锐角三角函数超经典讲义
锐角三角函数讲义

锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。
课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。
锐角三角函数 讲义

一、什么叫正切如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的对边BC 与邻边AC 的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA=的临边的对边A A ∠∠tanA 的值越大,梯子越陡。
例1、 如图甲乙两个扶梯,边长已经给出,求出他们的正切,并说明哪个比较陡?68513甲 乙一起来看几个练习吧:练习1、在Rt △ABC 中,︒=∠90C , A ∠的对边是 ,A ∠的临边是 ,ABA ∠的正切tan A ∠= 。
BAC练习2、如图所示,在Rt △ABC 中,∠C=90°,AC=3,AB=5,求∠A 、∠B 的正切值。
练习3、正方形网格中,AOB ∠如图放置,tan AOB ∠则的值为( )A.5B.5C.12D.2二、坡度与坡角h我们把_________与_________的比叫坡度i (•也叫坡比)•。
坡面与水平面的夹角叫做_________,用∂表示,坡度就是坡角的正切值,记作tan ∂=h l. ABO记不住吗?没关系,看几个例题理解下:例1、如图,一个小球由地面沿着坡度i=2:5的坡面向上滚动了29米,此时小球距离地面的高度为多少米?一定要练习哟:练习1、如图1,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8m练习2、坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.练习3、如图所示,拦水坝的横断面为梯形ABCD ,斜边AB 的坡度为0.5,坝顶宽AD=3m ,坝高4m ,斜坡CD=5m 。
(1)比较斜坡AB 和CD 谁更陡?(2)求出坝底BC 的长?BACABCD E FA C B如图,在Rt △ABC 中,∠C=90°,∠A 的________与________的比叫做∠A 的正弦,记作sinA ,即sinA=________;∠A 的________与________的比叫做∠A 的余弦,记作cosA ,即cosA=________。
最全锐角三角函数概念超经典讲义完整版.doc

锐角三角函数知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。
3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。
4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。
sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。
考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。
7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 5B 25C 、12D 、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
《锐角三角函数》 讲义

《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。
以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。
那么,sin A = a / c,cos A = b / c,tan A = a / b 。
需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。
二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。
30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。
45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。
60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。
三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。
比如,测量物体的高度。
如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。
假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。
再比如,测量河流的宽度。
我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。
四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。
2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。
初中数学锐角三角函数综合复习讲义

初中数学锐角三角函数综合复习讲义一、研究概念1、产生的背景:直角三角形的边与角之间的关系2、明确概念:正弦阐述概念:在直角三角形中,锐角A 的对边与斜边的比叫做锐角A 的正弦,记作sinA 3、本质:特殊的实数 4、知识点产生的条件: [直角三角形] 直角三角形中任意两边和任意一锐角5、特征: 正弦 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦 →[表示法] sinA=∠A 的对边斜边[特殊字母] sinA=a c sinB=bc(∠A+∠B=90°) 余弦 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦→[表示法] cosA=∠A 的邻边斜边[特殊字母] cosA=bccosB=a c (∠A+∠B=90°)sinA=ac = cosB= cos (90°—∠A) cosA=bc= sinB= sin (90°—∠A)定义] 在△ABC 中,∠C 为直角,我们把锐角A 的对边与邻边的比叫做∠A 的正切→[表示法] tanA=∠A 的对边邻边特殊字母] tanA=abtanB=b a (∠A+∠B=90°)余切 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的邻边与对边的比叫做∠A 的余切→[表示法] cotA=∠A 的邻边对边[特殊字母] cotA=b a cotB= ab(∠A+∠B=90°) tanA=ab= cotB= cot (90°—∠A) CBA c bacotA=ba= tanB= tan (90°—∠A) [文字] 一个角的正弦等于它余角的余弦 一个角的余弦等于它余角的正弦一个角的正切等于它余角的余切一个角的余切等于它余角的正切[勾股] sin 2 A+ cos 2A= 1 sin 2 B+ cos 2B= 1[运算] tanA ·cotA=1 tanB · cotB=1[正弦、余弦] tanA=sin A cosA cotA=cos AsinA tanB=cos A sinA cotB=sin AcosA[特殊值] sin30°=cos60°=12sin45°=cos45°=2若α、β是锐角,且α>β,则sin60°=cos30°α>sin β cos α<cos βtan30°=cot60°α>tan β cot α<cot β tan45°=cot45°= 1tan60°=cot30°6、系统找下位含有特殊角的斜三角形∍内角是特殊角∍15°,30°,45°,60°,90° 外角是特殊角∍15°,30°,45°,60°,90°二、应用、例题讲解(一)直角三角形中,已知两边求锐角三角函数 1、在中,∠C 为直角,已知a=3,b=4,则cos B= ( ) (A 级)对象:cos B 角度:cos B=a c分析:a=3,b=4 [勾股] c=5 cos B=a c =35(二)直角三角形中,已知一锐角的三角函数求锐角的其它三角函数 2、∠A 为锐角,且sinA=135,则tanA 的值为 ( ) (A 级) A 、512 B 、1213 C 、1312 D 、125对象:tanA 角度 : tanA=sin AcosA分析:sinA=135 [sin 2 A+ cos 2A= 1] cos 2A= 1- sin 2A cosA=1312 [tanA=sin A cosA ] tanA= 1253、设x 为锐角,且满足 sin x=3cos x ,则sin x ·cos x 等于 (B 级)对象:sin x ·cos x 角度:sin 2x+ cos 2x= 1分 析:sin x=3cos x [sin 2x+ cos 2x= 1] (3cos x)2+cos 2x= 1 cos 2x=101 sin x ·cos x= 3cos 2x=103 4、如果x= tanA+1,y=cotA+1(A 为锐角),那么y 等于 (B 级) 对象: y 角度:tanA · cotA=1分析:x= tanA+1,y=cotA+1 [tanA · cotA=1] (x-1)(y-1)=1y=1-x x 5、如果A 为锐角,且 sinA=54,那么 ( ) (B 级) A 、0°〈 A ≤30° B 、30°〈A ≤45° C 、45°〈A 〈60° D 、60°〈A 〈90°对象:A 角度:sinA=54 分析:22〈54〈23 sin 45°〈sinA 〈sin60° ∵A 为锐角 ~ 0°〈 A 〈90° 此时 sinA 是增函数 ∴ 45°〈A 〈60°6、已知A 为锐角,且2cos sin 2cos 2sin 3=-+AA AA ,那么tanA 的值等于 (B 级)对象:tanA 角度:tanA=sin AcosA分析:2cos sin 2cos 2sin 3=-+A A A A 3 sinA+2cosA=4sinA -2cosA sinA=4cosA sin AcosA=4=tanA7、在 中,c 为斜边,a 、b 为直角边,则a 3 cosA+b 3cosB 等于 (B 级)对象:a 3 cosA+b 3cosB 角度 :cosA=∠A 的邻边斜边勾股定理分析 :a 3cosA+b 3cosB = a 3·b c + b 3·a c =cabc 2 = abc8、计算: (A 级)对象: 角度 :特殊角的三角函数值分析:=213222∙+⎪⎪⎭⎫ ⎝⎛=231+ 9、计算:sin 248°+sin 242°-tan44°·tan45°·tan46°= (B 级)对象:sin 248°+sin 242°-tan44°·tan45°·tan46°角度:sinA= cos (90°—∠A) tanA= cot (90°—∠A)分析:sin48°=cos(90°-48°)=cos42° tan 44°=cot(90°-44°)=cot46°原式= cos 242°+ sin 242°-cot46°·tan46°·tan45°=1-1·1=010、如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11。
《锐角三角函数》课件

正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数--讲义资料

锐角三角函数 讲义一、基础知识点: 1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;ca A =sin 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;cb A =cos 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ;ba A =tan 2、三角函数值(1)特殊角的三角函数值角度 三角函数 0° 30° 45° 60° 90° s inA 0 12 22 321cosA 1 32 22 12 0tanA313不存在(2)锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<s inα<1,0<c os α<1,当0°≤α≤45°时,sin α,tan α随角度的增大而_______,co sα随角度的增大而_______.(3)当0°<α<45°时,sin α_____c os α;当45°<α<90°时,sin α______c os α.3、 同角、互余角的三角函数关系:(1)同角三角函数关系:1cos sin 22=+A A .; AA A cos sin tan =;(2)互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。
1、 解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。
直角三角形的可解条件及解直角三角形的基本类型如下表: 已知条件 解法 一条边和一个锐角 斜边c和 锐角A290,sin ,cos ,sin cos B A a c A b c A S c A A ο=-===直角边a 和锐角A 90,,,tan sin a aB A b c A Aο=-==两条边两条直角 边a 和b 22c a b =+,1,90,2A B A S ab ο=-=直角边a和 斜边c22,sin ,,90ab c a A A B A cο=-==-备注:a 、b、c 为三角形的三边;A 、B 、C 为三角形的三个内角、S 为三角形的面积 三、典型例题:1. 锐角三角函数的相关概念例1、如图1,在RT △A BC中,∠C=90°,si nA =53,则tanB 的值为(ﻩ)A .34ﻩ B.54 ﻩC .45 ﻩﻩD .43例5例2、如图,⊙O 是△A BC 的外接圆,A D是⊙O的直径,若⊙O 的半径是23,AC=2,则sinB 的值是( )A.32ﻩﻩ B.23ﻩﻩﻩC .43 ﻩﻩD .34ﻩ例3:已知在Rt ABC △中,∠C 为直角,A C = 4cm ,BC = 3cm ,sin ∠A = . 例4:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .例5:如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A的值是( ) A.错误! B.错误! C.错误! D .错误!A CB图1A BCDO例2ACB ACBDBACDE 例6:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则B C的长为 ___c m. 例6例7:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )A.55ﻩ B.255ﻩ C.12ﻩﻩD.2 典型例题题型一:求锐角三角函数的值例1 在Rt △ABC 中,∠C =90°,sin B=35,点D 在BC边上,且∠ADC=45°,DC=6,求∠BAD 的正切值.变式训练1 如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( ) A.2 B .2C .6ﻩD .3变式训练2如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( )A.83B.15ﻩC.3D.3题型三:化简计算例1(1))计算:20113015(1)()(cos68)338sin 602π---+++-.ABO例7变式1图 变式2图变式:已知α是锐角,且s in(α+15°)=32。
初三锐角三角函数复习讲义

锐角三角函数:知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:如图所示,在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA ∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA ,它们称为∠A 的锐角三角函数①斜边)(sin =A =______,②斜边)(cos =A =______,③的邻边A A ∠=)(tan =______,【特别提醒:1、sinA 、cosA 、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与 有关,与直角三角形的 无关。
2、取值范围 <sinA< , <cosA< ,tanA> 例1. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .32C .35D .455.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .436. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43C.35D.45A D ECB F7. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .22D C B A Oyx第8题图类型三. 化斜三角形为直角三角形1. 如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.2.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 2类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12B .55 C .1010D .2552.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 3.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为 ( )A.41 B. 31 C.21D. 14.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .55B.2 5 5 C.12D. 2 CB A ABO知识点二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.1.计算:︒-︒+︒30cos 245sin 60tan 22.计算:3-1+(2π-1)0-33tan30°-tan45°3.计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ 4.计算: tan 45sin 301cos 60︒+︒-︒例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α (4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°锐角α30°45°60°sin αcos αtan α类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.5.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.例1.在Rt △ABC 中,∠C =90°.(1)已知:32=a ,2=b ,求∠A 、∠B ,c ; (2)已知:32sin =A ,6=c ,求a 、b ;(3).已知:△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.类型六:解直角三角形的实际应用 仰角与俯角1.如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A . 200米 B . 200米 C . 220米 D . 100()米 2. 在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)图13ABCD 45° 30°3 .如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.A BCD E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C ,从C 处测得树梢A 的仰角为45°,沿BC 方向后退10米到点D ,再次测得点A 的仰角为30°.求树高.(结果精确到0.1米.参考数据:2 1.414≈,3 1.732≈)5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)坡度与坡角1.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m2.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i =1:10,学生小明站在离升旗台水平距离为35m (即CE =35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tan α=37,升旗台高AF =1m ,小明身高CD =1.6m ,请帮小明计算出旗杆AB 的高度.3.如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时. (1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间.30°80米OMNAP4.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN 、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N 、M 、B ,∠EAB =31°,αABD CEF i FC =1:10DF ⊥BC 于F ,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数知识点一:锐角三角函数1、锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。
2、锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即斜边的对边AA∠=sin。
3、锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即斜边的邻边AA∠=cos。
4、锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即的邻边的对边AAA∠∠=tan。
sinα,cosα,tanα都是一个完整的符号,单独的“sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。
考点一:锐角三角函数的定义1、在Rt△ABC中,∠C=90°,cosB=54,则AC:BC:AB=()A、3:4:5B、5:3:4C、4:3:5D、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。
3、在△ABC中,∠C=90°,若4a=3c,则cosB=______.tanA = ______。
4、在△ABC中,∠C=90°,AB=15,sinA=13,则BC等于_______。
5、在△ABC中,∠C=90°,若把AB、BC都扩大n倍,则cosB的值为()A、ncosBB、1ncosB C、cosnBD、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD中,E是BC边上的点,AE BC=,DF AE⊥,垂足为F,连接DE。
(1)求证:ABE△DFA≌△;(2)如果10AD AB=,=6,求sin EDF∠的值。
6、如图,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。
7、如图(1),∠α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一个点P(3,4),则sinα=______8、如图(2)所示,在正方形网格中,sin∠AOB等于()A5B25C、12D、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
9、如图(3),在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )A 、2B 、22C 、63D 、3310、如图(4),直径CD 为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A 、12B 、34C 、32D 、4511、如图(5),A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为( )A 、12B 、13C 、14D 、2412、如图(6),菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2。
图(1) 图(2) 图(3) 图(4) 图(5) 图(6)13、如图,在Rt △ABC 中,∠C=90°,sinB=35,点D 在BC 边上,且∠ADC=45°,DC=6,求∠BAD 的正切值。
14、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。
15、如图,在梯形ABCD 中,AB ∥DC ,∠BCD=90°,AB=1,BC=2,tan ∠ADC=2。
(1)求证:DC=BC(2)E 是梯形ABCD 内一点,F 是梯形ABCD 外一点,且∠EDC=∠FBC ,DE=BF ,是判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE 的值。
【知识点二】 30°、45°、60°的三角函数值三角函数\锐角α30°45°60°sin α 21 22 23 cos α 23 22 21 tan α33 13考点一:利用特殊角的三角函数值进行计算 16、计算: (1)019(π4)sin 302--- (2)201()(32)2sin 3032--+︒+-(31182sin 45(2)3-⎛⎫+-π- ⎪⎝⎭(4)2sin45°+3cos30°-2317、∠B 是Rt △ABC 中的一个内角,且sinB=23,则cos 2B=( )A 、21B 、23C 、22D 、21 18、在△ABC 中,a =3,b =4,∠C=60°,则△ABC 的面积为________。
19、Rt △ABC 中,∠C=90°,c =12,tanB=33,则△ABC 的面积为( ) A 、363 B 、183 C 、16 D 、18 20、如图所示,在直角坐标系中,OP=4,OP 与x 轴正半轴的夹角为30°,则点P 的坐标为( )A 、(2、3-B 、(232)C 、(2,23D 、(232)21、已知PA 是⊙O 的切线,切点为A ,PA=3APO=30°,则⊙O 的半径长为_______。
22、在菱形ABCD 中,已知其周长为16 cm ,较短对角线长为4 cm ,求菱形较小角的正弦值 和余弦值。
23、如图,在平面直角坐标系中,点A 在第一象限内,点B 的坐标为(3,0),OA=2,∠AOB=60°。
(1)求点A 坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积。
考点二:已知一个特殊角的正、余弦值或正切值,求相应的锐角24、cosA = 22,A 为锐角,则A =________;2cos(α-100) = 1,则锐角α =________。
25、若tanA 的值是方程03)31(2=++-x x 的一个根,则锐角A=( )A 、30°或45°B 、30°或60°C 、45°或60°D 、60°或90°26、若2cosA -3=0,则锐角A=________。
27、在Rt △ABC ,∠C=90°,A 等于( ) A 、90° B 、60° C 、45° D 、30°28、在△ABC 中,锐角A ,B 满足(2+│cosB │=0,则△ABC 是( )A 、等腰三角形B 、等边三角形C 、等腰直角三角形D 、直角三角形29、若∠B 是Rt △ABC 的一个内角,sinB=2,则cos 2B的值是( )A 、12B 、2C 、3D 、2【知识点三】锐角三角函数的性质考点一:锐角三角函数的增减性1、当0°<α<90°时,sin α和tan α随α的增大而增大,cos α随α的增大而减小。
2、锐角三角函数的取值范围:0<sin α<1,0<cos α<1,tan α>0。
30、当锐角∠A >45°时,sin A 的值为( )A B 、小于2C 、小于2D 、大于231、当锐角A 的cos A A 的值为( ) A 、小于45° B 、小于30° C 、大于45°D 、大于30° 32、当锐角∠A <60°时,tan A 的值为( )A B C D 33、已知sin α≤21,则α的取值范围是( )A 、α>30°B 、30°<α<90°C 、0°<α<30°D 、0°≤α≤30°34、比较大小: (1)cos 18°________cos 18.3° (2)tan 31°_________tan 32° (3)sin 30°________sin 89° 35、比较大小:sin20°________sin25°;cos50°________cos70°。
考点二:锐角三角函数间的转换1、22sin cos 1A A +=2、若∠A 与∠B 互余,sin cos A B =3、sin cos =tan AA A36、当sinA=cosA 时,∠A=_______°。
37、已知α为锐角,且sin 54=α,则cos α=________。
38、cos (60°-β)=sin (________)。
(0°<β<90°) 39、若sin10°=cosA ,则锐角A=( )A 、10°B 、80°C 、10°或20°D 、不确定。