d E E ϕϕϕ本构关系: E Jσ=(2)解题思路● 利用静电比拟或者解电位方程(要注意边界条件的使用)。
● 假设电荷Q ——> 计算电场E ——> 将电荷换成电流(Q —> I )、电导率换成介电常数(ε—>σ)得到恒定电场的解 ——>计算电位φ和电阻R 或电导G 。
5 恒定磁场基本知识点 (1)基本方程⎰⎰⎰•=-=∇=•=•∇=•=⨯∇ss l sd B JA s dB B I l d H JH φμ2本构关系: H Bμ=(2)解题思路● 对称问题(轴对称、面对称)使用安培定理● 假设电流I ——> 计算磁场强度H ——> 计算磁通φ ——> 计算能量ωm =μH 2/2或者电感(L=ψ/I )。
(3)典型问题● 载流直导线的磁场计算; ● 电流环的磁场计算; ● 磁通的计算; ● 能量与电感的计算。
(1)直角坐标下的分离变量法● 二维问题通解形式的选择(根据零电位边界条件); ● 特解的确定(根据非零电位边界条件)。
(2)镜像法● 无限大导体平面和点电荷情况; ● 介质边界和点电荷情况。
7 正弦平面波基本知识点 (1)基本方程与关系电场强度瞬时值形式 y my x mx a kz t E a kz t E t z y x E )cos()cos(),,,(-+-=ωω 电场强度复振幅形式 y jkz my x jkz mx a e E a e E z y x E --+=),,(瞬时值与复振幅的关系:])Re[(]),,(Re[),,,(t j y jkz my x jkz mx tz j e a e E a e E e z y x E t z y x E ωω--+==坡印廷矢量(能流密度)),,,(),,,(),,,(t z y x H t z y x E t z y x S ⨯= 平均坡印廷矢量(平均能流密度) )],,(),,(Re[21),,(*z y x H z y x E z y x S av ⨯=磁场强度与电场强度的关系:大小关系η==xy y x H E H E 方向关系 E S H SH E HE S a a a a a a a a a⨯=⨯=⨯=(2)波的极化条件与判断方法电磁波电场强度矢量的大小和方向随时间变化的方式,定义:极化是指在空间固定点处电磁波电场强度矢量的方向随时间变化的方式。
通常,按照电磁波电场强度矢量的端点随时间在空间描绘的轨迹进行分类。
设电场强度为:y y my x x mx a kz t E a kz t E E)cos()cos(ϕωϕω+-++-=● 极化条件:A 、 直线极化:πϕϕ±=-or x y 0B 、 圆极化:my mx x y E E nd =±=-a 2πϕϕC 、 椭圆极化:上述两种条件之外。
圆极化和椭圆极化的旋向当0>-x y ϕϕ时为左旋,当0<-x y ϕϕ时为右旋。
表1:圆极化波和椭圆极化波旋向判断条件及结论传播方向坐标关系参考分量相位差旋向结论正轴向传输 负轴向传输 x 轴z y x e e e ⨯= E y0>-=∆y z ϕϕϕ左旋 右旋 0<-=∆y z ϕϕϕ右旋 左旋 y 轴 x z y e e e ⨯=E z0>-=∆z x ϕϕϕ 左旋 右旋 0<-=∆z x ϕϕϕ 右旋 左旋 z 轴y x z e e e ⨯=E x0>-=∆x y ϕϕϕ 左旋 右旋 0<-=∆x y ϕϕϕ右旋左旋E xyα 0E直线极化波方向示意图xE yE x0 -ExE yy(a )E y 与E x 同相 (b )E y 与E x 反相圆极化波旋向示意图yxαπ/2ϕ∆=π/2ϕ∆=-Ez逆时针旋转(左旋) 顺时针旋转(右旋)E xE y椭圆极化波旋向示意图yxα0ϕ∆>0ϕ∆<Ez逆时针旋转(左旋)顺时针旋转(右旋)E xE y圆极化和椭圆极化的旋向判断作图法1、将参考分量定在相应轴的正方向上;2、计算另一分量与参考分量的相位差,相位差大于0时,另一分量画在相应的正轴方向,反之,画于负轴方向;3、拇指指向波的传播方向,其余四指从另一分量转向参考分量,哪只手满足条件即为哪种旋向。
(3)波的反射与折射1、导体表面的垂直入射波特性● 导体外空间内为驻波分布,有波节点和波腹点; ● 没有能量传播,只有电能和磁能间的相互转换。
2、介质表面的垂直入射波特性● 入射波空间内为行驻波分布,透射波空间为行波分布; ● 有能量传播; ● 反射系数和透射系数12212122ηηηηηηη+=+-=ΓT(b ) +y 方向传播0ϕ∆<(右旋)zy E zE x右手x (c ) -x 方向传播圆极化波旋向判断作图法举例0ϕ∆<(左旋)yx E yE z左手z传播方向(a ) +z 方向传播 xzE xE y左手0ϕ∆>(左旋)yz 0xEHzx ηη3、导体表面的斜入射波特性● 分垂直极化和平行极化两种情况(均以电场强度方向与入射面的相互关系区分),沿导体表面方向传输的是非均匀平面波;沿垂直导体表面方向为驻波分布;● 对垂直极化方式,沿导体表面方向传输的是TE 波;对平行极化方式,沿导体表面方向传输的是TM 波;● 沿导体表面方向有能量传输,而沿垂直于导体表面方向无能量传输; ● 沿导体表面方向的相速大于无限大空间中对应平面波的相速,但是能量传播速度小于平面波速度。
4、介质表面的斜入射波特性● 也分垂直极化和平行极化两种情况,沿导体表面方向和垂直导体表面方向传输的均是非均匀平面波;● 对垂直极化方式,沿导体表面方向传输的是TE 波;对平行极化方式,沿导体表面方向传输的是TM 波;● 沿导体表面方向有能量传输,而沿垂直于导体表面方向有行驻波特性;● 反射系数和透射系数t i it i ti T θηθηθηθηθηθηθηcos cos cos 2cos cos cos cos 1221212+=+-=Γ⊥⊥it iit i t T θηθηθηθηθηθηθηcos cos cos 2cos cos cos cos 1221212//+=+-=Γ⊥5、全反射与全折射● 全反射——只有波从光密媒质传向光疏媒质时才可能发生,条件为:121sin εεθ-=c ——临界角 ● 全折射——只有平行极化才可能发生,条件为:2121sin εεεθ+=-b ——布儒斯特角2111sin εεεθ+=-t ——全折射时的折射角。