2011年成高考专升本_高等数学一_试题

合集下载

2011年江苏专转本高等数学试卷及答案

2011年江苏专转本高等数学试卷及答案

当 x1时,
x
n 1 n0
n0
n
[1,1)
综上,收敛域为

1 (发散-P 级数); n 1
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13、求极限lim (ex e x )2 。 2 ln(1x )
评析:本题考查极限计算的罗比达法则和等价无穷小替换方法
原式= lim (ex e x )2
y (x 1)e
x是一阶线性微分方程
y
'
2
y
f
(x)
的解,求二阶常系数线性微
"
'
分方程 y 3y 2y f (x) 的通解。
Author:mathtriones&数 学伯伯
评析:本题考查二阶常系数线性微分方程,不过必须先求出 f (x) 的表达式才行进行求解
由已知可得 f(x)e x (x1)e x 2(x1)e x (3x4)e x ,于是所求二阶常系数线性
首先是第一个问题,若要满足连续,则必须左极限等于右极限,而且还要等于函数值,于是
有 a2 2 a,解得a 1 或 a 2 ,又在 x0 处的函数值为 1,即 f (0)1,则此时只 22
x
xx
x
x
x
19、计算二重积分 ydxdy ,其中 D 是由曲线 y2x ,2 直线 yx 及 y 轴所围成的
D
平面闭区域。
评析:本题考查二重积分计算,并利用极坐标变换
33
ydxd ydr s2in2dr sin(
D
2 2 3232
sin4d(cos)
4
32
3
2
)d 2 3
2 3

2011年成人高考高中起点升专科、本科《数学》(理科)试卷及详解【圣才出品】

2011年成人高考高中起点升专科、本科《数学》(理科)试卷及详解【圣才出品】
A.1.625 B.1.5 C.1.325 D.1.25 【答案】D 【解析】记该篮球运动员投篮两次所得分数为 A,则 A 的分布列如下:
由于 x+0.5+0.375=1,解得 x=0.125,E(A)=0×0.125+1×0.5+2×0.375=1.25. 17.已知 A,B 是抛物线 y2=8x 上的两点,且此抛物线的焦点在线段 AB 上,若 A,B
D.
【答案】A
【解析】BD 两项,y=log2x 和
均为非奇非偶函数;C 项,y=x2-4 虽为
偶函数,但在(0,3)内为增函数;A 项,y=cosx 是偶函数,且在(0,π)内为减函数, 所以在(0,3)内也是减函数.
16.一位篮球运动员投篮两次,若两投全中得 2 分,若两投一中得 1 分,若两投全不 中得 0 分.已知该运动员两投全中的概率为 0.375,两投一中的概率为 0.5,则他投篮两次 得分的期望值是( ).
3 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

系.
7.i 为虚数单位,若 i(m-i)=1-2i,则实数 m=( ). A.2 B.1 C.-1 D.-2 【答案】D 【解析】i(m-i)=im-i2=im+1=1+mi.即 1+mi=1-2i,可得 m=-2.
圣才电子书 十万种考研考证电子书、题库视频学习平台

2011 年成人高考高中起点升专科、本科《数学》(理科)试卷及详解
-、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.函数
的定义域是( ).
A.(-∞,0]
8 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

2011年贵州省专升本高等数学试卷

2011年贵州省专升本高等数学试卷

2011年贵州省专升本招生统一考试高 等 数 学 试 卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

3.选择题部分必须使用 2B. 铅笔填涂,如需改动,用橡皮擦干净之后,再选涂其他答案标号;非选择题部分必须使用 0.5 毫米的黑字签字笔书写,字体工整、笔记清楚。

4.请按照题号顺序在各个题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

5.保持卷面清洁,不要折叠、不要弄破,禁用涂改液、涂改胶条。

第Ⅰ卷 选择题一、选择题(本大题共10小题,每题4分,共40分)1.下列各组函数相同的是( ).A .()2lg f x x =与()2lg g x x =B .()f x =()g x =C .()f x =与()g x = D .()f x x =与()g x =2.下列函数为奇函数的是( ). A .()2f x x x =-B .()()()11f x x x x =-+C .()2x xa a f x -+=D .()1x x f x e e=+3.设()232x x f x =+-,当0x →时,有( ). A .()f x 与x 是等价无穷小 B .()f x 与x 同阶但非等价无穷小 C .()f x 是比x 高阶的无穷小D .()f x 是x 低阶的无穷小4.设函数()2 10 12 1x x f x x x x ⎧<⎪==⎨⎪->⎩,则1x =为()f x 的( )间断点.A .无穷B .振荡C .跳跃D .可去5.若()0f x ''存在,则()()20022limh f x h f x h h →+-+=( ).A .()()002hf x f x ''-B .()02f x 'C .()02f x '-D .()()002f x f x '''-6.下列函数中,哪个函数在所给定区间内连续且可导( ).A.y =(),x ∈-∞+∞B.y =,(),x ∈-∞+∞C .sin y x =,π0,2x ⎛⎫∈ ⎪⎝⎭D .y x =,[]1,1x ∈-7.设函数()f x 在0x 的某个领域内有定义,那么下列选项中哪个不是()f x 在0x 处可导的一个充分条件( ).A .()001lim h h f x f x h→+∞⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦存在 B .()()0002lim h f x h f x h h→+-+⎡⎤⎣⎦存在C .()()000lim2h f x h f x h h→+--⎡⎤⎣⎦存在 D .()()000limh f x f x h h→--⎡⎤⎣⎦存在 8.已知函数()()()311f x x x =-+,则()f x 的单调递增区间是( ).A .(),1-∞-B .11,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫∞ ⎪⎝⎭D .11,2⎡⎤-⎢⎥⎣⎦9.已知函数()f x 为可导函数,且()F x 为()f x 的一个原函数,则下列关系不成立的是( ).A .()()()dd d f x x f x x =⎰B .()()()d f x x f x '=⎰C .()()d F x x F x C '=+⎰D .()()d f x x F x C '=+⎰10.若()f x 的导数是cos x ,则()f x 的一个原函数是( ).A .1sin x +B .1sin x -C .1cos x +D .1cos x -第Ⅱ卷 非选择题二、填空题(本大题共10小题,每题4分,共40分)11.设()ln f x x =,()225, 012, 0x x g x x x -≤≤⎧=⎨-<⎩,则()()f g x 的定义域为___________.12.双曲线正弦函数2x xe e y --=的反函数是________________.13.已知() , 01, 01, 0 x ae x f x b x bx x ⎧<⎪=-=⎨⎪+>⎩在0x =处连续,则a =______,b =______.14.函数()()1cos sin f x x =-的等价无穷小量为____________()0x →. 15.设()232x y x e=+,则0x y ='=____________.16.()1πlim 1tan2x xx →-=____________. 17.双曲线22221x y a b-=,在点()2a 处的切线方程为__________________.18.22d d d x t xe t x-=⎰____________. 19.x =⎰___________.20.心形线()1cos r a θ=+的长为____________.三、计算题(本大题共6小题,每题6分,共36分) 21.计算sin 4x x →.22.设xx ex e y e ++=,求y '.23.若()()22y f x xf y x +=,()f x 可导,求d d y x.24.计算:x .25.计算:()()21sin 2d xx x -⎰.26.设()222sin arctan x f x e x x -=⋅⋅+()42d f x x -⎰的值.四、应用题(本大题共2小题,每题8分,共16分)27.在半径为R 的半圆内作一矩形,求怎样的边长使矩形面积最大.28.求曲线22y x x =-,0y =,1x =,3x =所围成平面图形的面积S ,并求该平面图形绕y 轴旋转一周所得旋转体的体积V .五、证明题(本大题共2小题,每题9分,共18分) 29.证明:(),x ∀∈-∞-∞,有arctan x =。

高数真题及答案

高数真题及答案

山东省普通高等教育专升本统一考试《高等数学》真题(部分)一、 选择题1、函数22712arcsin x x x y -+-=的定义域为( )【2011年真题】 A 、]4,3[- B 、 )4,3(- C 、 ]2,0[ D 、 )2,0(【答案】选C.2、如果级数)0(1≠∑∞=n n n u u 收敛,则必有( )【2011年真题】A 、级数∑∞=11n n u 发散B 、级数)1(1n u n n +∑∞=收敛 C 、级数∑∞=1n n u 收敛 D 、级数n n n u ∑∞=-1)1(收敛【答案】选A.二、填空题:1、由方程0422=--xy y x 确定的隐函数的导数dxdy = 【2011年真题】 【答案】填 x y y x 22+-. 2、向量)4,1,1(=a 与向量)2,2,1(-=b 的夹角余弦值是 . 【2011年真题】 【答案】填1827. 3、级数∑∞=n n n x !的收敛区间为_______.【2010年真题】 【答案】),(+∞-∞. 【解析】收敛半径:∞=+=+==∞→∞→+∞→)1(lim !)!1(lim ||lim 1n n n a a R n n n n n , 所以,收敛区间为:),(+∞-∞.4、当26ππ≤<x 时,x x x f sin )(=是_______函数(填“单调递增”、“单调递减”) 【2009年真题】【答案】单调递减 【解析】,sin cos )(2xx x x x f -='令,sin cos )(x x x x g -= ,sin cos sin cos )(x x x x x x x g -=--='当26ππ≤<x 时,0)(<'x g ,从而,,0)(<'x f 故函数)(x f 单调递减. 二、计算下列各题:1、求函数)0(1>⎪⎭⎫⎝⎛+=x x x y x的导数. 【2011年真题】【解析】两边取对数,)]1ln([ln ln x x x y +-=两边对x 求导数,x x x x x x x x y y ++⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='111ln 1111ln 1 所以,⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=x x x x x dx dyx111ln 1.2、级数∑∞=n nn x !的收敛区间为___________.【2010年真题】【解析】收敛半径:∞=+=+==∞→∞→+∞→)1(lim !)!1(lim ||lim 1n n n a a R n n n n n ,所以,收敛区间为:),(+∞-∞.3、求幂级数 +-+-+--n xx x x nn 132)1(32的收敛半径和收敛域.【2009年真题】 【解析】 收敛半径: 11lim lim 1=+==∞→+∞→nn a a R n n nn ,当1-=x 时,级数∑∑∞=∞=--=--1111)1()1(n n n n n n 发散;当1=x 时,级数∑∞=--111)1(n n n 收敛.所以,级数的收敛域为:]1,1(-. .0663********sin 6cos 6)6()(<-⋅=-⋅=-⋅=<ππππππg x g .0663********sin 6cos6)6()(<-⋅=-⋅=-⋅=<ππππππg x g三、证明题:1、某车间靠墙壁要盖一间长方形小屋,现有存砖只能够砌成20m 长的墙壁.问:应围成怎样的长方形才能使这间小屋面积最大. 【2011年真题】【解析】设小屋宽为x 米,则长为(20-2x )米,小屋面积为:)220(x x y -=,0420=-='x y 得,5=x由实际问题的实际意义知,当围成宽5米,长10米的长方形时小屋面积最大.2、求抛物线221x y =将圆822=+y x 分割后形成的两部分的面积. 【2011年真题】 【解析】联立⎪⎩⎪⎨⎧=+=821222y x x y ,得2±=x 面积2032402022131)cos 22(22182x dt t dx x x A -=⎪⎭⎫ ⎝⎛--=⎰⎰π 342382sin 21838)2cos 1(84040+=-⎥⎦⎤⎢⎣⎡+=-+=⎰πππt t dt t . 另一部分面积346812-=-=ππA A .3、设函数)(x f 在[0,1]上连续,且1)(0≤≤x f ,证明:存在ξξξ=∈)(],1,0[f 使.【2010年真题】【解析】本题考查闭区间上连续函数的性质——零点定理.证明. 令x x f x g -=)()(,则)(x g 在[0,1]上连续,且,0)0(0)0()0(≥=-=f f g ,01)1()1(≤-=f g若等号成立,即1)1(,0)0(==f f 或,则端点0或1即可作为要找的ξ;若等号不成立,即,0)1()0(<⋅g g 由零点定理知,存在0)(),1,0(=∈ξξg 使,即ξξ=)(f . 综上可证,存在ξξξ=∈)(],1,0[f 使.4、某工厂需要围建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?【2009年真题】【解析】求最值问题.首先根据题意建立数学函数,然后求导数,并求出使一阶导数等于零的点,若只求得一个驻点,则可直接断定结论.解 设宽为x 米,则长为x 512米.新砌墙的总长度为: x x y 5122+= 由051222=-='xy ,得16=x (16-=x 舍去), 32512=x 所以,当堆料场的长为32米,宽为16米时砌墙所用的材料最省.。

[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题2011年

[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题2011年
5 / 13
[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题 2011 年
[解析] 根据题意:
则,代入 x=1,得
问题:5. 定积分的值为______ 答案:[考点] 定积分——定积分计算技巧.
[解析] 根据题意得:
因为 x3 是有函数, 所以,
即答案为 问题:6. 幂级数的收敛域为______ 答案:[-1,1)[考点] 无穷级数——幂级数.
f(x)=y'+2y =(x+2)ex+2·(x+1)ex =(3x+4)ex, 则 y"+3y'+2y=(3x+4)ex. 求上式特征方程 r2+3r+2=0,得 r1=-1,r2=-2, 所以,y"+3y'+2y=(3x+4)ex 的通解为 Y=C1e-x+C2e-2x, 因为 λ=1 不是特征根, 所以原方程的一个特解为 y=(Ax+B)ex, 即 y'=(Ax+A+B)ex y"=(Ax+2A+B)ex, 上述二式代入 y"+3y'+2y=(3x+4)ex 得 (Ax+2A+B)ex+3(Ax+A+B)ex+2(Ax+B)ex=(3x+4)ex, 化解为 6Ax+5A+6B=3x+4, 解得.
解上式得 a=1, 易知曲线与横轴交点为 x=2, 则 f(x)=-x2+2x.[考点] 定积分——定积分运用. 5. 求平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积 Vx; 答案:解:根据上述计算, 因为 f(x)=-x2+x,

2011年成人高考专升本高等数学一考试真题及参考答案

2011年成人高考专升本高等数学一考试真题及参考答案

一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题
参考答案:D
第2题
参考答案:C
第3题
参考答案:B
第4题
参考答案:A
第5题
参考答案:B 第6题
参考答案:D 第7题
参考答案:D 第8题
参考答案:A 第9题
参考答案:C
第10题
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第11题
第12题
参考答案:1/2
第13题
参考答案:4x-2
第14题
第15题
参考答案:(-1,1)
第16题
参考答案:arctanx+C 第17题
参考答案:1
第18题
第19题
参考答案:0
第20题
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题
第23题
第24题
第25题
第27题。

2011年成人高考专升本《高数一》试题及答案

2011年成人高考专升本《高数一》试题及答案

机动
目录
上页
下页
返回
结束
2.定义 设 是空间中一条有限长的光滑曲线, 义在 上的一个有界函数, 若通过对 的任意分割 和对 局部的任意取点, 下列“乘积和式极限”
( k ,k , k )
n
0
lim
f ( k ,k , k )sk
记作
k 1


f ( x, y , z ) d s
(由
1
f ( x, y , z ) d s
2
f ( x, y , z ) d s
组成)
( l 为曲线弧 的长度)
机动
目录
上页
下页
返回
结束
(5) 若在曲线弧 上,有
f ( x, y, z ) g ( x, y, z )

,则


f ( x , y , z ) ds

g ( x , y , z ) ds
机动
ds d y dx x x
上页 下页 返回 结束
目录
如果曲线 L 的方程为

则有
a
b
f ( x, ( x) ) 1 2 ( x) d x
如果方程为极坐标形式: L : r r ( ) ( ), 则


推广:

f ( r ( ) cos , r ( ) sin ) r 2 ( ) r 2 ( ) d
tk
k 1
t
(t ) (t ) d t
2 2
2
2

( k ) ( k ) t k ,

lim f [ ( k ) , ( k ) ]

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2011年成人高等学校专升本招生全国统一考试
高等数学(一)
答案必须答在答题卡上指定的位置,答在试卷上无效.......。

一、选择题:1~10小题,每题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。

1.2211lim 33
x x x x x →++=−+ A. 0 B. 1 C.2 D. 3
2.设4y x =,则'y = A. 515x B. 314
x C. 34x D. 4ln x x 3.设ln y x x =+,则dy =
A. (1)x e dx +
B.1
(1)dx x
+ C. 1dx x
D. dx 4.设sin y x =,则''y =
A. sin x −
B. sin x
C. cos x −
D. cos x 5.31dx x =∫ A. 22C x −
+ B. 212C x −+ C. 212C x + D. 22C x +
6.1
51x dx −=∫ A. 12 B. 13
C.
16 D. 0 7.设arcsin y z x e =+,则z y
∂∂
y e C.
y e
8.在空间直角坐标系中,方程22
1x y +=表示的曲面是 A. 柱面 B. 球面 C. 锥面 D. 旋转抛物面
9.设2
3z x y =−,则dz = A. 23xdx ydy − B. 2
3x dx dy − C. 23xdx dy − D. 2
3x dx ydy − 10.微分方程'2y y =的通解为y =
A. 2x Ce
B. 2
x Ce C. x Cxe D. 2x Cxe
二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后。

11.4lim(1)x x x
→∞+=______. 12.设函数21,0()2,0x x f x a x x ⎧+≤=⎨+>⎩
,在0x =处连续,则a =______. 13.曲线2
2y x =在点(1,2)处的切线方程为y =______. 14.设2x
y e =,则1'x y ==______. 15.函数313
y x x =−的单调减少区间为______. 16.211dx x =+∫______.
17.120)x dx +=∫______.
18.过点(1,1,2)−−且与平面2230x y z −+=垂直的直线方程为______.
19.设函数(,)z f x y =可微,00(,)x y 为其极值点,则00(,)x y z
x ∂=∂______.
20.微分方程'1y x =+的通解为y =______.
三、解答题:21~28题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后。

21.(本题满分8分) 求2
0lim 1cos x x x
→−. 22.(本题满分8分)
设函数()y f x =由24321x y x y +++=所确定,求dy dx
. 23.(本题满分8分)
求函数x
y xe =的极小值点与极小值. 24.(本题满分8分) 计算1x dx x +∫.
25.(本题满分8分)
求微分方程''90y y −=的通解.
26.(本题满分10分)
设D 是由直线y x =与曲线3
y x =在第一象限所围成的图形.
(1)求D 的面积S ;
(2)求D 绕x 轴旋转一周所得旋转体的体积V .
27.(本题满分10分) 将函数115y x
=−展开成x 的幂级数,并指出其收敛区间. 28.(本题满分10分)
计算D ydxdy ∫∫,其中D 为221x y +=,y x =及0y =在第一象限所围成的图形.。

相关文档
最新文档