结构力学 structural mechanics

合集下载

土木工程的名词解释

土木工程的名词解释

土木工程的名词解释土木工程是一门涵盖广泛且极为重要的工程学科,负责规划、设计、建设和维护各种基础设施,以满足人们的生活、工作和运输需求。

以下是对一些与土木工程密切相关的名词的解释,以帮助读者更好地理解这一学科。

1. 结构力学(Structural Mechanics)结构力学是土木工程的基础,研究物体受力和变形的规律。

它运用物理学和数学的原理来分析和计算建筑物、桥梁、隧道和其他结构的稳定性和强度,确保它们能够承受各种外部力量而不会倒塌或遭受损坏。

2. 桥梁工程(Bridge Engineering)桥梁工程专注于设计、建造和维护各种类型的桥梁。

它要求工程师考虑如何在不同地理环境和地质条件下创建坚固、耐久且安全的结构,以便人们可以跨越水体、山谷或其他障碍物。

3. 隧道工程(Tunnel Engineering)隧道工程涉及设计和建造各种类型的隧道,包括公路、铁路和地铁隧道。

由于其特殊的地下环境,隧道工程面临挑战,如地质构造、地下水和地下空气等因素。

工程师需要运用地质学和土力学知识,确保隧道的安全性和可用性。

4. 岩土工程(Geotechnical Engineering)岩土工程研究土壤和岩石的特性,以便应用于土木工程的设计和建设中。

它涵盖土壤力学、岩石力学、地基工程等领域,致力于解决地基稳定性、地下水流动和地震等问题。

工程师需要了解和预测不同地质条件下的材料行为,以确保工程的安全性和可持续性。

5. 水资源工程(Water Resources Engineering)水资源工程是关于水资源的管理、利用和保护的学科。

它涉及到水库、水闸、排水系统和水文学等方面的工作。

水资源工程师致力于优化供水和治理水源,确保水的安全性和可持续性,同时减轻水灾和干旱等与水相关的灾害。

6. 施工管理(Construction Management)施工管理涉及项目的组织、协调和控制,以确保工程项目按时、按预算和按规定完成。

结构力学(structuralmechanics)

结构力学(structuralmechanics)

结构力学(structural mechanics)Structural mechanics is a branch of solid mechanics, which mainly studies the laws of force and force transfer of engineering structures, and how to optimize the structure. The so-called engineering structure refers to the system that can bear and transfer the external load, including the rod, plate, shell and their combinations, such as aircraft fuselage and wing, bridge, roof truss and load-bearing wall.The task is to study structural mechanics in engineering structure under external load stress, strain and displacement law; analysis of different forms and different materials of engineering structure, analysis method and calculation formula for engineering design; engineering structure subjected to external forces and transfer; research and development of new engineering structure.The natural structure observed in nature, such as roots, stems and leaves of plants, animal bones, egg shell, can find their strength and stiffness related not only to material, but also closely related with their shape, many engineering structures are natural structures created out of inspiration. The structure design should not only consider the strength and stiffness of the structure, but also to do material saving and light weight. The weight is particularly important for some projects, such as aircraft weight can make the aircraft flight range, rising quickly, high speed and low energy consumption.A brief history of structural mechanicsHumans began to manufacture all kinds of artifacts in ancienttimes, such as houses, boats and bow, musical instruments, these are simple structure. With the progress of society, people for structural design patterns and the strength and stiffness of the structure has been gradually recognized, and accumulated experience, which is reflected in the brilliant achievements of ancient buildings, such as Egypt, Pyramid, China the Great Wall, Zhaozhou Anji bridge, Beijing the Imperial Palace. Despite the presence of mechanics in these structures in knowledge, but did not form a discipline.As far as the basic principles and methods are concerned, structural mechanics is developed simultaneously with theoretical mechanics and material mechanics. Therefore, structural mechanics is integrated with theoretical mechanics and material mechanics in the initial stage of development. By the early nineteenth Century, due to the development of industry, people began to design a variety of large-scale engineering structures, the design of these structures should be more accurate analysis and calculation. Therefore, the analysis theory and analysis method of engineering structure began to be independent. By the middle of the nineteenth Century, structural mechanics began to become an independent discipline.Many computational theories and methods of structural mechanics appeared in the nineteenth Century. At France in 1826 proposed a normal method for solving statically indeterminate structure problems. From 1830s onwards, due to the bridge by train, not only need to consider the bridge under static load problems, must also be considered to withstand the dynamic load, because the bridge span increases, the metal truss structure.In the decades since 1847, scholars have studied the force analysis of statically determinate truss structures by means of graphic method and analytic method, which laid the foundation of truss theory. In 1864, Maxwell established the unit load method and the displacement reciprocal theorem, and calculated the displacement of the truss by the unit load method. Thus, scholars finally got the method to understand the statically indeterminate problem.After the establishment of the basic theory, the new structure and its corresponding theory have been continuously developed while solving the problems of the original structure. From the late nineteenth Century to the early twentieth Century, scholars carried out a lot of mechanical research on the ship structure, and studied the dynamic theory of the beam under the moving load, as well as the problems of free vibration and forced vibration.In the early twentieth Century, the development of Aeronautical Engineering promoted the stress and deformation analysis of thin-walled structures and stiffened plates and shells, and studied the stability problems. At the same time, bridges and buildings started to use a large number of reinforced concrete materials, this requires scientists to study systematically the steel structure, the displacement method was founded in Germany in 1914 of the Dixon, for solving the problem of rigid frame and continuous beam etc.. Later, in the 20~30 century, some simple calculation methods were put forward for the complex statically indeterminate bar structures, so that the general designers could master and use them.By 1920s, people have put forward the idea of honeycomb sandwich structure. According to the concept of limit state of structure, scholars have come up with a new design and calculation theory for beams, plates and frames on elastic foundations. The mechanical problems of structures subjected to various dynamic loads (especially the action of earthquakes) have been studied in many aspects, such as experiment and theory. With the development of structural mechanics, fatigue problems, fracture problems and composite structure problems have entered the field of structural mechanics.In the middle of the twentieth Century, the advent of electronic computers and finite element methods made it possible to make complex calculations of large structures, thus bringing the level of research and application of structural mechanics to a new level.The discipline system of structural mechanicsThe general structural mechanics according to the different nature and its research object is the static structure, structural dynamics, theory, structure, fracture and fatigue theory of rod structure theory, theory of thin-walled structure and overall structure theory etc..Structural statics is the first branch of structural mechanics. It mainly studies the elastic-plastic deformation and stress state of engineering structures under static loads, and the structural optimization problems. Static load refers to the load that does not change with time, the load that changesslowly, and also can be regarded as static load approximately. Structural statics is the basis of other branches of structural mechanics.Structural dynamics is a branch of study on the response and performance of engineering structures under dynamic loads. Dynamic load refers to the load that changes with time. Under dynamic load, the stress, strain and displacement in the structure must be the function of time. Because of the time factor, the research content of structural dynamics is generally more complex than that of structural statics.The theory of structural stability is the branch of study on the stability of Engineering structures. Slender and thin structures are widely used in modern engineering, such as thin rods, thin plates and thin shells. When they are compressed, they will lose stability (wrinkling or buckling) when the internal stress is less than the yield limit, that is to say, the structure produces too large deformation, thus reducing and even completely losing the bearing capacity. Large deformation also affects other requirements of structural design, such as aerodynamic performance of aircraft. The most important content of structural stability theory is to determine the critical buckling load of structures.Structural fracture and fatigue theory is the study of engineering structures are inevitable because of internal crack, crack under external load expansion caused by fracture, caused by fatigue failure would be expanded subject in smaller amplitude under alternating load. Now, the research history of fracture and fatigue is not long and imperfect, but the theoryof fracture and fatigue is developing very fast.In structural mechanics, theoretical and experimental studies on various engineering structures, based on the research object also formed some research fields, which are the main truss structure theory, the theory of thin-walled structures and the overall structure of the theory of three categories. The whole structure is made of raw materials, machined by mechanical milling or by chemical etching. It is especially suitable for some boundary conditions and is often used as variable thickness structure. With the development of science and technology, many new structures emerge, such as sandwich structure and composite structure appearing in the middle of twentieth Century.The research methods of structural mechanics mainly include three kinds of analysis, experimental research, theoretical analysis and calculation of Engineering structure. In the structural design and research, these three aspects are often alternate and complement each other.The use analysis is in the structure use process, carries on the analysis, the comparison and the summary to the structure appears, this is easy and reliable one kind of research method. The use analysis plays an important role in the evaluation and improvement of structure. The newly designed structures also need to be used to test the performance.The experimental research can provide an important basis for the identification of structure, which is also the main means to test and develop the theory and calculation method ofstructural mechanics. The experimental research can be divided into three types: model experiment, real structural component experiment and real structure experiment. For example,Aircraft ground failure test, flight test and vehicle collision test, etc..The mechanical structure usually takes more manpower, material and financial resources, so only to a limited degree, especially in the early stages of the structural design, generally rely on theoretical analysis and calculation of the structural components.In the field of solid mechanics, provides the basic knowledge necessary for the development of material mechanics, structural mechanics, elastic mechanics and plastic mechanics is the theoretical basis of structural mechanics, structural mechanics is also combined with other physical disciplines form many interdisciplinary, such as fluid elastic force etc..Structural mechanics is an ancient discipline, and it is also a rapidly developing subject. A large number of new engineering materials and new engineering structures have provided new research contents and new requirements for structural mechanics. The development of computer provides a powerful computational tool for structural mechanics. On the other hand, structural mechanics also plays an important role in the development of mathematics and other subjects. The emergence and development of the finite element method is closely related to the study of structural mechanics.。

结构力学 2几何组成分析

结构力学 2几何组成分析

II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?


还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变

结构力学课件

结构力学课件
2016/1/14
A
(b)刚结点
A
(c) 组合结点 图 1-5
34
结构力学
1-2-6
支座的简化及分类
理论力学中已经引入了支座的计算简图,现 归纳、补充如下: 支座是将结构和基础联系起来的装置,其作 用是将结构固定在基础上,并将结构上的荷载传
递到基础和地基。支座对结构的约束力称为支座
反力,支座反力总是沿着它所限制的位移方向。
在结构计算中,为了简化,对组成各构件的材 料一般都假设为连续的、均匀的、各向同性的、完 全弹性或弹塑性的。
2016/1/14
结构力学
42
1-2-8
荷载的简化
结构承受的荷载可分为体积力和表面力两大类。 在杆件结构中把杆件简化为轴线,因此不管是体积 力还是表面力都可以简化为作用在杆件轴线上的力。 荷载按其分布情况可简化为集中荷载和分布荷 载。
2016/1/14
结构力学
5
在水工结构方面: ① 公元前256-251年秦朝修建的岷江水利枢纽工程都江堰创 造了用竹笼装卵石堆砌的堤坝结构,使用至今,其结构 之简单,规模之宏伟,堪称世界之最。 在桥梁结构方面: ① 公元605-617年隋朝修建的河北赵县安济桥(也称赵州桥) 为敞肩石拱桥,造型优美、结构合理。 ② 宋代的广东潮州广济桥(开关活动式)。 ③ 福建泉州万安桥(即洛阳桥,筏形基础,砺房胶固), 其独特结构型式在世界上都绝无仅有。
2016/1/14
ห้องสมุดไป่ตู้
结构力学
17
结构力学研究对象涉及较广,根据所涉及范围, 通常将结构力学分为“狭义结构力学”、“广义结
构力学”和“现代结构力学”。
狭义结构力学 其研究对象为由杆件所组成的体系。
这种体系能承担外界荷载作用,

结构力学_11超静定结构-位移法

结构力学_11超静定结构-位移法

§11.3 位移法的基本未知量和基本体系
1、结点角位移数:
结构上可动刚结点数即为位移法计算的结点角位移数。
2、结构独立线位移:
每个结点有两个线位移,为了减少未知量,引入与实际相符的两个假设:
(1)忽略轴向力产生的轴向变形 (2)变形后的曲杆长度与其弦等长。





C
C
D
D
A
B
线位移数也可以用几何方法确定。 将结构中所有刚结点和固定支座,代之以铰结点和铰支座,分析新体系的
基本方法 (手算)
机算
力法
位移法
矩阵 力法
力矩分配法
矩阵 位移法
力法几次9超次静定?
位移法几1次次超静定?
§11.1
P C θA
θA
位移法的基本概念
B
A
附加
刚臂 C
P B
附加刚臂限制结
点位移,荷载作
A 用下附加刚臂上
产生附加力矩
C θA
B
θA
施加力偶使结点产 生的角位移,以实
A 现结点位移状态的
一致性。
D
2
C
F22
A
D
A
D
Fk1111
2i B
1 =1
i
A
C
kF2211
Fk122
B
i
D
A
建立基本方程
F11+F12+F1P=0………………(1a) F21+F22+F2P=0………………(2a)
k111 + k122 +F1P =0………..(1) k211 + k222 +F2P =0………..(2)

材料力学、结构力学与理论力学的区别与联系

材料力学、结构力学与理论力学的区别与联系

中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。

应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科)《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。

结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。

结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。

工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。

)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。

观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。

结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。

学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。

结构静力学结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。

结构力学求解器


1.软件简介
官方网址: /sms/ 在该网站可以下载软件共享版!
观览器
命令编辑器
2.力学相关知识介绍
① 结点:结点是在计算结构内力时出现的概念 ,结点一般是两个
或以上杆件的交点。
2.力学相关知识介绍
结点命令
N, Nn, x, y
Nn,结点编码;
x,结点的x坐标;
y,结点的y坐标。
2.力学相关知识介绍
② 单元:连接结点的杆件。
2.力学相关知识介绍
单元命令
E, N1, N2 [, DOF11, DOF12, DOF13, DOF21, DOF22, DOF23]
N1, N2,单元两端的结点码; 以下连接方式:1为连接,0为不连接: DOF11,杆端1处的x方向自由度的连接方式, 缺省值=1; DOF12,杆端1处的y方向自由度的连接方式, 缺省值=1; DOF13,杆端1处的转角方向自由度的连接方 式,缺省值=0; DOF21,杆端2处的x方向自由度的连接方式, 缺省值=1; DOF22,杆端2处的y方向自由度的连接方式, 缺省值=1; DOF23,杆端2处的转角方向自由度的连接方 式,缺省值=0。
2.力学相关知识介绍
⑤ 单元材料性质:定义一个或多个单元的抗拉刚度、抗弯刚度、均布质量
、极限弯矩、抗剪刚度等。计算刚度、极限荷载等计算时使用。
2.力学相关知识介绍
单元材料性质
NL 计算杆件轴向拉伸和轴向压缩变形时使用 L EA
2.力学相关知识介绍
单元材料性质
计算杆件弯曲变形时使用
5ql 4 ml 2 yc=ycq+ycm= 384 EI 16 EI
3.力学求解器建模步骤
① 结构或杆件的内力计算步骤

Structural mechanics 中的专业词汇

Structural mechanics 中的专业词汇PREFACE AND CHAPTER 1Structural mechanics 结构力学Structural analysis 结构分析Statically determinate structures 静定结构Statically indeterminate structures超静定结构Matrix analysis of structures 结构矩阵分析Plastic analysis of structures 结构塑性分析Dynamic analysis of structures 结构动力分析Illustrative example 例题Problems 习题In civil construction 在土木工程建设中Geometric dimension 几何尺度Framed structure 杆系结构Cross-section 横截面Rectangular cross-section 矩形截面Radius 半径Diameter 直径Slab 板Shell 壳Thin-walled structure 薄壁结构Massive structure 块体结构The same order of magnitude 大小同量级Theory of Elasticity 弹性力学Aspect 方面Application of loads 荷载的作用Forces and deformations 力和形变Internal forces 内力Reasonable simplicity 合理的简化Computing model 计算模型In structural engineering 在结构工程中Dead loads 静荷载Live loads 活荷载Dynamic loads 动力荷载Movable loads 移动荷载Moving loads 运动荷载Static loads 静力荷载Response of a structure 结构响应Blast loads 爆炸荷载Impact loads 冲击荷载Centrifugal force 离心力External effect 外部作用Support settlement 支座沉陷Manufacture discrepancy 制造误差Shrinkage of material 材料收缩In generalized sense 在广义上Behavior of a structure 结构的行为Members 构件Bending moment 弯矩Shearing force 剪力Normal force 轴力Internal force component 内力分量Lateral dimension 横向尺寸Reinforced concrete beam 钢筋砼梁Engineering structure 工程结构Three dimensional 三维的Planar(plane) structure 平面结构To lie in the same plane 处在同一平面Space structure 空间结构Simplification of supports 支座的简化Restraint 约束Stationary foundation 固定的基础Roller support 辊柱支座(链杆支座)Link support 链杆支座Perpendicular to 垂直于……Hinge support 固定铰支座Horizontal 水平的Vertical 竖直的Be parallel to each other 相互平行Displacement 位移Links 链杆Rotation 转角,转动A couple 一个力偶Fixed support 固定支座Translation 平移Isometrically 等距地Respectively 分别地Simplification of joints 节点的简化Hinge joint 铰结Rigid joint 刚结Monolithic body 整体,一体Beam 梁Flexural member 受弯构件Transverse force 横向力Frame 框架Bend 弯2Shear 剪Tense 拉Compress 压Arch 拱Reaction 反力Truss 桁架Composite structure 组合结构Superposition principle 叠加原理Be subjected to 承受……Linearly 线性地Linearly elastic 线弹性的Increment 增量Be proportional to 与…成正比Stress 应力Strain 应变CHAPTER 2Geometric stability 几何稳定性Geometrically stable 几何稳定的Unstable system 不稳定体系Degrees of freedom 自由度By definition 根据定义Independent coordinate 独立坐标Planar coordinate system 平面坐标系Three dimensional coordinate system三维(空间)坐标系Rigid body 刚体Joint 节(结)点Mutual(relative) displacement 相对位移Be equivalent to 等价于…Multiple hinge 多重铰Multiple rigid joint 多重刚结点Imposed restraint 施加的约束Insufficient 不足的Sufficient 足够的Redundant 多余的Redundant restraint 多余约束Arrangement of restraints 约束的布置Necessary condition 必要条件Sufficient condition 充分条件Geometric construction analysis 几何构造分析Definite conclusion 确定的结论Substitute into 代入…Assembly 集合Kinematic analysis 机动分析A hinged triangle 一个铰接三角形Lying on the same straight line 位于同一直线Infinitesimal displacement 无穷小位移Infinitesimal rotation 无穷小转角Instantaneously unstable system 瞬变体系Jointed pairwise 两两相连的Statically determinate multi-span beam 多跨静定梁Internal stable 内部稳定的Internal stability 内部稳定性Disregard 忽视,不考虑AB and CD Intersecting at point O AB 和CD相交于点OInstantaneous centre of rotation 瞬时转动中心Instantaneous hinge 瞬铰Static determinacy 静力确定性Static equilibrium equation 静力平衡方程Arbitrary cross section 任意横截面Isolated free body 脱离(隔离)体Unique solution 唯一的解Coupled equation 耦合的方程Contradictory 矛盾的Infinite number of solutions 无穷多个解Simultaneous equations 联立方程In quantitative sense 在数量上Projection equilibrium equation 投影平衡方程Determinant method 行列式法则(克莱母法则)Determinant 行列式Coefficient of the equations 方程未知量的系数Static characteristic 静力特性Space system 空间体系Infinitely far away 无穷远处CHAPTER 3Fundamental 基础,基本原理Individual member 单一的构件Element 单元Resultant 合力Axial direction 轴向3 Axial tension 轴向拉伸Positive 正的Negative 负的Compression in the upper fibers上边受压Tension in the lower fibers 下边受拉Normal direction 法向Axis 轴线Clockwise moment 顺时针力矩Counter clockwise moment 反时钟力矩Free body 隔离体Sign convention 符号规定Moment diagram 弯矩图Tensile side of a member 构件的受拉边Method of section 截面法Monolithic system 整体系统Algebraic sum 代数和Magnitude 大小Moments about the centroid ofcross section 对截面中心的力矩Mathematical relation 数学关系Internal force diagram 内力图Differential element 微分单元As indicated 正如所示Distributed loads 分布荷载Intensity 集度Summing moments about an axisthrough the left hand face of theelement 关于穿过该单元左截面的某轴求力矩之和Higher-order term 高阶项A segment 一段Rightward 向右Downward 向下Separately 分别地Slope 斜率Extreme moment 极值弯矩Curvature 曲率Uniformly distributed 均匀分布Linear function 线性函数Inclined straight line 斜直线Quadratic function 二次函数Parabolic curve 抛物线Concave 下凸的Concentrated load 集中荷载Incremental relation 增量关系To the immediate left and tight of P P的左邻和右邻Abrupt change 突变Abruptly 突然地Integral relation 积分关系Difference between A and B A和B 的差Sum of A and B A和B的和Figure 图形Construction of shearing force diagram剪力图的绘制Terminal point 终点End couple 杆端力矩Dashed line 虚线Ordinate 纵坐标Superimpose 叠加Concave parabola 下凸抛物线Corresponding ordinate 相应的纵坐标Similar triangle 相似三角形Inclined member 斜杆Per meter 每米Curved member 曲杆Tangential direction 切向Normal direction 法向Curvature radius 曲率半径Infinitesimally small 无穷小Approach to infinity 趋于无穷Radial distributed 径向分布的Arc 弧Basic stable portion 基本部分Subsidiary portion 附属部分Symmetrical 对称的Unsymmetrical 非对称的Horizontal thrust 水平推力Construct M and Q diagrams 绘制M和Q图CHAPTER 4Statically determinate multispan beam静定多跨连续梁Static method 静力法Constituent 组成的Cantilever beam 悬臂梁Similarly 同样地(同理)Overhang beam 伸臂梁Simple supported beam 简支梁Method of virtual work 虚功法Kinematic method 机动法Principle of virtual displacement 虚位移原理4Principle of virtual work 虚功原理Virtual displacement 虚位移Consistent with 与…相容的Mechanism 机构Virtual work equation 虚功方程Unknown 未知的Projection along the force 在力方向上的投影Product of magnitude of the force and the magnitude of the displacement 力的大小与位移大小的乘积Angular displacement 角位移Corresponding displacement 相应的位移Substitute for 替换…Infinitesimal virtual displacement 无穷小虚位移In this circumstance 在这种情况下Deflect 偏转Equal in magnitude but opposite in direction 大小相等方向相反Instructive 有启发的CHAPTER 5Pinned joint 铰接Subscript 下标Control section 控制截面Foundation 基础Order of calculation 求解顺序Differential relation between M and external loads M和外力的微分关系Tension in the right fiber 右边纤维受拉Reserve 保留End bending moment 杆端弯矩Sign indication 符号标定Associate shearing force 相应的剪力Keep balance 保持平衡Uniformly distributed loads 均布荷载Satisfaction of the projection equilibrium equations 平衡方程的满足Control ordinate 控制坐标Be perpendicular to 垂直于…CHAPTER 6Span of an arch 拱跨Rise of an arch 拱的矢高Symmetrical axis 对称轴Horizontal thrust 水平推力A three arched arch with a tie 拉杆三铰拱Flatten out 变平Arbitrary cross section 任意截面Axis of abscissa 横坐标轴First derivative 一阶导数Conic parabola 二次抛物线Tabulate 把…制成表格Table 表格Column 列The cipher of column 9 第9列的值Lay off 画出…Masonry construction 砌石建筑Abutment 底座,桥墩Line of pressure 压力线Resultant 合力By graphical method 利用几何法Force Polygon 力多边形Pole 极点Intersection point 交点Funicular polygon 索多边形Polygon of resultants 合力多边形Action line for resultant 23 合力23的作用线Respective string 各自的索线In direct proportion to 正比于…Optimal centre line of arch 合理拱轴线Theoretical volume 理论值Primarily stationary load主要由固定荷载作用Reckon from 从…开始算Configuration 形状As a consequence 结果,因而Hydraulic pressure 静水压力Circular arc 圆弧A curve of circular arc 圆弧曲线Bisector 二等分线,平分线Annular shape 圆环状Under earth pressure 在土压力作用下Crown hinge 顶铰Under this circumstance 在这种情况下Differentiate with respect to x关于x求导Differential equation 微分方程Hyperbolic function 双曲函数Boundary condition 边界条件Whence 据此,由此Catenoid 悬链线5Cable 吊索Suspension system 悬挂体系A series of linear segments 一系列直线段Distortion 变形Deflection 挠度Sag 下垂度Assumption 假定Unknown force 未知力CHAPTER 7Connected by pins 用铰连接Tower 塔Roof structure 屋架(屋面)结构Frictionless pin 光滑铰Two-force member 二力杆Heavy bolted joint 强螺栓连接节点Welded joint 焊接节点Primary stress 主要应力Subsidiary stress 次要(附加)应力Top chord 上弦杆Bottom chord 下弦杆web member 腹杆Diagonals and verticals 斜杆和竖杆Panel point 节点Panel 节间Through truss 穿越(下承式)桁架Desk truss 上承式桁架Simple truss 简单桁架In alphabetical order 以字母顺序Compound truss 联合桁架Rigid framework 刚性构架Nonparallel nonconcurrent links 不相互平行也不相交于一点的链杆Cross-hatched 画阴影线的Complex truss 复杂桁架Joint method 节点法Section method 截面法concurrent forces 汇交力系Expedient 方便的Inactive member 零杆Moment centre 力矩中心Projection axis 投影轴线Pass a section 做一个截面Exceptional member 单杆Subdivided truss 再分式桁架Sub-diagonal 辅助(次)斜杆Sub-vertical 辅助(次)竖杆Sub-truss 辅助(次,子)桁架Sub-member 辅助(次)杆Sub-joint 辅助(次)节点Horseshoe-shaped 马蹄形的Graphical method 作图法Algebraic method 代数方法vertex of the polygon多边形的顶点arrow of a force 力的箭头successively 连续地by scaling 通过度量repetitional work 重复性的工作supplement 补充method of substitute member 替换杆法method of initial parameter 初参数法closed loop 闭合圈space truss 空间桁架dome 圆屋顶derrick 塔架spherical hinge 球形铰triangular pyramid 三棱锥,四面形, 四面体odd member 单杆collinear 在同一直线上的foregoing discussion 前述的讨论beam member 梁式杆flexural member 受弯杆composite joint 复合节点self-equilibrium force system 自平衡力系statically equivalent load 静力等效荷载girder 桁架梁parallel chord truss 平行弦桁架non- parallel chord truss 非平行弦桁架roof truss 屋面桁架arched truss 拱桁架(桁架拱)polygonal line truss 折线桁架designated member 指定的杆absolute value 绝对值CHAPTER 8Influence line 影响线Most severe internal forces 最不利内力Influence coefficient 影响系数Dimension 量纲Dimensionless 无量纲的6Expression 表达式Most unfavorable position 最不利位置Behavior of the structure 结构的行为Constructing influence line 作影响线Influence line for internal force内力影响线Virtual work 虚功Principle of virtual work 虚功原理Abscissa 横坐标Sign indication 符号标注To draw influence line 画影响线To be confined to 被限制在……Floor beam 楼面梁Girder 大梁,主梁Floor slab 楼板Without ambiguity 显然Eliminating a necessary restraint去除一个必要的约束Infinitesimal virtualdisplacement无穷小虚位移Vertical scale 竖标Relative angular displacement 相对角位移Relative transverse displacement相对横向位移A unit transverse slidingdisplacement 一个单位横向滑动位移Intact 未动的,完好的Three hinged arch 三铰拱A corresponding simple beam一个相应的简支梁Critical position 临界位置Most severe effect 最不利的影响Trial aided 试算By use of criteria 利用判据Standard truck 标准卡车Average loads 平均荷载Inequality 不等式Critical load position 临界荷载位置Increment 增量Decrement 减量Reverse 逆Reverse condition (d) 条件(d)的逆The peak of the triangular influencediagram 三角形影响图的顶点Numerically greatest 数量上最大的Extreme value 极值Vertexes of the influence diagram 影响图的顶点Absolute maximum bending moment 绝对最大弯矩Derivative 导数Equidistant 等距离的Without any loads going on or off thespan 没有任何荷载进入和离开梁跨A continuous function of x x的连续函数Mid-point of the span 跨中Midpoint of the span 跨中Dangerous section 危险截面Crane beam 吊车梁Envelope for bending moment 弯矩包罗图Envelope for shearing force 剪力包罗图An arbitrary section 一个任意截面Influence diagram 影响图Designated quantity 指定量值Bound of the bending moment variation弯矩变化的边界CHAPTER 9In structural design 在结构设计中Elastic displacement 弹性位移Indeterminate structure 超静定结构Most versatile method 最通用的方法Unit load method 单位荷载法Reciprocal theorem 互等定理Illustration of unit load method 单位荷载法的例子Supported settlement 支座沉降Lineardiplacement (translation) 线位移A compatible displacement 相容性位移Fictitious=virtual 虚的Virtual force 虚力Appropriate choice 适当的选择Sections adjacent to hinge C 铰C的相邻截面A unit virtual load 一个单位竖向位移A pair of unit couple 一对单位力偶Real work 实功An elastic prismatic bar 一个弹性等截面杆Elasticity modulus 弹性模量Cross-section area 横截面面积Generalized force 广义力Generalized displacement 广义位移Statically interdependent forces 静力相关力系Corresponding generalized displacement 相应的广义位移The angle of rotation θ转角θ7External work 外(力)功Internal work 内(力)功To be identical to 与……一致(样) A differential element 一个微分单元Differential virtual work 微分虚功Strain energy 应变能Virtual stain energy 虚应变能Linear elastic structure 线弹性结构Internal virtual work 内力虚功Conservation law of energy 能量守恒定理External real work 外力实功The inverse of the curvature radius 曲率半径的倒数Compatible relations 相容关系Vanish 趋于零identity relation 恒等关系式unit virtual force 单位虚力virtual force system 虚力系real displacement 实位移real strain components 实应变分量an actual geometrical problem 一个实际的几何问题a fictitious equilibrium problem一个虚平衡问题difference of temperature 温差coefficient of thermal expansion温度膨胀系数axial strain 轴向应变likewise 同理sagging sense 下凸的moment of inertia 惯性矩axial rigidity 抗拉压刚度shearing rigidity 抗剪刚度flexural rigidity 抗弯刚度principal axis of cross section截面主轴twisting moment 扭矩twisting angle 扭转角differential segment 微分段torsional constant of the crosssection 截面扭转常数neutral axis 中性轴area moment 面积矩concrete member 砼凝土构件steel member 钢构件Poisson ratio 泊松比depth-span ratio 高跨比to be inversely proportional to与……成反比in parentheses 在括号中graph multiplication 图乘法the moment of the differentialarea with respect to y axis 微分面积对y轴的矩magnitude of areas 面积的大小location of their centroids 它们的形心位置3d-degree parabola 3次抛物线additional proviso 附加条件reinforced concrete 钢砼cross-sectional dimension 横截面尺寸elasto-plastic behaviour 弹塑性行为reduction factor 折减系数a pair of concentrated unit loads一对单位集中力reciprocal theorem 互等定理theorem of reciprocaldisplacements 位移互等定理theorem of reciprocal reactions反力互等定理reaction influence coefficients反力影响系数theorem of reciprocaldisplacement-reaction 反力位移互等定理support movement 支座移动to develop a general formula 推导通用公式column 柱CHAPTER 10Force method 力法Method of consistent deformation 一致变形法Redundant structure 超静定结构Unknown force 未知力Compatibility conditions 相容性条件Redundant unknown force 多余未知力Degree of indeterminacy 超静定度Internally indeterminate 内部超静定Primary system 基本体系Primary unknowns 基本未知量Passive force 被动力Active force 主动力Inconsistency n.不相容性,不一致性Embody 体现Superimpose 叠加Flexibility coefficient 柔度系数Canonical equation 标准方程Propped cantilever beam 有支(承)悬臂梁, 有支(承)伸臂梁Highly indeterminate structures 高阶超静定结构8Square matrix 方阵Symmetrical component 对称分量Antisymmetrical component 反对称分量Asymmetrical 不对称的Inflection point 反弯点Odd number of span 奇数跨Even number of span 偶数跨Method of elastic center 弹性中心法Rigid arm 刚臂Hingeless arch 无铰拱Numerator 分子Denominator 分母Quotient 商Central angle 中心角Nonprismatic member 变截面杆(构件)Trapezoid formula 梯形公式Parabolic formula 抛物线公式Reactant bending moment 抵抗弯矩Stiffness factor 刚度系数Nonyielding support 刚性支座Lack of fit 误差Redundant beam 超静定梁Qualitative influence line 定性影响线Quantitative influence line 定量影响线CHAPTER 11Slope-Deflection method 位移法(转角位移法)Displacement method 位移法Moment distribution method 弯矩分配法Varying section 变截面Slope-deflection equation 转角位移方程Rotation stiffness 转动刚度Slidely fixed 双链杆支座的Alongside 在旁边的Analogy 模拟,类比Portal frame 门形刚架Bent frame 排架Sideway 侧移Notion=conceptStiffness matrix 刚度矩阵Coefficient of thermal expansion 温度膨胀系数CHAPTER 12Systematic approach 系统化的方法Matrix algebra 矩阵代数Routinely programmed 常规地编程discretization 离散化beam element 梁单元truss element 桁架单元flexural element 弯曲单元element analysis 单元分析global analysis 整体分析nodal displacement vector .节点位移向量nodal resultant vector 节点力向量global stiffness equation 整体刚度方程governing equation 控制方程end force 杆端力end displacement 杆端位移stiffness matrix 刚度方程starting point 起点terminal point 终点the four entries 4项oriented in positive coordinate direction 指向坐标轴的正方向subvector 子向量main diagonal 主对角线main coefficients 主元素(主系数) secondary coefficients 副系数singular 奇异的determinant 行列式inverse of the matrix 矩阵的逆the origin of the system 坐标系的原点transformation matrix 坐标转换矩阵identity matrix 恒等矩阵submatrix 子矩阵stiffness method 刚度法nodal displacement vector 节点位移向量in the assembly 在集成过程中element contribution matrix 单元贡献矩阵global stiffness matrix 整体刚度矩阵governing equation 控制方程equivalent nodal loads 等效节点荷载non-nodal loads 非节点荷载artificial rotation restraint 人为的转动约束post-processing method 后处理法pre-processing method 前处理法plane truss 平面桁架coordinate transformation 坐标变换node number 节点编号9local number 局部码local code number 局部编码global code number 整体编码encircled superscript 画圈的上标a sparse matrix 一个稀疏矩阵a banded matrix 一个带状矩阵semi-bandwidth 半带宽loading conditions 荷载条件support arrangement 支座布置CHAPTER 13Method of moment distribution 弯矩分配法A procedure of successiveapproximation 一个逐步近似的过程Successive cycle of computation逐次的计算循环Joint translation 节点平移Rotational stiffness 转动刚度Distribution factor 分配系数Fraction of total moment 总弯矩的百分比Distribution moment at the near end 在近端的分配弯矩At the far end 在远端The ratio of the far end moment to thenear end moment 远端弯矩与近端弯矩的比值Carry-over factor 传递系数Basic moment distribution process 基本的弯矩分配过程An external nodal moment 一个外加的节点弯矩Artificial restraint 人为的约束In the lock state 在锁定状态Unlocking moment 释放弯矩Unbalanced moment 非平衡弯矩Eliminating the artificial restraint解除人为约束Carry-over moment 传递弯矩。

结构力学I课程标准

“结构力学I”课程标准课程名称:结构力学I英文名称:Structural Mechanics I课程代码:课程类别:专业教育必修课程(专业核心课程)课程学时:56课程学分:3.5适用专业:土木工程先修课程:高等数学、理论力学、材料力学等授课学院:建筑工程学院教研室:土木工程教研室制定人:赵腾飞、袁立群、孟昭博审定人:张绪涛、孟昭博、崔诗才一、课程性质《结构力学I》是土木工程专业必修的专业核心课程之一,将为后续专业课程学习打下良好的基础。

通过本课程的学习,学生在理论力学和材料力学的基础上可以进一步掌握分析计算杆件体系的基本原理和方法,了解各类结构的受力性能,培养学生结构分析与计算的能力,为学习有关专业课程及进行结构设计和科学研究打下基础,并能够应用结构力学基本理论和方法解决工程实际问题。

二、目标要求(一)总体目标掌握结构在荷载、支座移动等因素作用下结构强度、刚度等的分析、计算方法;掌握结构的合理组成形式及分析方法;熟悉结构力学相关的基本概念,了解近似计算方法、了解计算结构力学的相关分析方法。

在头脑中初步建立结构的力学思维方式,能正确应用力学知识对结构的强度、刚度以及结构合理组成进行分析。

(二)具体目标1.知识目标(1)能理解结构力学的一般概念及结构受力、变形等特点;(2)能正确建立力学相关计算模型并对其进行结构几何组成分析;(3)能正确利用多种方法对结构进行受力分析、绘制相应的内力图;(4)能正确通过虚功法求解结构的位移,并能大致绘制结构的变形图。

2.能力目标(1)能熟练计算、绘制静定结构、超静定结构的内力;(2)能熟练求出指定截面的广义位移;(3)能判别平面杆系结构的几何组成合理性。

3.素质目标(1)能将力学知识应用于实际工程中,着力培养工程实践能力;(2)引入前延、后续课程,做好课程衔接,形成课程体系,为后学专业课学习打好基础;(3)培养学生的受力概念、直观受力感觉和力学意识,勇于担当结构安全和经济两大重任。

《结构力学》教学大纲

《结构力学》教学大纲课程名称及英文名称:结构力学Structural mechanics 课程编码:B5214009课程类别:公共基础课()专业基础课(√)专业核心课()课程性质:必修课(√)选修课()适用专业:城市轨道工程技术专业学时数: 64 学时开设学期:第 3 学期执笔者:闫志红编制日期: 2012 年8 月一、课程的性质和任务:1、课程性质:结构力学是城市轨道工程技术专业的一门专业基础课。

2、课程任务:结构力学是运用力学的基本原理,研究结构在荷载等因素作用下的内力和位移的计算,研究结构的组成规律和合理形式。

通过课程学习,使学生掌握结构力学的基础知识和基本技能;学习运用结构力学的方法分析和解决工程中常见的力学问题;培养学生的力学素质;为学习专业课程和继续深造提供必要的基础。

同时,还应注意培养学生科学的思考方法和工作方法。

二、本课程与其他课程的联系与分工:结构力学是以高等数学、工程力学等课程为基础,并为钢筋混凝土技术、城市桥梁工程等课程提供分析思路和计算方法。

三、课程的主要目标、内容和学时分配1、课程的主要目标知识目标:掌握结构的组成规律,静定结构的受力分析、内力计算方法和位移计算方法,超静定的内力计算方法。

影响线的绘制方法。

能力目标:建立清晰的力学概念,掌握力学分析的基本方法。

能分析结构的组成规律,能判断结构的几何可变性。

能计算静定结构在荷载作用下的内力,能绘制内力图,能计算静定结在荷载、支座移动和温度变化所引起的位移。

能用力法、位移法、力矩分配法计算超静定解构的内力,并绘制内力图。

能作出结构的影响线。

素质目标:学习能力;解决问题的能力;可持续发展能力。

2、课程主要内容1):绪论(2学时)主要内容:结构力学的任务,结构的计算简图与杆件结构分类,荷载的分类。

教学要求:掌握杆件结构的分类、支座分类和节点分类;理解支座的受力和节点的受力特点。

了解结构力学的任务和计算简图的确定。

2):平面体系的几何组成分析(6学时)主要内容:自由度、约束、瞬铰、多余约束等概念, 体系自由度计算公式,平面几何不变体系的组成规则,瞬变体系的特性,静定、超静定结构的几何组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学 structural mechanics
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。

结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。

结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。

结构力学的任务
研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。

结构力学的学科体系
一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。

结构力学的研究方法
结构力学的研究方法主要有工程结构的使用分析、实验研究、理论分析和计算三种。

在结构设计和研究中,这三方面往往是交替进行并且是相辅相成的进行的。

结构力学是一门古老的学科,又是一门迅速发展的学科。

新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。

计算机的发展,为结构力学提供了有力的计算工具。

另一方面,结构力学对数学及其他学科的发展也起了推动作用。

有限元法这一数学方法的出现和发展就与结构力学的研究有密切关系。

相关文档
最新文档